Главная » 1 Описание » Драгоценный металл - иридий. Иридий, радиоактивный

Драгоценный металл - иридий. Иридий, радиоактивный

Химия

Больше двух столетий прошло с тех пор, как появились первые сведения о платине - белом металле из Южной Америки. Долгое время люди были уверены, что это чистый металл, так же, как золото. Только в самом начале XIX в. Волластон сумел выделить из самородной платины палладий и родий, а в 1804 г. Теннант, изучая черный осадок, оставшийся после растворения самородной платины в царской водке, нашел в нем еще два элемента. Один из них он назвал осмием , а второй - иридием. Соли этого элемента в разных условиях окрашивались в различные цвета. Это свойство и было положено в основу названия: по-гречески значит «радуга».

В 1841 г. известный русский химик профессор Карл Карлович Клаус занялся исследованием так называемых платиновых остатков, т. е. нерастворимого осадка, остающегося после обработки сырой платины царской водкой.
«При самом начале работы, - писал Клаус, - я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания»...
Клаус сообщил горному начальству о богатстве остатков. Власти заинтересовались открытием казанского ученого, которое сулило значительные выгоды. Из платины в то время чеканили монету, и получение драгоценного металла из остатков казалось очень перспективным. Через год Петербургский монетный двор выделил Клаусу полпуда остатков. Но они оказались бедными платиной, и ученый решил провести на них исследование, «интересное для науки».


«Два года,- писал Клаус,- занимался я постоянно этим трудным, продолжительным и даже вредным для здоровья исследованием» и в 1845 г. опубликовал работу «Химическое исследование остатков уральской платиновой руды и металла рутения». Это было первое систематическое исследование свойств аналогов платины. В нем впервые были описаны и химические свойства иридия.
Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, и объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе «химического исследования остатков уральской платиновой руды и металла рутения».

Какой же он, иридий?

Атомная масса элемента № 77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия - частого спутника самородной платины. Самородного иридия в природе нет.
Иридий - серебристо-белый металл , очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см 3 , а плотность его постоянного спутника - осмия, второго по тяжести 22,61 г/см 3 . Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.
Естественное свойство иридия (он же платиноид!) - высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента № 77.


Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl 2 , IrСl 3 и 1гСl 4 . Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600° С. Единственное галоидное соединение, в котором иридий шестивалентен,- это фторид IrF 6 . Тонкоизмельченный иридий окисляется при 1000° С и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.
Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например Сl 3 и соли с комплексными анионами, например К 3 *ЗН 2 0. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.
Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина , осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям «Родий», «Осмий» и «Платина».
Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.

Иридий в деле

Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать иридий и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом иридий на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.
Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600° С. В этом случае образуется плотное покрытие толщиной до 0,08 мм.


Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металлапокрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500-600° С. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.
Можно наносить иридиевые покрытия на металлы и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350-400° С в контролируемой атмосфере, т. е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.
Но покрытия - не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое - до 99 кг/мм 2 . Поскольку такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые сплавы привлекают и ювелиров - украшения из этих сплавов красивы и почти не изнашиваются. Из платино-иридиевого сплава делают также эталоны, иногда - хирургический инструмент.
В будущем сплавы иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой - достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь не обгорающие платино-иридиевые контакты - они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

Добавляют не только к платине. Небольшие добавки элемента № 77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. То же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родня), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.
Резюмируя, можно сказать, что металлический иридий применяют из-за его постоянства. Как и другие металлы VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты).. Один из окислов иридия, Ir0 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска...


Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента - не больше тонны в год. Во всем мире! В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены - он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.
ИРИДИЕВЫЙ СТОРОЖ. Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В. последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом - иридием-192. Ядра 1921г испускают гамма-лучи высокой энергий; период полураспада изотопа равен 74,4 суток. Часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию, которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью на фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

ЭФФЕКТ МЁССБАУЭРА. В 1958 г. молодой физик из ФРГ Рудольф Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.
СЕРДЦЕ БЬЕТСЯ АКТИВНЕЕ. Одно из наиболее интересных применений платино-иридиевых сплавов за последние годы - изготовление из них электрических стимуляторов сердечной деятельности. В сердце больного стенокардией вживляют электроды с платино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него - на платино-иридиевые электроды. Электроды, передавая импульсы на нервы, заставляют сердце биться активнее. Сейчас в России многие станции скорой помощи оборудованы подобными генераторами. В случае остановки сердца делают надрез ключичной вены, вводят в нее соединенный с генератором электрод, включают генератор, и через несколько минут сердце вновь начинает работать.


ИЗОТОПЫ-СТАБИЛЬНЫЕ И НЕСТАБИЛЬНЫЕ. В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время - самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада - ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого - иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.
ПОЛЕЗНЫЕ ХЛОРИРИДАТЫ. Хлориридатами называют комплексные хлориды четырехвалентного иридия; общая их формула Ме 2 . Благодаря хлориридатам можно в принципе уверенно разделять соединения таких похожих элементов, как натрий и калий. Хлориридат натрия растворим в воде, а хлориридат калия - практически нерастворим. Но для такой операции хлориридаты слишком дороги, так как дорог исходный иридий. Это не значит однако, что хлориридаты вообще бесполезны. Способность иридия образовывать эти соединения используют для выделения элемента № 77 из смеси платиновых металлов.

Иридий

ИРИ́ДИЙ -я; м. [от греч. iris (iridos) - радуга] Химический элемент (Ir), тяжёлый тугоплавкий редкоземельный металл серовато-белого цвета (используется для нанесения защитных покрытий). Добыча иридия.

Ири́диевый, -ая, -ое. И. сплав. И. кончик пера.

ири́дий

(лат. Iridium), химический элемент VIII группы периодической системы, относится к платиновым металлам. Плотность 22,65 г/ см 3 , t пл 2447°C. Применяют для нанесения защитных покрытий. Компонент сплавов с Pt, Os и др. (химическая аппаратура, эталоны мер, детали измерительных приборов, напайка «вечных перьев»). Название от греческого íris - радуга.

ИРИДИЙ

ИРИ́ДИЙ (лат. Iridium, от греческого «ирис» - радуга), Ir (читается «иридий»), химический элемент с атомным номером 77, атомная масса 192,22. Состоит из смеси двух стабильных изотопов 193 Ir (62,7% по массе) и 191 Ir (37,3%). Расположен в VIIIB группе, в 6 периоде периодической системы элементов. Входит в триаду осмий (см. ОСМИЙ) -иридий-платина, (см. ПЛАТИНА) является платиновым металлом. Конфигурация внешней и предвнешней электронных оболочек 5s 2 p 6 d 7 6s 2 . Степени окисления от +1 до +6 (валентности I-VI). Наиболее характерны степени окисления +3 и +4.
Радиус атома 0,135 нм, ионный радиус иона Ir 2+ - 0,089 нм, иона Ir 3+ - 0,082 нм, Ir 4+ - 0,077 нм, Ir 5+ - 0,071 нм. Энергии последовательной ионизации 9,1 и 17,0 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,2.
Иридий - тяжелый серебристо-белый металл.
История открытия
Открыт в 1804 английским химиком С. Теннантом (см. ТЕННАНТ Смитсон) , который изучал состав платиновых минералов.
Нахождение в природе
Иридий - очень редкий элемент, содержание в земной коре 1·10 –7 % по массе. В природе встречается в виде сплавов с осмием (осмистый иридий), платиной, родием (см. РОДИЙ) , рутением (см. РУТЕНИЙ) и другими платиновыми металлами (см. ПЛАТИНОВЫЕ МЕТАЛЛЫ) . В рассеянной форме (10 –4 % по массе) содержится в сульфидных медно-никелевых железосодержащих рудах.
Получение
Основной источник иридия - анодные шламы медно-никелевого производства. Полученный шлам обогащают. Потом, действуя на него царской водкой (см. ЦАРСКАЯ ВОДКА) , при нагревании переводят в раствор платину, палладий (см. ПАЛЛАДИЙ (химический элемент)) , родий, иридий и рутений в виде хлоридных комплексов H 2 , H 2 , H 3 , H 2 и H 2 . Осмий остается в нерастворимом осадке. Из полученного раствора добавлением хлорида аммония NH 4 Cl сначала осаждают комплекс платины (NH 4) 2 , а затем комплекс иридия (NH 4) 2 и рутения (NH 4) 2 . При прокаливании (NH 4) 2 на воздухе получают металлический иридий:
(NH 4) 2 = Ir + N 2 + 6HCl + H 2 .
Физические и химические свойства
Иридий - тяжелый серебристо-белый металл (плотность при 20 °C 22,65 кг/дм 3). Решетка кубическая гранецентрированная, а = 0,38387 нм. Температура плавления 2447 °C, кипения 4380 °C. В ряду стандартных потенциалов расположен правее водорода (см. ВОДОРОД) . На воздухе иридий устойчив, с кислотами-неокислителями и водой не реагирует.
Отличается высокой химической стойкостью. С неметаллами взаимодействует только в мелкораздробленном состоянии при температуре красного каления. Взаимодействие с кислородом (см. КИСЛОРОД) происходит только при температуре выше 1000 °C, при этом образуется диоксид иридия IrO 2 .
Оксиды иридия не растворяются в воде, кислотах и щелочах.
Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями, в том числе и с царской водкой. Для перевода этих металлов в растворимые в воде хлорокомплексы порошок, содержащий эти металлы, хлорируют при нагревании в присутствии комплексообразователя NaCl:
Ir + 2Cl 2 + 2NaCl = Na 2
Гидроксид Ir(OH) 4 (IrO 2 ·2H 2 O) образуется при нейтрализации растворов хлороиридатов(IV) в присутствии окислителей. Осадок Ir 2 O 3 ·x H 2 O выпадает при нейтрализации щелочью хлороиридатов (III) и легко окисляется на воздухе до IrO 2 . Гидроксиды иридия практически не растворяются в воде. В растворимую форму оксиды иридия переводят, окисляя их в присутствии комплексообразователя:
IrO 2 + 4HCl + 2NaCl = Na 2 + 2H 2 O.
Высшая степень окисления +6 проявляется у иридия в гексафториде IrF 6 . Это очень сильный окислитель, способный окислить даже воду:
2IrF 6 + 10H 2 O = 2Ir(OH) 4 + 12HF + O 2 ,
или NO:
NO + IrF 6 = NO + – .
Как и для других d -элементов, для иридия характерно образование комплексных соединений с координационным числом 6. Известно большое число иридийорганических соединений со связью Ir-C.
Применение
Из чистого иридия изготавливают тигли для выращивания монокристаллов, фольгу для неамальгамирующихся катодов, ответственные детали контрольно-измерительных приборов. Иридий используется для иридирования поверхностей изделий. Радиоактивный изотоп 192 Ir используют в качестве портативного источника g-излучения для радиографических исследований трубопроводов и радиотерапии онкологических заболеваний. До 1960 международным эталоном метра служил изготовленный из платино-иридиевого сплава брус, находящийся в Международном бюро мер и весов в Севре. На одной из плоскостей этого бруса нанесены два штриха, на расстоянии 1 м друг от друга.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "иридий" в других словарях:

    - (от греч. iris радуга). Металл, из группы платины, соединения которого отличаются радужными цветами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИРИДИЙ благородный металл серого цвета; уд. вес 22,5. Плавится… … Словарь иностранных слов русского языка

    М л, Ir. Куб. Белый. Тв. 7. Уд. в. 22,6. Наблюдался только при микроскопических исследованиях в виде продуктов распада в Pt. Возможно, содержит Pt и близок к. платинистому Ir. Не изучен. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

    ИРИДИЙ, ирид муж. весьма твердый, беловатый металл, находимый обычно в сплаве с осмием и вместе с платиной. Иридиевый, иридовый, к металлу иридию относящийся. Иридистый, содержащий примесь иридия. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    - (Iridium), Ir, химический элемент VIII группы периодической системы, атомный номер 77, атомная масса 192,22; относится к платиновым металлам. Открыт английским химиком С. Теннантом в 1804 … Современная энциклопедия

Немецкая компания по продаже драгоценных металлов Degussa Goldhandel GmbH начала впервые предлагать частным инвесторам слитки иридия и рутения. Предложение этих драгоценных металлов в качестве инвестиционного продукта является новым шагом на рынке.
Помимо традиционных драгметаллов как золото, серебро, платина, палладий и родий теперь инвесторы смогут купить инвестиционные слитки иридия и рутения чистотой 999/1000 и массой в 1 унцию (31,1 грамм).

Производство иридия и рутения является сложным металлургическим процессом. В основном эти драгметаллы используются в промышленности. Также широкое применение они нашли в медицинской технике, машиностроении и химической промышленности. Для промышленных потребителей Degussa предлагает иридий и рутений в виде порошка.

Стоимость 1 слитка иридия на 23 февраля 2018 составляет € 1200, рутения — €372, родиума — €1975.

Подробнее об иридии

Иридий в палеонтологии и геологии является индикатором слоя, который сформировался сразу после падения метеоритов, что не случайно — иридий относительно часто встречается в метеоритах и считается космическим металлом.

Еще до открытия кратера Чискулуба многие ученые обратили внимание на большое количество иридия в отложениях, возраст которых совпадает с исчезновением последних динозавров. Это убедило палеонтологов в том, что ответственность за вымирание этих гигантских ящеров лежит именно на астероиде. Эти же слои отложений содержат огромное количество углерода в виде сажи.

Предполагается, что кратер Чискулуба образовался в результате удара астероида диаметром около 10 км. Энергия удара оценивается в 5·1023 джоулей или в 100 тератонн в тротиловом эквиваленте (для сравнения, крупнейшее термоядерное устройство имело мощность порядка 0,00005 тератонны, что в 2 миллиона раз меньше.

Небольшое количество иридия было обнаружено в фотосфере Солнца.

Иридий (др.-греч. ἶρις - радуга) получил такое название благодаря разнообразной окраске своих солей
– тугоплавкий металл, относящийся к платиновой группе. Иридий имеет серебристо-белый цвет, является тугоплавким и твердым металлом. Плотность иридия наряду с плотностью осмия является самой высокой среди всех металлов. Металл имеет высокие антикоррозийные свойства при сверхвысоких температурах до 2000 C.

Иридий входит в группу самых дорогих металлов и по своей стоимости уступает лишь родию, платине и золоту. В природе металл встречается вместе с рутением, рением и родием. Металл является одним из компонентов таких минералов, как ауросмирид, сысертскит и невьянскит.

Добыча иридия

Промышленные предприятия добывают иридий из шламов, образующихся при медно-никелевом производстве. Добыча иридия проходит в несколько этапов: получение концентрата, выщелачивание чернового металла, очищение от примесей. При отделении иридия от металлов, которые не относятся к благородным, может быть использован метод ионного обмена. При извлечении металла из минералов процесс добычи проходит этап сплавки с оксидом бария, обработку царской водкой и раствором соляной кислоты. В результате при отделении осмия получают комплексное соединение, которое необходимо прокалить для того, чтобы получить чистый иридий.

Сплав иридия с платиной позволяет получить материал с высокими прочностными характеристиками, данный сплав не подвержен окислению. Из этого сплава, в частности, изготовлен эталон килограмма .

Российские предприятия-производители иридия:

— ОАО «Красцветмет»;
— НПП «Биллон»;
— ОАО ГМК «Норильский Никель».

Применение иридия

    • В электротехническом и электрохимическом секторах . Для химически и термически стойкой посуды, и катализатором, ускоряющим реакции, в частности получение азотной кислоты. В чашах из сплава платины с иридием производится растворение золота с помощью смеси кислот, называемых «царской» водкой.
    • В качестве источника электроэнергии используется ядерный изомер иридия – иридий-192m2. Как компонент сплавов металл применяется для изготовления термоэлектрических генераторов, термопар, термоэмиссионных катодов и топливных баков. Иридий-192 является радионуклидом с периодом полураспада 74 сут, широко применяемым в дефектоскопии, особенно в условиях, когда генерирующие источники не могут быть использованы (взрывоопасные среды, отсутствие питающего напряжения нужной мощности).
    • В медицине. Из иридия получают высокопрочное защитное покрытие для керамики и металлов. Добавка иридия позволяет улучшить прочностные свойства и твердость других металлов. Применяют металл для производства высокопрочного хирургического инструмента.
    • Для изготовления тиглей. Металл используют в качестве основного материала, в которых в дальнейшем выращивают монокристаллы особой чистоты. Тигли из иридия используют и для варки высококачественного стекла.
    • Для изготовления перьев для ручек. Небольшой шарик из иридия можно встретить на кончиках перьев и чернильных стержней, особенно хорошо его видно на золотых перьях, где он отличается по цвету от самого пера.
    • В свечах зажигания в качестве материала для изготовления электродов, делая такие свечи наиболее долговечными (100-160 тыс. км пробега автомобиля) и снижая требования к напряжению искрообразования. Изначально использовался в авиации и гоночных автомобилях, затем, по мере снижения стоимости продукции, стал употребляться и на массовых автомобилях. В настоящее время такие свечи доступны для большинства двигателей, однако являются наиболее дорогими.
    • В ювелирном деле иридий стали использовать совсем недавно. В России в 1999 году из него были изготовлены кольца, а следом — золотые изделия, украшенные иридиевой инкрустацией. Излюбленным материалом для ювелиров является иридиево-платиновый сплав. Добавка 10% этого супертвердого вещества улучшает прочность платины в три раза, а изделия приобретают несравнимой красоты внешний вид и безукоризненную прочность.

Первый набор в истории нумизматики с монетой из иридия

Монета из иридия вошла в набор монет Руанды. В набор вошли пять монет, номинал каждой 10 руандийских франков. Монеты обладают одинаковым диаметром 11 мм. Каждая монета из драгоценного металла упакована в органическое стекло.
На лицевой стороне монет изображен герб Руанды, на реверсе - голова льва и технические характеристики монеты: металл, из которого отчеканена каждая монета и год эмиссии «2013».

Монета из золота 999-й пробы (proof), ее масса 1/100 oz.
Монета из серебра 999-й пробы (proof), масса монеты 1/25 oz.
Монета из иридия 999-й пробы (BU), ее масса 1/25 oz.
Монета из палладия 999-й пробы (proof), масса такой монеты 1/100 oz.
Монета из платины 999-й пробы (proof) ее масса 1/100 oz.

Тираж набора - 1000 шт.

Иридий металл выпадает в осадок после растворения платины в серной кислоте. После реакции металл становится черного цвета. Однако, его название переводят как «радуга». Дело в том, что соли иридия – это кладезь красок. Соединения с хлором – коричневые; с фтором – желтые; с бромом – синие. Вот и получил элемент имя греческой богини Ириды, а она, как известно, повелевала радугой.

Открыл металл-хамелеон Смитсон Теннат. Сделал это англичанин в 1804-ом году. Из того, что осадок иридия остается после реакции платины с концентрированной кислотой, следует, что радужный элемент практически непобедим. Растворяют его только перекись натрия и расплавленная щелочь.

Уникальны не только свойства иридия , редок и он сам. Геологи предполагают, что в недрах Земли его всего одна десятимиллиардная доля. Одна унция, а это всего около 30-ти граммов, стоит больше, тысячи долларов. Источником иридия служит не только платина, но и медно-никелевые руды. Правда, и в них содержание редкого металла ничтожно.


Столь малую концентрацию иридия в земной коре ученые объясняют его внеземным происхождением. Считается, что иридий принесли метеориты и астероиды, упавшие на планету за все время ее существования. Иначе, замечают специалисты, тяжелых металлов (к каковым относится и иридий) вовсе не должно быть в земной коре. При образовании планеты все тяжелые элементы осели в ядре. Оно находится под таким давлением, что никакие силы не могут выбросить хоть грамм центра Земли на ее поверхность. Вывод, замечают ученые, напрашивается сам собой. Тем более, что наличие иридия в метеоритах – факт зафиксированный.

По слоям земной коры, в которых высока концентрация радужного металла, геологи даже делают выводы о силе «космической атаки» на Землю в тот или иной период ее существования. Иридий космический, но нужен для вполне земных дел. Из него, к примеру, делают формы для выращивания кристаллов. В таких резервуарах можно получить любой камень, ведь элемент, как указывалось, не вступает в 99% химических реакций. То есть, формы из иридия совершенно «равнодушны» к растворам, помещенным в них.


Не обходится без элемента и производство техники. Электрические контакты изготавливают именно из сплава иридия и платины. Кстати, топливные баки для космических кораблей тоже сделаны из сплава на основе радужного элемента. В автомобилях же, иридий применяют в свечах зажигания.

Электроды из редкого металла нашли применение и в медицине. Врачи выяснили, что если вживить электроды в головной мозг человека, можно излечить его от целого списка болезней. Главное, правильно рассчитать частоту сигнала, подаваемого на элементы. Болезнь Паркинсона лечит электрический сигнал в 25 Гц. Большая частота облегчает симптомы шизофрении и эпилепсии.

На слуху словосочетание «радиоактивный иридий ». Изотопы элемента используют при облучении больных раком, дабы остановить разрастание тканей. Чаще всего, редкий металл помещают в ампулу и вживляют в «тело» опухоли.

Из иридия изготавливают глазные протезы, добавляют металл в аппараты для улучшения слуха. Иридиевые покрытия спасают другие металлы от коррозии. Ей металл не подвержен даже при температуре в 2 тысячи градусов Цельсия. Но, наносить защитный слой обязательно электролитическим путем. Иначе, держаться на основе защитный слой не будет.

Если знать, что в перьевых и шариковых ручках тоже используют иридий, становится понятно, почему некоторые экземпляры письменных принадлежностей столько стоят. Цену им добавляют не только известные фирмы-производители, но и шарики из редкого элемента на концах перьев или чернильных стержней.

Из сплава иридия с платиной делают некоторые инструменты для хирургии. Им нет сноса, как и украшениям, «родившимся» из тандема платины и радужного металла. Элемент №77 (таково его положение в таблице Менделеева) в ювелирные изделия из платины потому и добавляют, что без иридия она слишком мягка, не держит форму. Кольцо или серьга из чистой платины сомнется даже от легкого нажатия.

Правда, изделия, в составе которых есть иридий, дорогостоящие. Не только потому, что голубовато-серебристый металл уже причислили к драгоценным, но и потому что плавится он при температуре в несколько тысяч градусов. То есть получить сплав иридия с чем-либо не так-то просто. Нужна специальная и весьма недешевая аппаратура. Вот и выходит, что за небольшое иридиевое кольцо без каких-либо камней просят в среднем около 3 тысяч долларов.

Поставщиками металла №77 на мировой рынок являются: — Канада, Россия, ЮАР. В недрах последней страны иридия, как и платиновых и золотоносных залежей, больше всего. При общих запасах иридия в 15 тысяч тонн, в землях ЮАР скрываются 10 тысяч из них. Так, в 2009-ом году мировое производство редкого металла снизилось сразу на 13%. Все потому, что из-за внутренних проблем, элемент стали меньше добывать в Южно-Африканской республике. Ощутился дефицит иридия, цены на него подскочили. Так что, хоть ЮАР и развивающаяся страна, но без нее не могут развиваться и другие государства.

Среди предприятий, лидером в производстве иридия признана компания Lonmin. Она выпускает на рынок треть от общемировых объемов этого металла. Остается, надеется, что метеориты продолжат падать на землю, да так чтобы не нанести вреда людям. Иначе, вред им нанесет истощение запасов не только редкого, но и крайне, нужного человечеству металла.

ИРИДИЙ (латинский Iridium), Ir, химический элемент VIII группы короткой формы (9-й группы длинной формы) периодической системы; атомный номер 77, атомная масса 192,217; относится к платиновым металлам и драгоценным металлам. В природе представлен двумя стабильными изотопами: 191 Ir (37,3%) и 193 Ir (62,7%); искусственно получены радиоактивные изотопы с массовыми числами 166-198. Содержание в земной коре составляет 1·10 -7 % по массе. В природе иридий находится в основном в виде твёрдых растворов с осмием - минералов группы осмистого иридия, встречающихся в редких коренных и россыпных месторождениях платины и золота. Открыт в 1803 году английский химиком С. Теннантом; элемент назван вследствие разнообразной окраски его солей (от греческого ιρις, родительный падеж ϊριδος - радуга).

Конфигурация внешней электронной оболочки атома иридия 5d 7 5s 2 ; в соединениях обычно проявляет степени окисления +3, +4, редко +1, +2, +5 и +6; электроотрицательность по Полингу 2,20; атомный радиус 135 пм, радиус иона Ir 3+ 82 пм (координационное число 6), Ir 4+ 77 пм (координационное число 6). При нормальных условиях иридий - серебристо-белый твёрдый и хрупкий металл; кристаллическая решётка кубическая гранецентрированная; t пл 2466 °С, t кип 4428 °С, плотность 22 650 кг/м 3 , твёрдость по Бринеллю 1700-2200 МПа.

При нормальных условиях иридий химически стоек. При нагревании взаимодействует с галогенами (образуются галогениды состава IrX 3 , IrX 4 , где Х - F, CI, Br, I, а также IrCl, IrCl 2 , IrF 5 , IrF 6), серой (сульфиды IrS, IrS 2 , Ir 2 S 3), кислородом (оксиды Ir 2 О 3 , IrO 2 и IrO 3 , существующий только в газовой фазе). Оксиды иридия не растворяются в воде, кислотах и щелочах. При нормальных условиях иридий не реагирует с щелочами и кислотами, в том числе с царской водкой. Иридий переводят в раствор сплавлением с солями (например, NaCl, NaCN, NaNO 3 , ΚΝO 3 , KHSO 4) или неорганическими пероксидами (например, Na 2 О 2 , ВаО 2) с последующей обработкой плава кислотами. Иридий образует различные комплексные соединения, из которых наибольшее значение имеют хлороиридаты(III) и (IV), например гексахлороиридат(III) калия К 3 , гексахлороиридаты(IV) калия К 2 , натрия Na 2 и аммония (NН 4) 2 [ΙrCl 6 ].

Иридий, наряду с другими драгоценными металлами, получают из анодных шламов медно-никелевого производства. Для переведения иридия в раствор промежуточные продукты переработки сплавляют с Na 2 О 2 , затем обрабатывают плав царской водкой. Действием хлорида аммония NH 4 Cl из полученного раствора осаждают (NH 4) 2 , который прокаливают до получения металлического иридия. Объём мирового производства иридия около 3 т/год.

Иридий используют для изготовления тиглей (для выращивания монокристаллов полудрагоценных камней и лазерных материалов); фольги для неамальгамирующихся катодов; деталей прецизионных приборов; неистираемых кончиков перьев авторучек; электродов долговечных свечей зажигания; нанесения защитных покрытий на электрические контакты и другие изделия. Сплавы иридия используют в качестве электродов термопар, термоэмиссионных катодов и др. Радиоактивный изотоп 192 Ir (Т 1/2 73,83 сут) применяют в источниках γ-излучения переносных толщиномеров, дефектоскопов, а также в радиотерапии злокачественных опухолей.

Лит.: Котляр Ю. А., Меретуков М. А., Стрижко Л. С. Металлургия благородных металлов. М., 2005. Кн. 1-2.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта