Главная » 1 Описание » Летучие соединения. Фотокаталитические фильтры

Летучие соединения. Фотокаталитические фильтры

06.04.2016

Летучие органические соединения (ЛОС) – это группа химических соединений, в основе которых лежит карбон. Они могут легко испаряться при комнатной температуре. Большинство людей способны чувствовать на запах высокий уровень некоторых ЛОС, однако по большей части ЛОС не имеют запаха вообще.

В повседневной жизни используются тысячи различных химикатов, содержащих ЛОС. Это, в частности, ацетон, бензин, этиленгликоль, метиленхлорид, перхлорэтилен, толуол, ксилол и др.

Откуда появляются ЛОС?

Большинство обычных предметов в наших домах выделяют ЛОС. Это могут быть различные материалы (клеи, краски, лаки, растворители, изделия из дерева, из фанеры, ДСП, ткани на мебели, ковры и т.д.), бытовая химия (освежители воздуха, средства для чистки и дезинфекции), косметика и средства гигиены, нафталин, нефтепродукты (мазут, газолин), выхлопные газы автомобиля. Также летучие органические соединения могут испаряться во время приготовления пищи, химической чистки, курения, в процессе использования неэлектрических подогревателей воздуха, копировальных аппаратов и др.

Исследования показали, что уровень ЛОС в помещениях в 2-5 раз выше, чем на улице. Концентрация ЛОС в помещениях зависит от многих факторов, в частности от:

  • количества ЛОС в предметах использования
  • скорости, с которой испаряются определенные ЛОС
  • объемов воздуха в помещении
  • уровня вентиляции
  • концентрации ЛОС на улице.

Как влияют ЛОС на здоровье?

Риск для здоровья от вдыхания ЛОС зависит от того, как много их в воздухе, как долго и как часто вы дышите ими. Ученые выделяют два типа длительности воздействия ЛОС: кратковременный – несколько часов или дней – и долговременный (хронический) – годы или даже всю жизнь.

Вдыхание небольшого количества ЛОС в течение длительного времени может повысить риск возникновения проблем со здоровьем. Некоторые исследования утверждают, что ЛОС негативно влияют на людей, страдающих астмой, или особенно чувствительных к химическим соединениям.

ЛОС относятся к группе химических соединений. Каждое химическое соединение имеет собственную токсичность и способность влиять на здоровье.

Обычно симптомы поражения ЛОС такие:

при кратковременном воздействии большого количества ЛОС

  • раздражение глаз, носа и горла
  • головная боль
  • тошнота
  • головокружение
  • ухудшение симптомов астмы

при длительном воздействии

  • развитие раковых опухолей
  • поражения печени
  • поражения почек и центральной нервной системы

Какой уровень ЛОС безопасен?

Лучший метод защиты здоровья – уменьшение в помещении количества предметов и материалов, содержащих ЛОС. Если вам кажется, что вы заболели болезнью, вызванной ЛОС, устраните источники ЛОС из помещения. Если симптомы болезни останутся, обратитесь к врачу.

Ученые Департамента здоровья Миннесоты (США) установили значение риска для здоровья некоторых ЛОС. Значение риска – это уровень концентрации химических соединений или их смесей в воздухе, который вряд ли будет представлять риск или негативно влиять на здоровье людей при длительном воздействии.

Большинство исследований проводили с отдельными соединениями. О влиянии их комбинаций известно гораздо меньше. Поскольку токсичность каждого ЛОС разная, для ЛОС как группы нет определенного безопасного уровня.

Чьему здоровью ЛОС угрожают больше всего?

Наиболее уязвимы к раздражениям и болезням, которые могут вызвать ЛОС, люди, имеющие проблемы с органами дыхания (астматики), дети, старики и люди с повышенной чувствительностью к химикатам.

Как контролировать уровень ЛОС в доме?

Измерить общий уровень количества летучих органических соединений в помещении можно с помощью специальных приборов, но это не решит проблемы с загрязнением воздуха ЛОС. К тому же, такие приборы еще не получили широкого использования. Первый шаг, который вы можете сделать самостоятельно вместо измерения, – осмотреть дом и выявить обычные источники ЛОС. Проблематичными могут быть недавно приобретенные предметы быта и материалы – ковры, мебель, краска, пластик или электронные устройства. Они выделяют больше ЛОС.

Как только вы определили возможные источники ЛОС, можно перейти ко второму шагу – уменьшение влияния ЛОС. Если вы не можете самостоятельно определить источники, пригласите профессионалов, специализирующихся на этом.

Как уменьшить уровень ЛОС в доме?

Наиболее эффективным будет избавиться от предметов и материалов, выделяющих ЛОС. Если большинство из них выделяет ЛОС за короткий промежуток времени, то будут загрязнять воздух и в дальнейшем.

Чтобы уменьшить влияние ЛОС, вам необходимо:

  1. Установить контроль над источниками ЛОС.

Уменьшите количество или совсем уберите из помещения предметы, которые выделяют ЛОС. Покупайте такие предметы, которые могут выделять ЛОС, в безопасности которых вы уверены, и следуйте инструкции на упаковке. Уберите из дома химические средства, которыми не пользуетесь, поскольку из некоторых во время хранения в закрытых контейнерах в воздух помещения могут просачиваться ЛОС.

  1. Контролировать параметры климата и обеспечивать доступ в помещение свежего воздуха.

Можно улучшить вентиляцию в помещении, открыв двери и окна, использовать вентилятор, чтобы увеличить количество свежего воздуха. Поддерживайте температуру и влажность воздуха настолько низкими, как только возможно. При теплой температуре и высокой влажности ЛОС выделяются больше.

Если есть возможность, то делать ремонт лучше всего, когда в помещении никого нет или когда можно обеспечить хорошую вентиляцию.

Итак, наиболее эффективный способ нормализации уровня ЛОС в воздухе жилья – уменьшить количество потенциальных источников ЛОС и увеличить объем свежего воздуха в помещении.

Научно-сервисная фирма «ОТАВА» предлагает уникальную для Украины услугу по . При исследовании воздуха в квартире специалисты определяют весь спектр вредных органических веществ:

  • более 400 летучих органических веществ , которые являются типичными загрязнителями домашнего воздуха (в том числе и фенол);
  • более 500 000 органических веществ , которые могут быть идентифицированы по базам масс-спектров Национального института стандартов и технологии США.

Кроме азота и кислорода в земной атмосфере всегда присутствовали безобидные газообразные вещества, например, аргон, неон, криптон и др.
Атмосфера современного мегаполиса и его пригорода содержит огромное количество природных загрязнителей - угарный газ, окислы азота, озон, а также антропогенных токсичных химических загрязнителей (таких как фенол, формальдегид, стирол, бензальдегиды), количество которых в десятки раз превышает предельно допустимые концентрации*.

На самом деле, все перечисленное - далеко не полный перечень того, чем мы дышим на улицах мегаполисов. А ведь даже в малых дозах эти вещества могут вызывать отравление. К тому же они сравнительно легко вступают в химические реакции с кислородом и другими окислителями, что приводит к образованию еще более опасных загрязнителей.

По данным Москомприроды, в районах жилых застроек, особенно тех, что расположены вблизи автомагистралей, концентрация угарного газа и окислов азота превышает предельно допустимую в 10-15 раз. Это значит, что в наших домах и офисах концентрация этих веществ превышает нормы в 100 раз. Попадая в закрытое пространство, загрязнители «накапливаются», так что в помещениях их концентрация может быть выше, чем на улице. Пожалуй, стоит развеять миф и о том, что «спасают стеклопакеты». Нет, еще никому не удавалось спрятаться от воздуха, которым он дышит. А в мегаполисах чистому воздуху просто неоткуда взяться.

В квартире и офисе нас встречают наши собственные источники загрязнения воздуха. Современную мебель делают из фанеры, ДСП, ДВП. В этих материалах в качестве связующего компонента используется фенол-формальдегидная смола. Со временем она разлагается на фенол и формальдегид, а оба эти вещества ядовиты для человека и являются канцерогенами. Табачный дым также не улучшает качества воздуха, в нем содержится порядка 5 тысяч органических соединений, многие из которых канцерогенны и мутагенны. Как доказали ученые, вредные вещества от выкуренной сигареты можно обнаружить в помещении даже через месяц.

Сделав анализ воздуха в городской квартире или офисе, можно обнаружить порядка 40 тысяч летучих органических веществ. Не столь важно, откуда они взялись: с улицы или образовались в самом помещении - важно то, что нам приходится ежедневно дышать этими «добавками», а это очень вредно для здоровья.

Для защиты своего дома и офиса от уличных и домашних загрязнителей применяются системы очистки воздуха Аэролайф, которые позволяют забрать «грязный» уличный воздух, удалить из него все примеси и подать в помещение уже очищенным, создавая тем самым в помещении комфортную и безопасную воздушную среду.

*Основные загрязнители воздуха на городских улицах.

Источники загрязнений Основные загрязнители воздуха
Угарный газ (CO) 1,0 Автомобиль, курильщик табака
Окислы азота (NOx) 0,04 Автомобиль, газовая плита
Окислы серы (SOx) 0,05 ТЭЦ
Фенол 0,03
Формальдегид 0,003 Мебель, строительный утеплитель
Стирол 0,002 Строительный утеплитель
Бензопирен 0,000001 Автомобиль
Озон (O3) 0,03 Офисная оргтехника, фотохимические реакции
Свинец 0,03 Дизель
Ароматические углеводороды 0,012 Лаки, краски, обои, отходы

К ним относят бензол, толулол и ксилолы.

Бензол поступает в окр среду со сточными водами и газообразными выбросами производстав основного органического синтеза, нефтехимических и химико-фармацевтических произволе предприятии по производству пластмасс, взрывчатых веществ, ионообменных смол, лаков, красок и искусственной кожи, oн содержится в выхлопных газах автотранспорта и т.д. Бензол быстро испаряется из водоемов в атмосферу и способен к трансформации из
почвы в растения.
Содержание бензола в атмосферном воздухе колеблется в1 пределах 3-160 мкг/м в кубе. Более высокие концентрации! обнаруживаются в воздухе крупных городов, около^ не4угеперерабатывающих заводов. Выброс бензола в воздушный
бассейн России от стационарных источников составдяет 13-24 тыс. т" в год. В атмосферном воздухе городов среднегодовая концентрация
бензола достигает 90 iMKr/м, а максимальная - 2000 мкг/м (при| максимальной разовой ПДК 300 мкг/м и среднесуточной ПДК 1001 мкг/м3). Всемирная Организация Здравоохранения (ВОЗ) не дает
рекомендаций относительно нормативного уровня содержания
бензола в атмосферном воздухе и приводит только величины канцерогенных потенциалов, необходимых для расчета канцерогенного риска.
В атмосферном воздухе большинства городов с крупными
нефтехимическими производствами (Кемерово, Омск, Салават,
Самара, Тольятти, Усолье-Сибирское и др.) концентрация бензола находится в пределах 20 - 60 мкг/м3. Более высокие концентрации
200 MKT/MJ - регистрируются в воздушном бассейне городов с интенсивным движением автотранспорта - Москве и Санкт-Петербурге. Вероятно, высок уровень загрязнения атмосферного воздуха бензолом и в других городах с нефтехимическими производствами, однако там систематический контроль за содержанием этого продукта отсутствует.
В России подвергается около 2 млн. человек воздействию повышенных концентраций бензола, в том числе концентраций на
Уровне 50-70 мкг/м3 - до 0,5 млн. и концентраций 25-30 мкг/м3 - 1,3 млн. человек. В США воздействиям концентрации бензола 32 мкг/м3
подвержено около 0.08 млн. человек и воздействие», от 13-32 мкг/м в кубе 0,2 млн. человек.

Наряду с канцерогенным действием бензол обладает
мутагенным, эмбриотоксическим, тератогенным и аллергическим
действиями. У рабочих хроническая бензольная интоксикация характеризуется в основном поражением крови и кроветворных органов и в меньшей степени нервной системы. Часто неврологическая симптоматика соответствует тяжести гематологических сдвигов. Длительное воздействие высоких концентраций бензола (0,6-40,0 мкг/м) приводит к увеличению хромосомных аберраций.
Канцерогенность бензола подтверждена рядом эпидемиологических исследований, выявивших увеличение заболеваемости лейкемией среди рабочих, находившихся в условиях
длительного воздействия бензола концентрацией 32 - 320 мкг/м.
МАИР свидетельствует о линейной зависимости между дозой накопления бензола и заболеваемостью лейкемией.
В многочисленных эпидемиологических исследованиях
установлена причинная связь между воздействием бензола на рабочих и частотой возникновения различных типов лейкозов. Наиболее представительными были ретроспективные когортные исследования, проведенные в Китае. Среди 28 460 рабочих, имевших контакт с
бензолом, было обнаружено 30 случаев лейкозов (23 острых и 7 хронических), в то время как в референтной когорте из 28 257
рабочих, занятых в машиностроительной области (83 производства) и не имевших профессионального контакта с бензолом, зарегистрировано всего 4 случая заболевания лейкозом. Смертность от лейкоза в первой группе составила 14 случаев, во второй - 2 случая на
JOOOOO чел. в год. ж Биологическая оценка воздействия бензола основана на °пределении динамики содержания фенола в моче. У импактных лиц концентрация фенола в моче составляет 9,5 ± 3,6 мг/л и снижается сразу после окончания работы во вредных условиях труда. УРОВень
Фенола в моче порядка 25 мг/л считается показателем воздействия
бензола.
В питьевую воду бензол может попадать в результате загрязнения источника водоснабжения промышленными сточными водами, а также из угольных фильтров, используемых для очистки.1
Порог ощущения запаха бензола в воде составляет 0,5 мг/л 20 ОС. ПДК
бензола в питьевой воде (санитарно-токсикологический показатель вредности) установлен на уровне 0.01 мг/л.
Ксилол - смесь трех изомеров диметилбензола, получаемых из каменноугольной смолы и нефти. В технике он имеет значение как
растворитель и является важным исходным продуктом для получения
пластмасс, лаков, красок, клеящих веществ и др.
Ксилолы поступают в питьевую воду из водоисточников, загрязненных сточными водами преимущественно предприятий перерабатывающей промышленности. В поверхностных водах содержание ксилолов достигает 2-8 мкг/л, в водопроводной воде - 1 мкг/л. Они длительное время сохраняются в грунтовых водах.
Ксилолы обладают раздражающим и эмбриотропным действием, нарушают процессы репродукции и становятся опасными при проникновении через кожу. 50-60% вдыхаемого ксилола
адсорбируется в теле человека, причем он легко проникает в жировую
ткань и очень медленно высвобождается, и только после подкисления выделяется почками. В настоящее время проводятся исследования по
установлению его канцерогенности. Симптомами отравления при значительных концентрациях ксилола являются: понижение способности концентрации внимания, нарушение зрения и вестибулярного аппарата, нарушение картины крови, головные боли.
В концентрации 100 мг/л ксилолы тормозят процессы
биологического потребления кислорода. ПДК ксилола в воде водоисточников составляет 0,05 мг/л - органолептический показатель вредности.
Толуол - бесцветная водяно-прозрачная жидкость, по запаху напоминающий бензол. Входит в состав каменноугольного дегтя и многих видов нефти. Его получают из исходного сырья путем
фракционной перегонки.
Толуол важнейший исходный продукт химической
промышленности, применяется как растворитель и заменитель
бензола в производстве бензойной кислоты и взрывчатых веществ
(тринитротолуола).

Концентрация толуола в поверхностных водах, как правило, превышает 10 мкг/л. Порог ощущения запаха (I балл) сосугветствуег концентрации толуола 0.67 мг/л, причем хлорирование не рождает специфического запаха. Пороговая концентрация по вкусу составляет 1,1 мг/л. Толуол - яд общетоксического действия, вызывающий острые и хронические отравления. По мнению некоторых авторов длительный контакт с малыми дозами может сказывать влияние на кровь. Его
раздражающий компонент выражен сильнее, чем у бензола.
Представляет опасность проникновение толуола через неповрежденную кожу в организм, поскольку он вызывает эндокринные нарушения и снижает работоспособность. В way высокой растворимости в липидах и жирах накапливается преимущественно в клетках центральной нервной системы. ДК (допустимая концентрация) толуола в воде водоисточников (органолептический показатель вредности) составляет 0,5 мг/л. Некоторые производные толуола, особенно толуолсульфаты, являются сильнейшими аллергенами.

1.5 Серосодержаидие соединения
Сероводород (H2S) - бесцветный газ с характерным запахом тухлых яиц. Он присутствует в вулканических газах, а также продуцируется бактериями в процессе распада растительного и животного
белка. В значительном количестве сероводород присутствует в во здухе некоторых районов газовых месторождений, в частности Астраханского, а также в воздухе геотермально активных районов. Сероводород является побочным продуктом процессов коксования серосодержащего угля, рафинирования неочищенных серосодержащих масел, производства сероуглерода, вискозного шелка, крафтпроцессов при получении древесной массы. В воздушный бассейн городов России сероводород поступает преимущественно с выбросами целлюлозно-бумажных, коксохимических, металлургических, нефте- и газоперерабатывающих, нефтехимических производств, а
также заводов синтетических волокон. Ежегодное поступление сероводорода ранее достигало 30 тыс. т, и в последние годы уменьшилось до 15 тыс. т. Контроль за содержанием сероводорода в атмосферном воздухе осуществляется, более чем в 100 городах РФ. В последнее время, среднегодовая концентрация сероводорода составляет ~2 мкг/м.
Порог ощущения сероводорода весьма низок и зависит от индивидуальной чувствительности. Поэтому норматив максимальной
разовой ПДК 8 мкг/м3 установлен именно по порогу восприятия запаха. Близкий к этому значению норматив содержания сероводорода
рекомендует и ВОЗ (7 мкг/м3 за 30 мин). Однако при более длительном воздействии (в течение 24 ч) - рекомендован более мягкий норматив
150 мкг/м". , Основной путь поступления сероводорода в организм человека ингаляционный. В раде городов России, где расположены целлюлознобумажные комбинаты (Амурск, Байкальск, Братск, Селенгинск, УстьИлимск) и химические и коксохимические производства (Березники,
Сызрань, Красноярск, Тверь, Магнитогорск, Первоуральск и д.р.), а также в воздухе вблизи газоперерабатывающего завода в г. Оренбурге,
регистрируются значительные концентрации этого газа. Максимальная
разовая концентрация сероводорода в атмосферном воздухе этих городов колеблется в пределах 50-100 мкг/м, т.е. превышает максимальную разовую ПДК в 15 раз.
В ряде работ описано влияние повышенного содержания сероводорода в атмосферном воздухе на здоровье населения. Результаты таких воздействий могут быть различными - от неприятных ощущений до тяжелых поражений. Один из наиболее трагических
эпизодов связан с небольшим мексиканским городком Поса-Рико. где в
1950 г. произошел выброс больших количеств сероводорода в
результате аварии системы сжигания отходящих газов на заводе по восстановлению серы. Несгоревший газ в условиях атмосферной инверсии достиг территории жилого поселка, и в течение 3 ч было госпитализировано 320 чел, из них 22 умерло. Наиболее частым симптомом поражения была потеря обоняния.
В результате прямого раздражающего действия сероводорода на влажные ткани глаза, развивается керато-конъюнктивит, известный под названием «газовый глаз». При ингаляции сероводород раздражает верхние дыхательные пути и повреждает более глубоко лежащие структуры. В условиях воздействия очень высоких концентраций сероводорода (до 450 мкг/м3) является неприятный запах, вызывающий тошноту, нарушение сна, появление чувства жжения в глазах, кашель, головную боль и потерю аппетита. Действие повышенных концентраций сероводорода (в промышленных
УСЛОВИЯХ) может привести к развитию отека легких.
В городах Байкальске и Усть-Илимске, выявлены значительные изменения состояния здоровья детского населения. Наблюдается увеличение числа часто болеющих детей и детей с дисгармоничным физическим развитием. Между показателем общей заболеваемости детей и концентрацией сероводорода в атмосферном воздухе А.О Карелиным (1989) установлена статистически достоверная связь.
Сероуглерод (дисульфид углерода CS2) - бесцветная жидкость, легко воспламеняющаяся и образующая с воздухом взрывоопасные смеси. Технический сероуглерод, содержащий примеси, имеет запах гнилой редьки. 50-60% производимого сероуглерода используется для изготовления волокон в вискозной промышленности, 10-15% - для
получения целлофана. Остальное количество идет на синтез
четыреххлористого углерода, средств защиты растений,
фотохимикатов и др.
Источниками выбросов этого газа в атмосферный воздух
являются предприятия по производству искусственных волокон,
которых на территории России насчитывается 26, и коксохимические
заводы. Согласно сведениям, включенным в форму статистической
отчетности о количественном составе отходящих газов, ежегодное
количество выбросов сероводорода ранее достигало 30 тыс. т, но в
последние годы снизилось до 10-11 тыс. т.
Искусственные волокна производят на комбинатах: Балакова,
Барнаула, Красноярска, Твери и Рязани; коксохимические производства!
расположены в Магнитогорске, Нижнем Тагиле и Череповце.
Среднегодовая концентрация сероуглерода в этих городах составляет 10-16 мкг/м3. Наиболее высокое содержание этого газа зарегистрировано в воздухе городов Архангельск, Байкальск, Братск,
Калининград Новодвинск, Селенгинск, Балаково, Кемерово, Тверь,
Березники, Волгоград, где сосредоточено целлюлозно-бумажное! производство и химическая промышленность. В условиях воздействия повышенных концентраций сероуглерода проживает до 5,1 млн. человек.
Сероуглерод обладает сильным раздражающим действием на кожу и слизистые оболочки, влияет на ферментные системы, обмен витаминов, липидов, эндокринную и репродуктивную системы,. Порог запаха составляет 200 мкг/м3, т.е. он ощущается при превышении максимальной разовой дозы ПДК (30 мкг/м3) в 7 раз.

Длительное воздействие сероуглерода в производственных условиях вызывает сосудистые атеросклеротические изменения. Выявлено увеличение смертности среди рабочих, подвергавшихся воздействию высокой концентрации сероуглерода на протяжении более 10 лет.
Для женщин, занятых на вредном производстве, характерны нарушения менструального цикла, выкидыши, преждевременные роды. Нижний порог концентрации, при котором в производственных условиях отмечается какой-либо эффект, с точки зрения изменения здоровья, составляет 10000 мкг/м3, что соответствует, для обшей популяции, концентрации 1000 мкг/м3.
Индикатором воздействия сероуглерода является его содержание в моче. В исследованиях, проведенных В. В. Махлярчуком и соавт. (1993г), установлено повышенное его накопление в моче детей, проживающих вблизи завода по производству химического волокна в Рязани.

1.6 Нитраты как фактор окружающей среды.
В настоящее время одной из важных проблем, возникших в результате антропогенной нагрузки на экосистемы, является проблема нитратов. Доказано, что избыток нитратов представляет серьезную опасность для здоровья человека.
Тем не менее, наличие нитратов в растениях - нормальное явление. Нитраты соли азотной кислоты - один из основных источников азотного питания растений и микрофлоры почвы. Азот важнейший питательный элемент. Он входит в состав простых и
сложных белков, которые являются главной составной частью
цитоплазмы растительных клеток, а также нуклеиновых кислот, играющих важную роль в обмене веществ в организме. Азот содержится в хлорофилле, белковых комплексах, фосфатидах,
алкалоидах, большинстве ферментов и в других органических
веществах растительных клеток.
Среди продуктов питания главным источником нитратов являются свежие или консервированные овощи, на долю которых приходится 70-86% суточной нормы нитратов. Известны случаи
острого отравления и смерти детей из-за злоупотребления продуктами,
содержащими 80-1300 мг/л нитрат-ионов (пюре из свеклы, шпината и, несвежих овощей).
Доля остальных источников вместе с добавками солей нитрата или нитрата в мясных изделиях не превышает обычно 10-15% и не представляет угрозы для человека, за исключением случайного
попадания в организм непосредственно солей азотной кислоты.
Отрицательное действие нитратов, поступающих с питьевой водой, проявляется сильнее по сравнению с «нитрат содержащими; овощами. Овощи, содержащие нитраты имеют в своем составе аскорбиновую кислоту, которая частично нормализует возникающие нарушения белкового, витаминного и минерального обменов в организме.
Нитраты, содержащиеся в пищевых продуктах в незначительной концентрации, или в среде, в состав которой не входят окислители, практически безопасны для организма взрослого здорового человека.

Нитраты наиболее опасны для детей грудного возраста. Потенциальная
токсичность нитратов, содержащихся в повышенной концентрации в пищевом сыре и продуктах питания, заключается в том, что они частично восстанавливаются до нитритов, обусловливающих серьёзное нарушение здоровья не только детей, но и взрослых.
В организме человека нитриты, под действием бактерий, обитающих в организме, образуются в пищеварительном тракте и кишечнике или непосредственно в полости рта.
Поступающие с пищей нитраты всасываются в пищеварительном тракте, попадают в кровь и с ней в ткани.
В отличие от относительно нетоксичных нитратов, нитриты токсичны. Тяжелые отравления нитритами наблюдается при дозах около 2 г - это рвота, потеря сознания.
Токсическое действие нитритов в человеческом организме проявляется в форме так называемой метгемоглобинемии. Она является следствием окисления двухвалентного железа гемоглобина в трехвалентное железо, вызывая цианоз. В результате такого окисления гемоглобин, имеющий красную окраску, превращается в метгемоглобин, темно-коричневой окраски.
С нитритами связано образование сильных канцерогенов нитрозаминов. Они могут образоваться в желудочно-кишечном тракте из нитритов и аминов (например, из сыра), либо уже изначально присутствовать в определенных продуктах, например в мясных изделиях, образованных посолочной смесью. Из всех сортов пива больше всего нитрозоаминов содержит темное (старое) пиво верхового брожения. Наличие нитрозоаминов отмечается в некоторых косметических средствах и в табачном дыме. В машинных маслах было обнаружено до 3% нитрозоаминов.
Суммарное загрязнение нитрозоаминами, попавшими в организм человека из окружающей среды или образовавшимися внутри его, составляет около 10 мкг в сутки. Таким образом, в течение жизни человек приобретает нитрозоамины, в количестве ^ 4мг на 1 кг массы своего тела. В опытах на животных нитрозоамин уже при суммарной дозе 20 мг/кг массы тела, распределенной на весь жизненный срок, вызывает опухоли.

Экспериментально доказано, что нитpoзocoeдинeия обусловливают образование опухолей на всех органах, кроме костей.
Помимо прямого канцерогенеза ряд нитрозосоединений оказывает сильное аномальное действие на развивающийся плод (недоразвитие конечностей, слабое развитие центральньк органов).
Через 4-12ч. большая часть их (80% у молодых и 50% у пожилых людей) выводятся из организма через почки. Остальное их количество остается в организме.
Исследователи считают, что реакцию нитрозирования можно в человеческом организме регулировать аскорбиновой кислотой, витамином Е, полифенолами и пектиновыми веществами, содержащимися в овощах. Отсюда следует, что постоянное потребление витамина С может воспрепятствовать образованию канцерогенных нитрозоаминов.
Производство продукции с высоким содержанием нитратов не
только создаст прямую угрозу здоровью населения и животных, но и наносят экономический ущерб сельскому хозяйству, перерабатывающей промышленности. При высоком содержании нитратов снижается лежкость плодов овощных культур и клубней картофеля. Двухлетнее растение при посадке плодов с избыточным содержанием нитратов сильнее подвержены заболеваниям и не дают кондиционного семенного материала.

Среди овощных культур наибольшее количество нитратов содержится в свекле столовой, салате, шпинате, укропе, редисе,
редьке белой. Такие же культуры как томат, перец сладкий,
баклажаны, чеснок, горошек, фасоль отличаются низким
содержанием нитратов.
В связи с опасностью, какую представляют нитраты человеческого организма в различных странах мира, были разработаны нормативы содержания нитратов в различных видах продуктов питания - предельно допустимая концентрация
(величины ПДК приведены в приложениях 4). В приложениях
дано: содержание нитратов в различных органах и частях растений, также снижение их в процессе варки.

1.7 Боевые отравляющие вещества (БОВ)
БОВ, в зависимости от их действия, делятся на: нервно- паралитические, кожные, легочные, поражающие кровью. БОВ - это токсины, лакриматоры (слезоточивые газы), химическое оружие, пестициды (по заключению экспертной комиссии ООН по химическому и бактериальному оружию от 1969г.).
По физическим свойствам БОВ можно разделить: на газообразные, жидкие или твердые вещества с сильно или даже чрезвычайно сильно выраженной токсичностью. Их применяют в гранатах, бомбах, а также путем распыления с самолетов.
К боевым отравляющим веществам, полученным до второй
Мировой войны, относят:

Группу «Белого креста», это: бромацетон, хлорацетон, CN, CS, слезоточивые вещества, вызывающие раздражение и повреждение глаз и носа;

Группу «Зеленого креста» - фосген, поражающий дыхательные легкие с возможным смертельным исходом; - группу «Синего креста» - дифениларсинхлорид clark I, DA) и
его химические производные, вызывающие повреждение глаз и верхних дыхательных путей.

Группу «Желтого креста» - иприт, яд кожно-нарывного и
удушающего действия.

«Новые» БОВ; полученные в более позднее время - это газы нервнопаралитического действия: зоман, зарин, табун, VX (V-кожный яд). Попадание в организм смертельных доз этих газов может уже через несколько минут привести к смерти (приложение 7).
Особую группу БОБ составляют психотомиметические
отравляющие вещества, которые вызывают ряд психических аномалий, приводят к потере бое- и дееспособности. К этой группе относятся LSD (диэтиламид лизергиновой кислоты) и BZ
(производные лизергиновой кислоты).
Иприт был впервые получен немецкими учеными Люммелем и
Штейнконфом. Во время первой мировой войны было применено около 9 миллионов гранат с ипритом. Немцы назвали этот газ по его запаху - горчичным газом, а французы, в связи с его применением в
битве при Ипре - ипритом. Во время этой битвы в ночь с 12 на 13 июля 1917 года было применено около 125 тонн иприта, погибло 2229 английских и 348 французских солдат.
Щ В состав иприта входят родственные по химическому строению вещества: иприт сернистый (военное обозначение «HD») и азотистый иприт (военное обозначение «HN»). Они обеспечивают стойкое заражение местности в течение нескольких дней, а также способны проникать в кожу через униформу и сапоги. HD - темная жидкость с
горчично-чесночным запахом; HN - желто-коричневая жидкость с
запахом герани. Токсичные компоненты иприта вызывают в течение
нескольких минут ожоги кожи с образованием пузырей и нарывов, отмечаются поражения глаз, такие как помутнение роговицы,
временная или длительная утрата зрения, а, иногда, даже полная его потеря. Соединения иприта обладают мутагенными и канцерогенными
свойствами.

Фосген - сильно ядовитый бесцветный газ с запахом сена. Во время первой мировой войны фосген применялся французскими, а дифосген немецкими войсками. Под действием воды фосген разлагается до углекислого газа и соляной кислоты, обладающей повреждающим
действием, вследствие способности денатурировать белки.
Фосген применяется также в мирных целях, как сырье для изготовления красок, пластмасс, пестицидов, медикаментов. Вдыхание фосгена концентрации 1,25-2,5 частей на миллион является опасным для здоровья (повреждение легких). В высоких концентрациях он вызывает прямые кислотные ожоги и удушье.
Табун - военное сокращение «GA», трилон-83. Одно из наиболее ядовитых БОВ. Применение приводит к продолжительному химическому загрязнению местности. Табун - бесцветная жидкость с фруктовым запахом, может приобретать и запах горького миндаля, при
смешивании с водой образуется синильная кислота.
Табун легко проникает через слизистые оболочки, раневые поверхности и глаза. При получении смертельных доз смерть наступает в течение нескольких минут от удушья. Токсичность, исходя из LD 50 (летальная доза) для крыс, составляет 0,26 мг на 1 кг массы тела.
Зарин - превосходит по токсичности табун. Применение зарина может приводить к многочасовому заражению местности. Это вещество нельзя ни видеть, ни ощущать (в том числе и на вкус). При получении смертельной дозы, смерть от удушья наступает уже через несколько минут. Токсичность, исходя из LD 50 для крыс, составляет 0,1| мг на 1 кг массы тела.
Боевой газ «VX» - наиболее ядовитый и устойчивый из всех
БОБ. В случае боевого применения VX распространястся в виде: ядовитого тумана, который вследствие чрезвычайно высокой! стойкости задерживается на местности от 3 до 21 суток. VX представляет собой бесцветную либо желтоватого (янтарного) цвета1 жидкость без запаха, которая способна проникать в организм при контакте с кожей (контактный яд), либо в результате вдыхания; распыленного в виде тумана яда.
Согласно заключению исследователей ВОЗ в случае применения
4 тонн VX 30 тысяч человек погибнут немедленно, а еще 30 тысяч будут обречены на смерть в течение нескольких часов. Токсичность, исходя из LD 50, для крыс 0, 02 мг на 1 кг веса тела.

— Подбор индивидуального лечения и реабилитации ★ — Подбор индивидуального лечения и реабилитации ★

Летучие наркотические вещества (ЛНВ) - Делирианты - Ингалянты

Какие бывают летучие наркотические вещества и чем они опасны

Летучие наркотические вещества (ингалянты, делирианты) – токсичные вещества разнообразных химических групп, которые используются путем вдыхания: аэрозоли, очистительные жидкости, клеи, лаки, многие растворители, бензин, эфир и другие вещества, схожие по токсичности. Если не считать табака и алкоголя – распылители против насекомых вышли по употреблению на первое место.

Такие летучие наркотики обладают свойствами опьянять человека, хотя их химический состав растворяется в жирах, тем самым разрушая органы и ткани того, кто будет вдыхать подобное вещество.

Основой таких препаратов обычно служит:

  • бутан;
  • пропан;
  • толуол;
  • четыреххлористый углерод;
  • перхлорэтилен;
  • ацетон;
  • и подобные им вещества.

Летучих наркотиков нет в перечне наркотических веществ, однако от этого их опасность не становится меньше. В некоторых странах (Швеции, например) вещества, содержащие летучие наркотики, строго контролируются и просто так их купить нельзя.

Действие летучих наркотиков

Летучие наркотические вещества действуют примерно так же, как хирургический наркоз или алкоголь. Веществ таких очень много, но объединяет их одно – они способны растворять жиры. Бензин, растворители, газ для зажигалок разрушают, таким образом, всю нервную систему, так как именно там сосредоточено большое количество жиров. Именно из-за этого человек, вдыхая пары делириантов, чувствует опьянение.

Из-за того, что практически все наркотические ингалянты способны растворяться в жирах, они имеют обыкновение оседать в жировых тканях человеческого организма. Это значит, что пройдет еще много времени, прежде чем организм сможет избавиться от наркотического вещества. Со стиролом проводился эксперимент, в котором 210 грамм стирола на 1 кубометр вдыхал мужчина в течение двух часов. По сравнению с тем, сколько употребляется токсикоманами – эти дозировки предельно малы. Однако, в организме стирол держался не менее 22-х часов.

Летучие наркотические вещества, как было сказано выше, имеют свойство накапливаться в организме, тем самым разрушая ткань нервных окончаний и мозга. В нервную систему летучие вещества попадают через кровь, а в кровь – через легкие при вдыхании наркотических паров человеком. От такого опьянения страдает в первую очередь кора головного мозга, следом за ним мозжечок, и только потом – продолговатый мозг. Однако если опьянение летучими наркотическими веществами дойдет до продолговатого мозга – могут возникнуть проблемы с дыханием человека, и впоследствии – летальный исход.

Многие токсикоманы прекращают вдыхать наркотические пары ранее, чем опьянение дойдет до продолговатого мозга, так как желаемое состояние зачастую достигается намного быстрее. Но уже и на этой стадии токсикомана может мучить рвота или тошнота. К тому же у заядлых токсикоманов такие состояния наступают очень редко. Но это отнюдь не так хорошо, как кажется, ведь отсутствие рвоты или тошноты означает замедление нормальных физических реакций человека. Тошнота или рвота обязательно будут, но значительно позже. Чем длительней и чаще наркоман будет вдыхать пары наркотических веществ – тем большие области мозга будут отравляться ими до того, как наступит тошнота.

Отчасти опьянение вызывается самим летучим наркотическим веществом, но это происходит еще и потому, что мозгу не хватает кислорода. Как правило, опьянение наступает очень быстро, и примерно с той же скоростью оно исчезает. Опьянение в среднем длится до тридцати минут, после чего никакого эффекта не остается вовсе. Более длительным опьянение может быть в том случае, если токсикоманом будут использоваться высокие концентрации разнообразных ядов, например, использовать летучие наркотические вещества, как только начинает отпускать опьянение, или вдыхать токсичные пары при помощи полиэтиленового пакета.

Зависимость от летучих наркотических веществ

Летучие наркотические вещества через некоторое время постоянного употребления различными способами вызывают зависимость. Эйфория, которая в самом начале пути токсикомана так близка и заметно ощущаема, с каждым разом достигается все дольше и сложнее. Иногда человек даже не замечает сам, что у него появляется влечение вдыхать летучие наркотические вещества в большей дозировке, чем раньше.

Именно в этой стадии появляется сильная зависимость от летучих наркотических средств, после чего человек уже не может воспринимать действительность той, какая она есть на самом деле. Для него становится просто необходимым видеть реальность искаженной и эйфоричной, как получатся под воздействием на головной мозг летучего наркотика. В большинстве случаев от токсикомании бывает только психическая зависимость, когда потребность в наркотике влияет только на душевное состояние человека. Но редко появляется и физическая зависимость, бороться с которой намного сложнее.

Регулярное применение летучих наркотических веществ приводит человека к тому, что он с каждым разом хочет принять все больше и больше паров, так как в результате приема одной и той же дозировки у человека появляется привыкание и он больше не чувствует той эйфории, которая была ранее.

(в горючих ископаемых) - газо- и парообразные продукты, выделяющиеся при разложении орг. вещества при нагревании горючих ископаемых в стандартных условиях при t порядке 850 °С (ГОСТ 6382 - 65, для антрацитов 7303 - 54). Гигроскопическая влага и карбонатная углекислота в это понятие не входят. Повышенное содер. м-лов, выделяющих при нагревании летучие продукты, вносит искажение в цифры выхода В. л.; твердый остаток после удаления В. л. называется нелетучим остатком. С повышением степени углефикации выход В. л. падает. Гумолиты отличаются пониженным выходом В. л. по сравнению с сапропелитами и липтобиолитами. Гелифицированные компоненты дают более низкий выход В. л., чем липоидные компоненты, и более высокий, чем компоненты фюзенизированные. Выход В. л. в клареновых разностях гумусовых углей, начиная с низших газовых, используется как один из важнейших показателей степени их углефикации.

  • - род крыланов. Дл. тела 10-40 см, крылья в размахе до 1,7 м. Самый крупный представитель - калонг. Хвоста нет. Морда вытянута...
  • - подотряд рукокрылых. Известны с олигоцена. В отличие от крыланов меньших размеров и обладают более совершенными приспособлениями к полёту...

    Биологический энциклопедический словарь

  • - подотряд млекопитающих отр. рукокрылых. Дл. тела от 2,5 до 14 см. Ок. 700 видов, распространены широко, многочисленны в тропиках и субтропиках...

    Естествознание. Энциклопедический словарь

  • - в углях - в-ва. выделяющиеся из ископаемых углей при нагревании. Состав Л. в.: летучие органич. части угля, продукты разложения нек-рых минералов. Содержание Л. в. в углях колеблется от 50% до 4% ...

    Большой энциклопедический политехнический словарь

  • - Flying shear - ...

    Словарь металлургических терминов

  • - газообразные и парообразные вещества, выделяющиеся из твердого минерального топлива при нагревании его без доступа воздуха или при недостаточном его подводе...

    Технический железнодорожный словарь

  • - то же, что крыланы...

    Современная энциклопедия

  • - млекопитающие. Длина тела от 2,5 до 14 см. Около 800 видов, распространены всюду, где есть древесная растительность, особенно многочисленны в тропиках и субтропиках...

    Современная энциклопедия

  • - см. Вещества летучие...

    Геологическая энциклопедия

  • - вещества, выделяющиеся из углеродосодержащих материалов при нагревании. Содержание летучих веществ в углях колеблется от 50% до 4% ...

    Энциклопедический словарь по металлургии

  • - влага и углеводороды, содержащиеся в топливе и выделяющиеся из него при сухой перегонке в виде паров и газов. Количество Л. В. в Т. зависит от вида топлива и варьируется от 10 до 50 % ...

    Морской словарь

  • - ".....

    Официальная терминология

  • - см. Эфирные масла...
  • - или рукокрылые - отряд млекопитающих с следующими главными отличительными признаками: кости передних конечностей сильно удлинены...

    Энциклопедический словарь Брокгауза и Евфрона

  • - род млекопитающих подотряда крыланов отряда рукокрылых; то же, что Летучие собаки...
  • - подотряд млекопитающих отряда рукокрылых...

    Большая Советская энциклопедия

"ВЕЩЕСТВА ЛЕТУЧИЕ" в книгах

Летучие мыши

автора Уоллес Альфред Рассел

Летучие мыши

Из книги Тропическая природа автора Уоллес Альфред Рассел

Летучие мыши Почти единственный отряд, достигающий под тропиками особого развития, – рукокрылые, или Chiroptera. С переходом в умеренный пояс этот отряд становится сразу гораздо беднее видами, в особенности в более холодных областях его, хотя некоторые виды, по-видимому,

Летучие минеры

Из книги Гневное небо Тавриды автора Минаков Василий Иванович

Летучие минеры В течение двух с половиной месяцев наш экипаж находился в командировке: получали новые машины для пополнения самолетного парка полка. Тем временем капитально ремонтировалась и наша многострадальная «пятерка». На Кавказское побережье вернулись 7 апреля

Летучие мыши

Из книги Городим огород в ладу с природой автора Бублик Борис Андреевич

Летучие мыши Эти животные, пожалуй, меньше других известны огородникам. Днём они спят, повиснув вниз головой, а ночью вылетают на охоту. Они пугливы, их трудно найти, и ещё труднее - наблюдать.Летучие мыши - единственные летающие млекопитающие. Едва ли не каждый четвёртый

Летучие мыши

автора Брокгауз Ф. А.

Летучие мыши Летучие мыши или рукокрылые (Chiroptera) – отряд млекопитающих со следующими главными отличительными признаками: кости передних конечностей сильно удлинены; между пальцами их, между передними конечностями, телом и задними конечностями, а по большей части также

Летучие рыбы

Из книги Энциклопедический словарь (Л) автора Брокгауз Ф. А.

Летучие рыбы Летучие рыбы – рыбы, которые, благодаря чрезвычайно развитым грудным плавникам, обладают способностью перелетать более или менее значительные расстояния над водой. Способностью этой обладают представители двух родов, относящихся к разным отрядам

Летучие лисицы

БСЭ

Летучие мыши

Из книги Большая Советская Энциклопедия (ЛЕ) автора БСЭ

Летучие рыбы

Из книги Большая Советская Энциклопедия (ЛЕ) автора БСЭ

Летучие собаки

Из книги Большая Советская Энциклопедия (ЛЕ) автора БСЭ

Ингаляниты (различные летучие вещества – клей, растворители, лаки, эфир, бензин, пятновыводители, краски и т. п.)

Из книги автора

Ингаляниты (различные летучие вещества – клей, растворители, лаки, эфир, бензин, пятновыводители, краски и т. п.) Признаки наркотического опьянения: Кратковременное впечатление легкости и умиротворенности, как при приеме алкоголя: путаная речь, нетвердая

Занятие 3: «Отравляющие вещества нервно-паралитического действия и технические химические вещества, влияющие на генерацию, проведение и передачу нервного импульса»

автора Петренко Эдуард Петрович

Занятие 3: «Отравляющие вещества нервно-паралитического действия и технические химические вещества, влияющие на генерацию, проведение и передачу нервного импульса» Введение.Фосфороорганические отравляющие вещества (ФОВ) по клинической классификации являются ОВ

Занятие 5: «Отравляющие вещества и токсичные химические вещества (ТХВ) удушающего и раздражающего действия»

Из книги Военная токсикология, радиобиология и медицинская защита [Учебное пособие] автора Петренко Эдуард Петрович

Занятие 5: «Отравляющие вещества и токсичные химические вещества (ТХВ) удушающего и раздражающего действия» 1. Отравляющие вещества (ОВ) и токсичные химические вещества (ТХВ) удушающего действия.Введение.По данным ВОЗ в промышленности и сельском хозяйстве в настоящее

Пенообразующие вещества (ПАВ) – поверхностно активные вещества

Из книги 36 и 6 правил здоровых зубов автора Сударикова Нина Александровна

Пенообразующие вещества (ПАВ) – поверхностно активные вещества Используются в качестве очищающих и дезинфицирующих агентов. Необходимы для обеспечения равномерного распределения пасты в труднодоступных местах полости рта, а также для дополнительного удаления налета

Пектиновые вещества. Выводят из организма вредные вещества

Из книги Как заботиться о себе, если тебе за 40. Здоровье, красота, стройность, энергичность автора Карпухина Виктория Владимировна

Пектиновые вещества. Выводят из организма вредные вещества Пектины - это растительные полисахариды. Содержатся во многих плодах и овощах, корнеплодах.Пектиновые вещества способствуют стабилизации обмена веществ, выведению из организма радионуклидов, пестицидов,



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта