Главная » 1 Описание » Первая космическая скорость определяется по формуле. Космическая скорость

Первая космическая скорость определяется по формуле. Космическая скорость

«Равномерное и неравномерное движение» - t 2. Неравномерное движение. Яблоневка. L 1. Равномерное и. L2. t 1. L3. Чистоозерное. t 3. Равномерное движение. =.

«Криволинейное движение» - Центростремительное ускорение. РАВНОМЕРНОЕ ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ Различают: - криволинейное движение с постоянной по модулю скоростью; - движение с ускорением, т.к. скорость меняет направление. Направление центростремительного ускорения и скорости. Движение точки по окружности. Движение тела по окружности с постоянной по модулю скоростью.

«Движение тел по плоскости» - Оценить полученные значения неизвестных величин. Подставить числовые данные в решение общего вида, произвести вычисления. Выполнить рисунок, изобразив на нем взаимодействующие тела. Выполнить анализ взаимодействия тел. Fтр. Движение тела по наклонной плоскости без силы трения. Изучение движения тела по наклонной плоскости.

«Опора и движение» - К нам скорая помощь привезла больного. Стройный, сутулый, сильный, крепкий, толстый, неуклюжий, ловкий, бледный. Игровая ситуация “Консилиум врачей”. Спать на жесткой постели с невысокой подушкой. «Опора тела и движение. Правила для поддержания правильной осанки. Правильная поза в положении стоя. Кости детей мягкие, эластичные.

«Космическая скорость» - V1. СССР. Поэтому. 12 апреля 1961г. Послание внеземным цивилизациям. Третья космическая скорость. На борту «Вояджер-2» диск с научной информацией. Расчет первой космической скорости у поверхности Земли. Первый полет человека в космос. Траектория движения Вояджер-1. Траектория движения тел движущихся с малой скоростью.

«Динамика тела» - Что лежит в основе динамики? Динамика- раздел механики, рассматривающий причины движения тел (материальных точек). Законы Ньютона применимы только для инерциальных систем отсчета. Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Динамика. В каких системах отсчета применяются законы Ньютона?

Всего в теме 20 презентаций

Для определения двух характерных «космических» скоростей, связанных с размерами и полем тяготения некоторой планеты. Планету будем считать одним шаром.

Рис. 5.8. Различные траектории движения спутников вокруг Земли

Первой космической скоростью называют такую горизонтально направленную минимальную скорость, при которой тело могло бы двигаться вокруг Земли по круговой орбите, то есть превратиться в искусственный спутник Земли.

Это, конечно идеализация, во-первых планета не шар, во-вторых, если у планеты есть достаточно плотная атмосфера, то такой спутник - даже если его удастся запустить - очень быстро сгорит. Другое дело, что, скажем спутник Земли, летающий в ионосфере на средней высоте над поверхностью в 200 км имеет радиус орбиты отличающийся от среднего радиуса Земли всего, примерно, на 3 %.

На спутник, движущийся по круговой орбите радиусом (рис. 5.9), действует сила притяжения Земли, сообщающая ему нормальное ускорение

Рис. 5.9. Движение искусственного спутника Земли по круговой орбите

По второму закону Ньютона имеем

Если спутник движется недалеко от поверхности Земли, то

Поэтому для на Земле получаем

Видно,что действительно определяется параметрами планеты:её радиусом и массой.

Период обращения спутника вокруг Земли равен

где - радиус орбиты спутника, а - его орбитальная скорость.

Минимальное значение периода обращения достигается при движении по орбите, радиус которой равен радиусу планеты:

так что первую космическую скорость можно определить и так: скорость спутника на круговой орбите с минимальным периодом обращения вокруг планеты.

Период обращения растет с увеличением радиуса орбиты.

Если период обращения спутника равен периоду обращения Земли вокруг своей оси и их направления вращения совпадают, а орбита расположена в экваториальной плоскости, то такой спутник называется геостационарным .

Геостационарный спутник постоянно висит над одной и той же точкой поверхности Земли (рис. 5.10).

Рис. 5.10. Движение геостационарного спутника

Для того чтобы тело могло выйти из сферы земного притяжения, то есть могло удалиться на такое расстояние, где притяжение к Земле перестает играть существенную роль, необходима вторая космическая скорость (рис. 5.11).

Второй космической скоростью называют наименьшую скорость, которую необходимо сообщить телу, чтобы его орбита в поле тяготения Земли стала параболической, то есть чтобы тело могло превратиться в спутник Солнца.

Рис. 5.11. Вторая космическая скорость

Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы кинетическая энергия тела на поверхности планеты была равна (или превосходила) работу, совершаемую против сил земного притяжения. Напишем закон сохранения механической энергии Е такого тела. На поверхности планеты, конкретно - Земли

Скорость получится минимальной,если на бесконечном удалении от планеты тело будет покоиться

Приравнивая эти два выражения,получаем

откуда для второй космической скорости имеем

Для сообщения запускаемому объекту необходимой скорости (первой или второй космической) выгодно использовать линейную скорость вращения Земли, то есть запускать его как можно ближе к экватору, где эта скорость составляет, как мы видели, 463 м/с (точнее 465,10 м/с). При этом направление запуска должно совпадать с направлением вращения Земли - с запада на восток. Легко подсчитать, что таким способом можно выиграть несколько процентов в энергетических затратах.

В зависимости от начальной скорости , сообщаемой телу в точке бросания А на поверхности Земли, возможны следующие виды движения (рис. 5.8 и 5.12):

Рис. 5.12. Формы траектории частицы в зависимости от скорости бросания

Совершенно аналогично рассчитывается движение в гравитационном поле любого другого космического тела,например, Солнца. Чтобы преодолеть силу притяжения светила и покинуть Солнечную систему,объекту,покоящемусю относительно Солнца и находящемуся от него на расстоянии, равном радиусу земной орбиты (см. выше), необходимо сообщить минимальную скорость , определяемую из равенства

где , напомним, это радиус земной орбиты, а - масса Солнца.

Отсюда следует формула, аналогичная выражению для второй космической скорости, где надо заменить массу Земли на массу Солнца и радиус Земли на радиус земной орбиты:

Подчеркнем, что - это минимальная скорость, которую надо придать неподвижному телу, находящемуся на земной орбите, чтобы оно преодолело притяжение Солнца.

Отметим также связь

с орбитальной скоростью Земли . Эта связь, как и должно быть - Земля спутник Солнца, такая же, как и между первой и второй космическими скоростями и .

На практике мы запускаем ракету с Земли, так что она заведомо участвует в орбитальном движении вокруг Солнца. Как было показано выше, Земля движется вокруг Солнца с линейной скоростью

Ракету целесообразно запускать в направлении движения Земли вокруг Солнца.

Скорость, которую необходимо сообщить телу на Земле, чтобы оно навсегда покинуло пределы Солнечной системы, называется третьей космической скоростью .

Скорость зависит от того, в каком направлении космический корабль выходит из зоны действия земного притяжения. При оптимальном запуске эта скорость составляет приблизительно = 6,6 км/с.

Понять происхождение этого числа можно также из энергетических соображений. Казалось бы, достаточно ракете сообщить относительно Земли скорость

в направлении движения Земли вокруг Солнца, и она покинет пределы Солнечной системы. Но это было бы правильно, если бы Земля не имела собственного поля тяготения. Такую скорость тело должно иметь, уже удалившись из сферы земного притяжения. Поэтому подсчет третьей космической скорости очень похож на вычисление второй космической скорости, но с дополнительным условием - тело на большом расстоянии от Земли должно все еще иметь скорость :

В этом уравнении мы можем выразить потенциальную энергию тела на поверхности Земли (второе слагаемое в левой части уравнения) через вторую космическую скорость в соответствии с полученной ранее формулой для второй космической скорости

Отсюда находим

Дополнительная информация

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 325–332 (§61, 62): выведены формулы для всех космических скоростей (включая третью), решены задачи о движении космических аппаратов, законы Кеплера выведены из закона всемирного тяготения.

http://kvant.mirror1.mccme.ru/1986/04/polet_k_solncu.html - Журнал «Квант» - полет космического аппарата к Солнцу (А. Бялко).

http://kvant.mirror1.mccme.ru/1981/12/zvezdnaya_dinamika.html - журнал «Квант» - звездная динамика (А.Чернин).

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971 г. - стр. 138–143 (§§ 40, 41): вязкое трение, закон Ньютона.

http://kvant.mirror1.mccme.ru/pdf/1997/06/kv0697sambelashvili.pdf - журнал «Квант» - гравитационная машина (А. Самбелашвили).

http://publ.lib.ru/ARCHIVES/B/""Bibliotechka_""Kvant""/_""Bibliotechka_""Kvant"".html#029 - А.В. Бялко «Наша планета - Земля». Наука 1983 г., гл. 1, пункт 3, стр. 23–26 - приводится схема положения солнечной системы в нашей галактике, направления и скорости движения Солнца и Галактики относительно реликтового излучения.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 первая космическая скорость = 7899,9999999999 метр в секунду [м/с]

Исходная величина

Преобразованная величина

метр в секунду метр в час метр в минуту километр в час километр в минуту километр в секунду сантиметр в час сантиметр в минуту сантиметр в секунду миллиметр в час миллиметр в минуту миллиметр в секунду фут в час фут в минуту фут в секунду ярд в час ярд в минуту ярд в секунду миля в час миля в минуту миля в секунду узел узел (брит.) скорость света в вакууме первая космическая скорость вторая космическая скорость третья космическая скорость скорость вращения Земли скорость звука в пресной воде скорость звука в морской воде (20°C, глубина 10 метров) число Маха (20°C, 1 атм) число Маха (стандарт СИ)

Ферромагнитные жидкости

Подробнее о скорости

Общие сведения

Скорость - мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной - при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности - угловой.

Измерение скорости

Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t : v = ∆x /∆t .

В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

Скорость движущихся с ускорением тел можно найти с помощью формул:

  • a , с начальной скоростью u в течении периода ∆t , имеет конечную скорость v = u + a ×∆t .
  • Тело, движущееся с постоянным ускорением a , с начальной скоростью u и конечной скоростью v , имеет среднюю скорость ∆v = (u + v )/2.

Средние скорости

Скорость света и звука

Согласно теории относительности, скорость света в вакууме - самая большая скорость, с которой может передвигаться энергия и информация. Она обозначается константой c и равна c = 299 792 458 метров в секунду. Материя не может двигаться со скоростью света, потому что для этого понадобится бесконечное количество энергии, что невозможно.

Скорость звука обычно измеряется в упругой среде, и равна 343,2 метра в секунду в сухом воздухе при температуре 20 °C. Скорость звука самая низкая в газах, а самая высокая - в твердых телах. Она зависит от плотности, упругости, и модуля сдвига вещества (который показывает степень деформации вещества при сдвиговой нагрузке). Число Маха M - это отношение скорости тела в среде жидкости или газа к скорости звука в этой среде. Его можно вычислить по формуле:

M = v /a ,

где a - это скорость звука в среде, а v - скорость тела. Число Маха обычно используется в определении скоростей, близких к скорости звука, например скоростей самолетов. Эта величина непостоянна; она зависит от состояния среды, которое, в свою очередь, зависит от давления и температуры. Сверхзвуковая скорость - скорость, превышающая 1 Мах.

Скорость транспортных средств

Ниже приведены некоторые скорости транспортных средств.

  • Пассажирские самолеты с турбовентиляторными двигателями: крейсерская скорость пассажирских самолетов - от 244 до 257 метров в секунду, что соответствует 878–926 километрам в час или M = 0,83–0,87.
  • Высокоскоростные поезда (как «Синкансэн» в Японии): такие поезда достигают максимальных скоростей от 36 до 122 метров в секунду, то есть от 130 до 440 километров в час.

Скорость животных

Максимальные скорости некоторых животных примерно равны:

Скорость человека

  • Люди ходят со скоростью примерно 1,4 метра в секунду или 5 километров в час, и бегают со скоростью примерно до 8,3 метра в секунду, или до 30 километров в час.

Примеры разных скоростей

Четырехмерная скорость

В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство - четырехмерное, и в измерении скорости также учитывается четвертое измерение - пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c , то есть скорости света. Четырехмерная скорость определяется как

U = ∂x/∂τ,

где x представляет мировую линию - кривую в пространстве-времени, по которой движется тело, а τ - «собственное время», равное интервалу вдоль мировой линии.

Групповая скорость

Групповая скорость - это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω /∂k , где k - волновое число, а ω - угловая частота. K измеряют в радианах/метр, а скалярную частоту колебания волн ω - в радианах в секунду.

Гиперзвуковая скорость

Гиперзвуковая скорость - это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

    Что такое искусственные спутники Земли?

    Какое назначение они имеют?

Вычислим скорость, которую надо сообщить искусственному спутнику Земли, чтобы он двигался по круговой орбите на высоте h над Землёй.

На больших высотах воздух сильно разрежен и оказывает незначительное сопротивление движущимся в нём телам. Поэтому можно считать, что на спутник массой m действует только гравитационная сила , направленная к центру Земли (рис. 3.8).

Согласно второму закону Ньютона m цс = .

Центростремительное ускорение спутника определяется формулой где h - высота спутника над поверхностью Земли. Сила же, действующая на спутник, согласно закону всемирного тяготения определяется формулой где M - масса Земли.

Подставив найденные выражения для F и а в уравнение для второго закона Ньютона, получим

Из полученной формулы следует, что скорость спутника зависит от его расстояния от поверхности Земли: чем больше это расстояние, тем с меньшей скоростью он будет двигаться по круговой орбите. Примечательно то, что эта скорость не зависит от массы спутника. Значит, спутником Земли может стать любое тело, если ему сообщить определённую скорость. В частности, при h = 2000 км = 2 10 6 м скорость υ ≈ 6900 м/с.

Подставив в формулу (3.7) значение G и значения величин М и R для Земли, можно вычислить первую космическую скорость для спутника Земли:

υ 1 ≈ 8 км/с.

Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет искусственным спутником Земли, обращающимся вокруг неё по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников.

Любое тело может стать искусственным спутником другого тела (планеты), если сообщить ему необходимую скорость.

Вопросы к параграфу

    1. Что определяет первую космическую скорость?

    2. Какие силы действуют на спутник любой планеты?

    3. Можно ли сказать, что Земля - спутник Солнца?

    4. Выведите выражение для периода обращения спутника планеты.

    5 Как изменяется скорость космического корабля при входе в плотные слои атмосферы? Нет ли противоречий с формулой (3.6)?

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует нашей планеты. Почему так происходит? Почему Луне не грозит упасть на Землю, а Земля не движется навстречу к Солнцу? Неужели на них не действует всемирное тяготение?

Из школьного курса физики мы знает, что всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной. Ее действие легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.

Таким образом мы вплотную приблизились к понятию «космическая скорость». В двух словах ее можно описать как скорость, позволяющую любому объекту преодолеть тяготение небесного тела. В качестве может выступать планета, ее или другая система. Космическая скорость есть у каждого объекта, который движется по орбите. К слову сказать, размер и форма орбиты зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость бывает четырех видов. Самая меньшая из них - это первая. Это наименьшая скорость, которая должна быть у чтобы он вышел на круговую орбиту. Ее значение можно определить по такой формуле:

V1=√µ/r, где

µ - геоцентрическая гравитационная постоянная (µ = 398603 * 10(9) м3/с2);

r — расстояние от точки запуска до центра Земли.

Из-за того, что форма нашей планеты не является идеальным шаром (на полюсах она как бы немного приплюснута), то расстояние от центра до поверхности больше всего на экваторе - 6378,1 . 10(3) м, а меньше всего на полюсах - 6356,8 . 10(3) м. Если взять среднюю величину - 6371 . 10(3) м, то получим V1 равной 7,91 км/с.

Чем больше космическая скорость будет превышать данную величину, тем более вытянутую форму будет приобретать орбита, удаляясь от Земли на все большее расстояние. В какой-то момент эта орбита разорвется, примет форму параболы, и космический аппарат отправится бороздить космические просторы. Для того чтобы покинуть планету, у корабля должна быть вторая космическая скорость. Ее можно рассчитать по формуле V2=√2µ/r. Для нашей планеты эта величина равна 11,2 км/с.

Астрономы давно уже определили, чему равна космическая скорость, как первая, так и вторая, для каждой планеты нашей родной системы. Их несложно рассчитать по вышеприведенным формулам, если заменить константу µ на произведение fM, в котором M - масса интересующего небесного тела, а f - постоянная тяготения (f= 6,673 х 10(-11) м3/(кг х с2).

Третья космическая скорость позволит любому преодолеть тяготение Солнца и покинуть родную Солнечную систему. Если рассчитывать ее относительно Солнца, то получится значение 42,1 км/с. А для того чтобы с Земли выйти на околосолнечную орбиту, понадобится разогнаться до 16,6 км/с.

Ну и, наконец, четвертая по счету космическая скорость. С ее помощью можно преодолеть притяжение непосредственно самой галактики. Ее величина варьируется в зависимости от координат галактики. Для нашего эта величина составляет примерно 550 км/с (если рассчитывать относительно Солнца).



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта