Главная » 1 Описание » Атом имеет размер порядка. Каков диаметр атома? Какой размер и масса атома

Атом имеет размер порядка. Каков диаметр атома? Какой размер и масса атома

Тот простой факт, что всё вокруг состоит из мельчайших частиц вещества - молекул и атомов, - на самом деле обладает огромной научной силой. Из одного лишь этого утверждения можно вывести большое число следствий, дающих качественное объяснение многим физическим явлениям. Если бы вдруг человечество «забыло» все естественнонаучные знания, накопленные за многие века, то, уцепившись лишь за этот факт и пользуясь научным методом, оно смогло бы очень быстро восстановить азы многих разделов физики и химии.

Про атомарную структуру материи дети узнают еще в начальной школе. Но атомы не видны ни глазом, ни в оптический микроскоп. Более того, в обычных экспериментах с веществом, когда мы измеряем разнообразные характеристики материи (плотность , теплоемкость , удельную теплоту плавления и испарения , вязкость , силу поверхностного натяжения жидкости и так далее), мы вообще можем не задумываться о том, что она состоит из отдельных частиц. Современная физика, конечно, позволяет «разглядеть» отдельные атомы с помощью сложных приборов. Но возникает вопрос: существует ли какой-то простой способ определить типичный размер молекул, не прибегая к такой технике? Оказывается, да.

Задача

Вооружившись лишь фактом, что всё состоит из атомов, оцените размер молекулы воды на основании (некоторых из) перечисленных выше макроскопических характеристик. Численные значения этих параметров для воды можно легко найти в справочниках или в интернете.


Подсказка

Сразу стоит подчеркнуть, что решения, которые опираются на число Авогадро или на свойства отдельных молекул, - «обманные», поскольку они неявным образом уже используют размер молекул. Например, требуемую оценку легко получить из плотности и молярной массы воды и числа Авогадро. Однако число Авогадро, которое связывает микромир с макромиром и «знает» про размеры атомов, в чисто макроскопическом эксперименте не проявляется и само требует экспериментального измерения.

Размер атомов предлагается оценить (разумеется, не точно, а только по порядку величины) на основании именно макроскопических характеристик вещества.

Решение

Размер молекул можно извлечь из плотности, коэффициента поверхностного натяжения и удельной теплоты парообразования. Сделаем это двумя способами.

Способ 1. Жидкость состоит из молекул, но при этом сохраняет свой объем, а не разлетается на отдельные частицы, как газ. Это значит, во-первых, что молекулы в жидкости держатся друг относительно друга на некотором определенном расстоянии, по порядку величины равном диаметру самой молекулы (d ), а во-вторых, что каждое парное взаимодействие между молекулами характеризуется некоторой энергией связи (U ). Величины d и U - микроскопические, их численные значения мы заранее не знаем.

При испарении жидкость превращается в разреженный газ, в котором все связи между всеми молекулами можно считать разорванными. Удельная теплота парообразования E , измеряемая в Дж/кг, есть просто-напросто сумма всех межмолекулярных энергий связи, которые изначально были в килограмме воды. Помножив удельную теплоту парообразования на плотность ρ и на (неизвестный пока) объем, занимаемый одной молекулой (порядка d 3), мы получим энергию связей в расчете на одну молекулу. Эта величина раза в 2–3 больше U - ведь каждая молекула обычно связана с несколькими (4–6) соседями: E ρd 3 = 2U .

С другой стороны, явление поверхностного натяжения состоит в том, что всякая свободная поверхность жидкости характеризуется «лишней» энергией, пропорциональной площади поверхности: E пов = σS . Эту энергию можно легко измерить на опыте и извлечь отсюда коэффициент поверхностного натяжения σ. Микроскопически, эта энергия возникает из-за того, что в самом приповерхностном слое жидкости есть молекулы с «неработающими связями», то есть со связями, которые торчат наружу, в пустоту, а не замкнуты на соседние молекулы. Таких связей мало, скажем одна на каждую молекулу, и энергия этой «неработающей связи» примерно равна U . Поскольку каждая поверхностная молекула занимает площадь примерно d 2 , эту же величину U можно записать как σd 2 .

Приравнивая величину U , полученную этими двумя способами, находим типичный размер: d = 2σ/E ρ.

Способ 2. Возьмем сферическую каплю жидкости и разделим ее на две капли. Суммарный объем не изменился, но площадь поверхности возросла, а значит, возросла и энергия поверхностного натяжения. Поэтому на такое разделение нам надо затратить энергию, равную разности поверхностных энергий вначале и в конце. Будем дробить каплю всё дальше и дальше, пока не дойдем до «капель» размером с молекулу. Строго говоря, при таких размерах про поверхностное натяжение уже говорить нельзя, но для самых грубых оценок можно тем не менее сосчитать получившуюся «суммарную площадь поверхности», домножить ее на σ и найти, какую энергию надо затратить на такое разделение. Но разделение жидкости на отдельные «капли» размером с молекулу и есть процесс парообразования. Таким образом тоже можно получить формулу наподобие приведенной выше, но только с чуть отличающимся численным коэффициентом.

Осталось подставить числа. Плотность воды 1000 кг/м 3 , коэффициент поверхностного натяжения 0,07 Дж/м 2 , удельная теплота парообразования 2,3 МДж/кг. Размер молекулы отсюда получается 0,6·10 –10 м . Это примерно в 3 раза меньше реального размера молекулы, что совсем неплохо для столь грубой оценки.

Послесловие

Это, конечно, не единственный способ узнать размеры молекул на основании макроскопических данных, однако все подобные методы дают лишь очень грубую оценку по порядку величины. Намного более аккуратно измерить размеры можно при рассеянии рентгеновских лучей (а также электронов или нейтронов) с длиной волны меньше нанометра на кристаллах. Дифракционный узор показывает не только размеры кристаллической ячейки, но и рассказывает о том, как атомы в ней расположены друг относительно друга.

Интересно отметить, что еще в начале XX века далеко не все ученые придерживались атомистической картины строения вещества. Ключевыми моментами, доказавшими реальность молекул, было описание Эйнштейном броуновского движения и закона диффузии, а также обнаружение Перреном седиментационного равновесия (Нобелевская премия по физике за 1926 год). В обоих экспериментах микроскопически частицы вещества, размер которых можно было определить через наблюдение в микроскоп, вели себя в чём-то похоже на отдельные молекулы вещества, что и позволило «навести мосты» между микромиром и миром повседневных явлений.

А́том (от др.-греч. ἄτομος - неделимый) - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро , несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N - определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы .

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием - наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.

Масса

Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10−24 г. Водород-1 - наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. Масса атома приблизительно равна произведению массового числа на атомную единицу массы Самый тяжёлый стабильный изотоп - свинец-208 с массой 207,9766521 а. е. м.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·1023). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.

Размер

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом - это атом гелия, имеющий радиус 32 пм, а самый большой - атом цезия (225 пм). Эти размеры в тысячи раз меньше длины волны видимого света (400-700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2 секстиллиона (2·1021) атомов кислорода, и в два раза больше атомов водорода. Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.

Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.


«Неужели это возможно в домашних условиях?» - спросите вы. Вполне возможно, только для того, чтобы рассчитать диаметр атома, надо кое-что знать. Например, что атомы многих металлов можно представить в виде маленьких, плотно упакованных шариков. В таком случае атомы-шарики занимают 74 % всего пространства, а остальные 26 % приходятся на пустот ы между ними. Еше надо знать, как связан объем шара (У) с его диаметром UD - эту формулу можно найти в учебнике или в справочнике по математике: V- тГ/Ь. где к = 3,14. Наконец, надо знать очень важную для химии величину, которая называе тся постоянной Авогадро (Л/л) в честь итальянского ученого XIX века Амедео Авогадро (1776-1856). Эта константа показывает, сколько частиц - атомов, ионов или молекул содержится водном моле вещества. Моль - очень удобная для химиков единица измерения, так как в одном моле любого вещест ва содержится одинаковое число частиц. Например. 1 моль воды (18 г), или I моль сахара (343 г), или 1 моль кислорода (32 г) содержит одинаковое число молекул, равное Л"д = 6.02 ¦ !0". Ровно столько же атомов содержит 1 моль алюминия (27 г), или I моль меди (64 г), или I мольсеребра (108 г). А I моль поваренной соли (58,5 г) содержит по 6.02 10" положительно заряженных ионов (катионов) натрия и отрицательно заряженных ионов (анионов) хлора. Понятие «моль» (раньше его называли «грамм-молекулой»,аеще раньше, во времена Менделеева, - «химическим паем») удобно тем, что им можно пользоваться и не зная численного значения постоянной Авогадро. так как ве-щества реагируют друг с другом в соответствии с числом молей в них.
О том, как ученые определили это оіромное число, мы еще поговорим, а пока вернемся к нашей ложке. Итак, пусть в предыдущем опыте нам повезло, и ложка оказалась из серебра высокой пробы с плотностью 10,5 г/см1. Теперь у нас есть все данные, чтобы определить размер «сереб-ряного атома». В I см"серебра содержится 10,5 г: 108 г/моль = 0,097 моль, или 0,097 ¦ 6,02 ¦ I0J1 = 5,84 10" атомов серебра. Если не считать пустоты между атомами, то на долю самих атомов-шари ков придется не 1 см3, а немного меньше - 0,74 см3. Значит, объем одного атома равен 0,74с.м3/5.84- Ю"= 1.27-10 "см3. Осталось только по приведенной выше формуле рассчитать диаметр атома серебра. Он получится очень маленьким: d = 3 10 4 см. пли 0,3 нм (нанометр - одна миллнардная часть метра - самая подходящая единица для измерения таких малых величин).
Все атомы имеют очень малые размеры. Цепочка из миллиона атомов серебра, плотно уложенных друг к другу, протянется всего на 0,3 мм. Для сравнения: если уложить в цепочку миллион маковых зер- нышек диаметром 1 мм, то такая цепочка протянется на 1 км! Из-за малою размера атомов их невозможно увидеть даже и самый сильный оптический микроскоп. Зато ученые придумали другие приборы, позволяющие получать изображения отдельных атомов.
Примерно такие же размеры, как атом серебра, имеют небольшие молекулы - кислорода, азота, метана, волы; все они содержат несколько небольших а томов. Бывают молекулы, которые значительно больше: они содержат много атомов или агомы больших размеров (например, атомы иода). В следующем разделе мы познакомимся с одним из методов измерения размера молекул. А сейчас - некоторые ин тересные и полезные сведения об Авогадро и постоянной, названной его именем.
Итальянский химик Авогадро прожил очень дол гую по меркам того времени жизнь. Он родился в 1776 году в Турине, в Северной Италии. Получил юридическое образование и в возрасте 20 лет был назначен секретарем префектуры. Это были годы, когда в Италии гремела слава молодого французского полководца Наполеона. Однако Авогадро не привлекала ни военная, ни юридическая карьера. Со временем он стал все больше интересоваться естественными науками - физикой и химией, которые изучил самостоятельно. В 1809 году он начал преподавать физику в городе Верчслли, недалеко от Турина, а в 1820 году был назначен профессором математической физики в Туринском университете. В университете Авогадро проработал до преклонного возраста и покинул его лишь в 1850 году. Умер Авогадро в Турине в 1856 году. О его личной жизни сохранилось очень мало сведений. Прославили же Авогадро две статьи, опубликованные в 1811 и 1814 годах. Вначале они не вызвали интереса и были почти забыты. Сегодня же имя Авогадро знают школьники всех стран, если они изучают физику и химию. Закон Авогадро звучит очень просто: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Из этого закона следовало, что, измеряя плотность разных газов, можно определять относительные массы, а также состав молекул газообразных соединений. Благодарные потомки на-звали число частиц в одном моле вещества постоянной Авогадро, которую обозначили как JVa. Кстати, само слово «моль» - итальянского, вернее, латинского происхождения. В переводе с латыни moles означает «тяжесть, глыба, громада». На современной двухцентовой итальянской монете изображен купол со шпилем «Антонеллиевой громады» {mole A/ilonelliana), самой высокой конструкции в Италии (167,5 м); интересно, что это сооружение считается символом Турина, родного города Авогадро. Соответственно, molecula (с уменьшительным суффиксом -си/о) - «маленькая масса», как корпускула - «маленькое тело» (так во времена Ломоносова называли молекулы). Помимо указанного значения слово motes на латыни означает «дамба, насыпь, укрепленная большими камнями» (вспомним слово «мол» - сооружение в гаванях для защиты судов от морских волн)- Тот же корень в латинском слове mola - «жернов» («громадный камень») и в глаголе то/о - «молоть». Отсюда и молот с молотком, и моляр - зуб, размалывающий твердую пищу, как жернов на мельнице, и даже вредная моль - насекомое, измельчающее, стирающее вещи в муку
Постоянная Авогадро - огромное число, с трудом поддающееся воображению; оно, к примеру, в 4 миллиарда раз больше, чем расстояние от Земли до Солнца, выраженное в миллиметрах! Это означает, что атомы и молекулы очень маленькие - раз их так много помещается в сравнительно небольшом количестве вещества. Еще в XIX веке ученым было очевидно, что. постольку атомы и молекулы очень маленькие и никто их еше не видел, постоянная Авогадро должна быть очень велика. Постепенно физики научились определять размеры молекул и значение постоянной Авогадро - сначала очень грубо, приблизительно, затем все точнее. Прежде всего им было понятно, что обе вели-чины связаны между собой: чем меньше окажутся атомы и молекулы, тем больше получится постоянная Авогадро.
Преподаватели и популяризаторы химии придумали множество эффектных способов, чтобы наглядно показать грандиозность этого числа. Вот некоторые из них.
В пустыне Сахара содержится менее трех молей самых мелких песчинок.
Если объем футбольного мяча увеличить в Л^ раз, то в таком мяче поместится Земной шар. Если же в NA раз увеличить диаметр мяча, то в нем поместится самая большая галактика, содержащая сотни миллиардов звезд. Кстати, число звезд во Вселенной примерно равно постоянной Авогадро.
Если взять 100 г красителя, пометить каким-либо способом все его молекулы, вылить этот краситель в море и подождать, пока он равномерно распределится по всем морям и океанам до самого дна, то, зачерпнув в любом месте Земного шара стакан воды, мы обязательно обнаружим в нем не один десяток «меченых» молекул.
При каждом вдохе человека в его легкие попадает хотя бы несколько молекул кислорода и азога, которые содержались в последнем выдохе Юлия Цезаря (44 год до н. э.).
Если взять моль долларовых бумажек, они покроют все материки двухкилометровым плотным слоем,
В древности на Востоке придумали такую легенду. В сказочном царстве находится огромная гранитная скала. Представим себе, что она имеет форму куба с ребром, равным 1 км. Раз в столетие на скалу садится ворон и чистит об нее клюв. Если предположить, что при этом скала стирается на 0,0001 г. то число лет, за которое от скалы не останется ни одной песчинки, меньше, чем постоянная Авогадро.

Размер атома определяется радиусом его внешней электронной оболочки. Размеры всех атомов ~ 10 ‑10 м. А размер ядра на 5 порядков меньше, всего — 10 -15 м. Наглядно это можно представить так: если атом увеличить до размеров 20-этажного дома, то ядро атома будет выглядеть как миллиметровая пылинка в центральной комнате этого дома. Однако трудно вообразить дом, масса которого прак-тически полностью сосредоточена в этой пылинке. А атом именно таков.

Атомы очень маленькие и очень легкие. Атом во столько раз легче яблока, во сколько раз яблоко легче земного шара. Если мир «потяжелеет» так, что атом станет весить как капля воды, то люди в таком мире станут тяже-лыми, как планеты: дети — как Меркурий и Марс, а взрослые — как Венера и Земля.

Рассмотреть атом нельзя даже с помощью микро-скопа. Лучшие оптиче-ские микроскопы позво-ляют различить детали объекта, если расстояние между ними ~0,2 мкм. В электронном микроско-пе это расстояние уда-лось уменьшить до ~2-3 Å. Различить и сфо-тографировать отдель-ные атомы впервые уда-лось с помощью ионного проектора. Но никто не видел, как устроен атом внутри. Все данные о строении атомов полу-чены из опытов по рассе-янию частиц.

Масса атомного ядра в несколько тысяч раз больше массы его электронной оболочки. Это связано с тем, что ядра атомов состоят из очень тяжелых, по сравнению с электроном, частиц — протонов p и нейтронов n. Их массы почти одинаковы и примерно в 2000 раз больше массы элек-трона. При этом протон — положительно заряженная части-ца, а нейтрон — нейтральная. Заряд протона по величине ра-вен заряду электрона. Число протонов в ядре равно числу электронов в оболочке, это и обеспечивает электрическую нейтральность атома. Число нейтронов может быть различ-ным, в ядре атома легкого водорода нейтронов нет совсем, а в ядре атома углерода их может быть и 6, и 7, и 8.

Масса электрона m e ≈ 0,91 . 10 -30 кг, масса протона m p 1,673 . 10 -27 кг = 1836 m e , мас-са нейтрона m n = 1,675 . 10 ‑27 кг ≈ 1840 m e .

Масса атома меньше суммы масс ядра и электронов на ве-личину Δm, называемую дефектом масс , который возника-ет из-за кулоновского взаимодействия ядра и электронов. Дефект масс у атомов (в отличие от ядер) очень мал, и, хотя он увеличивается с ростом Z , ни у одного атома не превы-шает массы электрона. Материал с сайта

Конечно, атом нельзя по-ложить на весы и взвесить, он слишком мал. Массы атомов сначала определи-ли химики. Причем изме-рили они их в относитель-ных единицах, приняв за единицу массу атома водо-рода и воспользовавшись законом Дальтона, соглас-но которому химические вещества образуются при соединении атомов хими-ческих элементов в строго определенной пропорции. И сейчас массы атомов ча-ще всего измеряют в отно-сительных единицах, но в качестве атомной единицы массы (а. е. м.) используют 1 / 12 массы атома углерода C 12 ,1 а. е. м. = 1,66057 . 10 -27 кг.

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта