Главная » 2 Распространение и сезон сбора » Эволюция массивных звезд. Конечные этапы эволюции звезд

Эволюция массивных звезд. Конечные этапы эволюции звезд

Созерцая ясное ночное небо вдали от городских огней, нетрудно заметить что Вселенная полна звезд. Каким образом природе удалось создать несметное число этих объектов? Ведь по оценкам только в Млечном Пути около 100 млрд. звезд. Кроме того, звезды рождаются и поныне, 10-20 млрд. лет спустя после образования Вселенной. Как образуются звезды? Каким изменениям подвергается звезда, прежде чем она достигнет устойчивого состояния, как у нашего Солнца?

С точки зрения физики, звезда — это газовый шар

С точки зрения физики, — это газовый шар. Теплота и давление генерируемые в ядерных реакциях — главным образом в реакциях синтеза гелия из водорода — предотвращают сжатие звезды под действием собственной гравитации. Жизнь этого относительно простого объекта проходит по вполне определенному сценарию. Сначала происходит рождение звезды из диффузного облака межзвездного газа, потом идет долгое светопреставление. Но в конце концов, когда все ядерное топливо будет исчерпано, она превратится в слабосветящийся белый карлик, нейтронную звезду или черную дыру.


Это описание может создать впечатление, что детальный анализ образования и ранних стадий эволюции звезд не должен вызывать существенных трудностей. Но взаимодействие гравитации и теплового давления приводит к тому, что звезды ведут себя непредсказуемым образом.
Рассмотрим, например, эволюцию светимости, то есть изменение количества энергии, испускаемое звездной поверхностью в единицу времени. Внутренняя температура молодой звезды слишком мала для слияния атомов ядер водорода, поэтому ее светимость должна быть относительно низкой. Она может возрасти, когда начнутся ядерные реакции, и лишь потом может постепенно падать. На самом деле очень молодая звезда чрезвычайно яркая. Ее светимость уменьшается с возрастом, достигая временного минимума во время горения водорода.

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы, некоторые из которых еще плохо поняты. Только в последние два десятилетия астрономы начали строить детальную картину эволюции звезд на основе достижений.теории и наблюдений.
Звезды рождаются из больших не наблюдаемых в видимом свете облаков, расположенных в дисках спиральных галактик. Эти объекты астрономы называют гигантскими молекулярными комплексами. Термин «молекулярный» отражает тот факт, что газ в комплексах в основном состоит из водорода в молекулярной форме. Такие облака — самые большие образования в Галактике, иногда достигают более 300 св. лет в поперечнике.

При более тщательном анализе эволюции звезды

При более тщательном анализе обнаруживается, что звезды образуются из отдельных конденсаций — компактных зон -в гигантском молекулярном облаке. Астрономы исследовали свойства компактных зон с помощью больших радиотелескопов — единственных инструментов, способных регистрировать слабое миллимоблаков. Из наблюдений этого излучения следует, что типичная компактная зона имеет диаметр несколько световых месяцев, плотность 30000 молекул водорода на 1 см^ и температуру 10 Кельвинов.
На основе этих значений был сделан вывод, что давление газа в компактных зонах таково, что оно может противостоять сжатию под действием сил самогравитации.

Поэтому, чтобы образовалась звезда, компактная зона должна сжиматься из неустойчивого состояния, причем такого, чтобы силы гравитации превышали внутреннее газовое давление.
Пока еще не ясно, как компактные зоны конденсируются из исходного молекулярного облака и приобретают такое неустойчивое состояние. Тем не менее еще до открытия компактных зон у астрофизиков была возможность смоделировать процесс звездообразования. Уже в 60-х годах теоретики использовали компьютерное моделирование, чтобы определить, как происходит сжатие облаков в неустойчивом состоянии.
Хотя для теоретических расчетов использовался широкий диапазон начальных условий, полученные результаты совпадали: у слишком неустойчивого облака сжимается сначала внутренняя часть, то есть свободному падению подвергаются сначала вещество в центре, а периферийные области остаются стабильными. Постепенно область сжатия распространяется наружу, охватывая все облако.

Глубоко в недрах сжимающийся области начинается эволюция звезд

Глубоко в недрах сжимающийся области начинается звездообразование. Диаметр звезды -всего лишь одна световая секунда, т. е. одна миллионная поперечника компактной зоны. Для таких относительно малых размеров общая картина сжатия облака не существенна, а главную роль здесь играет скорость падения вещества на звезду

Скорость падения вещества может быть разной, но она в прямую зависит от температуры облака. Чем выше температура, тем больше скорость. Вычисления показывают, что масса, равная массе Солнца, может накапливаться в центре сжимающейся компактной зоны за время от 100 тыс. до 1 млн. лет.Тело, образующееся в центре коллапсирующе-го облака, называют протозвездой. С помощью компьютерного моделирования астрономы разработали модель, описывающую строение протозвезды.
Оказалось, что падающий газ ударяется о поверхность протозвезды с очень высокой скоростью. Поэтому образуется мощный ударный фронт (резкий переход к очень высокому давлению). В пределах ударного фронта газ нагревается почти до 1 млн. Кельвинов, затем при излучении у поверхности быстро охлаждается примерно ло 10000 К, образуя слой за слоем протозвезду.

Наличием ударного фронта объясняется высокая яркость молодых звезд

Наличием ударного фронта объясняется высокая яркость молодых звезд. Если масса протоз-везды равна одной солнечной, то ее светимость может превышает солнечную в десять раз. Но она обусловлена не реакциями термоядерного синтеза, как у обычных звезд, а кинетической энергией вещества, приобретаемой в поле гравитации.
Протозвезды можно наблюдать, но не с помощью обычных оптических телескопов.
Весь межзвездный газ, в том числе и тот, из которого образуются звезды, содержит в себе «пыль» — смесь твердых частиц субмикронных размеров. Излучение ударного фронта встречает на своем пути большое число этих частиц, падающих вместе с газом на поверхность протозвезды.
Холодные пылевые частицы поглощают фотоны, испускаемые ударным фронтом, и переизлучают их более длинноволновыми. Это длинноволновое излучение в свою очередь поглощается, а затем переизлучается еще более удаленной пылью. Поэтому пока фотон прокладывают свой путь сквозь облака пыли и газа, его длина волны оказывается в инфракрасном диапазоне электромагнитного спектра. Но уже на расстоянии нескольких световых часов от протозвезды длина волны фотона становится слишком велика, так что пыль не может его поглотить, и он, наконец, может беспрепятственно мчаться к земным телескопам, чувствительным к инфракрасному излучению.
Несмотря на широкие возможности современных детекторов, астрономы не могут утверждать, что телескопы действительно регистрируют излучение протозвезд. По-видимому они глубоко спрятаны в недрах компактных зон, зарегистрированных в радиодиапазоне. Неопределенность в регистрации связана с тем, что детекторы не могут отличить протозвезду от более старших звезд, вкрапленных в газ и пыль.
Для надежного отождествления инфракрасный или радиотелескоп должен обнаружить доплеровское смещение спектральных линий излучения протозвезды. Доплеровское смещение показало бы истинное движение газа, падающего на ее поверхность.
Как только в результате падения вещества масса протозвезды достигает нескольких десятых массы Солнца, температура в центре становится достаточной для начала реакций термоядерного синтеза. Однако термоядерные реакции в протозвездах коренным образом отличаются от реакций в звездах среднего «возраста». Источником энергии таких звезд являются реакции термоядерного синтеза гелия из водорода.

Водород — самый распространенный химический элемент во Вселенной

Водород — самый распространенный химический элемент во Вселенной. При рождении Вселенной (Большом взрыве) этот элемент образовался в обычной форме с ядром, состоящим из одного протона. Но два из каждых 100000 ядер являются ядрами дейтерия, состоящими из протона и нейтрона. Этот изотоп водорода присутствует в современную эпоху в межзвездном газе, из которого он попадает в звезды.
Примечательно, что эта мизерная примесь играет доминирующую роль в жизни протозвезд. Температура в их недрах недостаточна для реакций обычного водорода, которые происходят при 10 млн. Кельвинов. Но в результате гравитационного сжатия температура в центре протозвезды легко может достичь 1 млн. Кельвинов, когда начинается слияние ядер дейтерия, при которых также выделяется колоссальная энергия.

Непрозрачность протозвездного вещества слишком велика

Непрозрачность протозвездного вещества слишком велика, чтобы эта энергия передавалась путем лучистого переноса. Поэтому звезда становится конвективно неустойчивой: нагретые на «ядерном огне» пузыри газа всплывают к поверхности. Эти восходящие потоки уравновешиваются нисходящими к центру потоками холодного газа. Подобные конвективные движения, но в гораздо меньших масштабах, имеют место в комнате с паровым отоплением. В протозвезде конвективные вихри переносят дейтерий с поверхности в ее недра. Таким образом топливо, необходимое для термоядерных реакций, достигает ядра звезды.
Несмотря на очень низкую концентрацию ядер дейтерия, выделяющееся при их слиянии тепло оказывает сильное влияние на протозвезду. Главным следствием реакций горения дейтерия является «разбухание» протозвезды. Из-за эффективного переноса тепла путем конвекции в результате «горения» дейтерия протозвезда увеличивается в размерах, который зависит от ее массы. Протозвезда одной солнечной массы имеет радиус, равный пяти солнечным. При массе, равной трем солнечным, протозвезда раздувается до радиуса, равного 10 солнечным.
Масса типичной компактной зоны больше массы порождаемой ее звезды. Поэтому должен существовать некоторый механизм, удаляющий излишнюю массу и прекращающий падение вещества. Большинство астрономов убеждены, что за это ответственен сильный звездный ветер, вырывающийся с поверхности протозвезды. Звездный ветер сдувает падающий газ в обратном на-правлении и в конце концов рассеивает компактную зону.

Идея звездного ветра

Из теоретических расчетов «идея звездного ветра» не следует. И удивленным теоретикам были предоставлены свидетельства этого явления: наблюдения потоков молекулярного газа, движущихся от инфракрасных источников излучения. Эти потоки связаны с протозвездным ветром. Его происхождение одна из самых глубоких тайн молодых звезд.
Когда рассеивается компактная зона, обнажается объект, который можно наблюдать в оптическом диапазоне — молодая звезда. Как и протозвезда, она имеет высокую светимость, которая в большей мере определяется гравитацией, чем термоядерным синтезом. Давление в недрах звезды предотвращает катастрофический гравитационный коллапс. Однако тепло, ответственное за это давление, излучается со звездной поверхности, поэтому звезда очень ярко светит и медленно сжимается.
По мере сжатия ее внутренняя температура постепенно растет и в конце концов достигает 10 млн. Кельвинов. Тогда начинаются реакции слияния ядер водорода с образованием гелия. Выделяемое тепло создает давление, препятствующее сжатию, и звезда долго будет светить, пока в ее недрах не закончится ядерное топливо.
Нашему Солнцу, типичной звезде, потребовалось около 30 млн. лет на сжатие от протозвездных до современных размеров. Благодаря теплу, выделяемому при термоядерных реакциях, оно сохраняет эти размеры уже в течение примерно 5 млрд. лет.
Так рождаются звезды. Но несмотря на столь явные успехи ученых, позволивших нам узнать одну из многих тайн мироздания, еще многие известные свойства молодых звезд пока полностью не понятны. Это относится к их неправильной переменности, колоссальному звездному ветру, неожиданным ярким вспышкам. На эти вопросы еще нет уверенных ответов. Но эти нерешенные проблемы следует рассматривать как разрывы в цепи, основные звенья которой уже спааяны. И нам удастся замкнуть эту цепь и завершить биографию молодых звезд, если мы найдем ключ, созданный самой природой. И этот ключ мерцает в ясном небе над нами.

Рождение звезды видео:

В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» - «спектральный класс» различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга - Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу. Особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью . Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу.

Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью.

В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики . Они отличаются от звезд главной последовательности меньшим содержанием металлов.

Большую часть своей жизни звезда проводит на главной последовательности. В этот период ее цвет, температура, светимость и другие параметры почти не меняются. Но до того, как звезда достигнет этого устойчивого состояния, еще в состоянии протозвезды, она имеет красный цвет и в течение короткого времени большую светимость, чем будет иметь на главной последовательности.

Звезды большой массы (сверхгиганты) щедро расходуют свою энергию, и эволюция таких звезд продолжается всего сотни миллионов лет. Поэтому голубые сверхгиганты являются молодыми звездами.

Стадии эволюции звезды после главной последовательности также короткие. Типичные звезды становятся при этом красными гигантами, очень массивные звезды – красными сверхгигантами. Звезда быстро увеличивается в размере, и ее светимость возрастает. Именно эти фазы эволюции отражаются на диаграмме Герцшпрунга-Рассела.

Каждая звезда проводит на главной последовательности около 90% времени своей жизни. В этот период основными источниками энергии звезды являются термоядерные реакции превращения водорода в гелий в её центре. Исчерпав данный источник, звезда смещается в область гигантов, где проводит около 10% времени своей жизни. В это время основным источником выделения энергии звезды является превращение водорода в гелий в слое, окружающем плотное гелиевое ядро. Это так называемая стадия красного гиганта .

Рождение звезд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью, в котором в результате гравитационной неустойчивости первичная флуктуация плотности начинает разрастаться. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.

Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды получили название «коричневые карлики», их масса не превышает одной десятой солнечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светиться. Начало термоядерных реакций устанавливает гидростатическое равновесие, предотвращая ядро от дальнейшего гравитационного коллапса. Далее звезда может существовать в стабильном состоянии.

Начальная стадия эволюции звёзд

На диаграмме Герцшпрунга - Рассела появившаяся звезда занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается параллельно оси ординат.

Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.

Продолжительность начальной стадии определяется массой звезды. Для звёзд типа Солнца она около 1 млн лет, для звезды массой 10 M ☉ примерно в 1000 раз меньше, а для звезды массой 0,1 M в тысячи раз больше.

Стадия главной последовательности

На стадии главной последовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас водорода обеспечивает светимость звезды массой 1M ☉ примерно в течение 10 10 лет. Звезды большей массы расходуют водород быстрее: так, звезда массой в 10 M израсходует водород менее, чем за 10 7 лет (светимость пропорциональна четвертой степени массы).

Звёзды малой массы

По мере выгорания водорода центральные области звезды сильно сжимаются.

Звёзды большой массы

После выхода на главную последовательность эволюция звезды большой массы (>1,5 M ☉ ) определяется условиями горения ядерного горючего в недрах звезды. На стадии главной последовательности это - горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость выделения энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружённое зоной, в которой перенос энергии осуществляется излучением.

Светимость звёзд большой массы намного превышает светимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд тоже намного выше.

По мере уменьшения доли водорода в веществе конвективного ядра темп выделения энергии уменьшается. Но поскольку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область красных гигантов.

Стадия зрелости звёзд

Звёзды малой массы

К моменту полного выгорания водорода в центре звезды малой масс образуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м 3 и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости конвективных потоков внешние слои звезды раздуваются. Размеры и светимость её возрастают - звезда превращается в красный гигант.

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.


Конечные стадии эволюции звёзд

Старые звёзды малой массы

У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью.

Гибель звёзд большой массы

В конце эволюции звезда большой массы имеет очень сложное строение. В каждом слое свой химический состав, в нескольких слоевых источниках протекают ядерные реакции, а в центре образуется железное ядро.

Ядерные реакции с железом не протекают, так как они требуют затраты (а не выделения) энергии. Поэтому железное ядро быстро сжимается, температура и плотность в нем увеличиваются, достигая фантастических величин - температуры 10 9 K и плотности 10 9 кг/м3.

В этот момент начинаются два важнейших процесса, идущие в ядре одновременно и очень быстро (по-видимому, за минуты). Первый заключается в том, что при столкновениях ядер атомы железа распадаются на 14 атомов гелия, второй - в том, что электроны «вдавливаются» в протоны, образуя нейтроны. Оба процесса связаны с поглощением энергии, и температура в ядре (также и давление) мгновенно падает. Внешние слои звезды начинают падение к центру.

Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже содержащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических элементов (т.е. более тяжёлых, чем гелий) образовались во Вселенной именно во вспышках сверхновых. На месте взорвавшейся сверхновой остаётся в зависимости от массы взорвавшейся звезды либо нейтронная звезда, либо чёрная дыра.

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки или в угрюмый черных дыр.

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Не пропустите наглядное интерактивное приложение « »!

Эпизод I. Протозвезды

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков . Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, и . Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.

Жизненный цикл звезд

Обычная звезда выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в ее сердцевине. После того как звезда израсходует водород в центре, он начинает перегорать в оболочке звезды, которая увеличивается в размере, разбухает. Размер звезды возрастает, температура ее падает. Этот процесс порождает красных гигантов и сверхгигантов. Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды заканчивают свой жизненный цикл взрывом. Звезды, подобные Солнцу, сжимаются, превращаясь в плотные белые карлики. В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую газовую оболочку, обнажив ядро.

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Путешественники автора Дорожкин Николай

Из книги Экономика недвижимости автора Бурханова Наталья

Сложный жизненный маршрут Отношение наших отечественных учёных к Свену Гедину претерпевало значительные изменения. Причины кроются как в характере самого Гедина, так и в политических ситуациях его времени. С юности зная русский язык и испытывая симпатии к России и её

Из книги Финансы: Шпаргалка автора Автор неизвестен

4. Жизненный цикл объектов недвижимого имущества Так как объекты недвижимого имущества в течение времени своего существования подвергаются экономическим, физическим, правовым изменения, то любая недвижимая вещь (за исключением земли) проходит следующие стадии

Из книги Все обо всем. Том 5 автора Ликум Аркадий

47. ВОЗДЕЙСТВИЕ ФИНАНСОВ НА ЖИЗНЕННЫЙ УРОВЕНЬ НАСЕЛЕНИЯ Социально-экономическая сущность финансовых отношений состоит в исследовании вопроса, за счет кого государство получает финансовые ресурсы и в чьих интересах используются эти средства.Значительная часть

Из книги Организационное поведение: Шпаргалка автора Автор неизвестен

Далеко ли до звезд? Во Вселенной есть звезды, которые находятся так далеко от нас, что у нас даже нет возможности узнать расстояние до них или установить их количество. Но как далека от Земли ближайшая звезда? Расстояние от Земли до Солнца 150 000 000 километров. Так как свет

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

50. ЖИЗНЕННЫЙ ЦИКЛ ОРГАНИЗАЦИИ Широко распространено понятие жизненного цикла организации – ее изменения с определенной последовательностью состояний при взаимодействии с окружающей средой. Существуют определенные этапы, через которые проходят организации, и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

45. ЖИЗНЕННЫЙ ЦИКЛ ТОВАРА Жизненный цикл товара – это изменение объема продаж и прибылей на протяжении времени его жизни. Товар имеет стадию зарождения, роста, зрелости и конец – «смерть», уход.1. Стадия «разработка и вывод на рынок». Это период инвестиций в маркетинговые

Из книги 200 знаменитых отравлений автора Анцышкин Игорь

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

4.5.1. Жизненный цикл водорослей Отдел Зеленые водоросли включает в себя одноклеточные колониальные и многоклеточные растения. Всего около 13 тыс. видов. К одноклеточным относятся хламидомонада, хлорелла. Колонии образованы клетками вольвокса и пандорины. К многоклеточным

Из книги Популярный звездочет автора Шалашников Игорь

ЖЕРТВЫ ЗВЕЗД Итальянский математик Кардано был и философом, и медиком, и астрологом. Сперва он занимался исключительно медициной, но с 1534 года состоял профессором математики в Милане и Болонье; однако для увеличения своих скромных доходов профессор не оставлял

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

25 ближайших звезд mV - визуальная звездная величина; r - расстояние до звезды, пк; L - светимость (мощность излучения) звезды, выражена в единицах светимости Солнца (3,86–1026

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий. Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно

Из книги автора

"ЖИЗНЕННЫЙ МИР" (Lebenswelt) - одно из центральных понятий поздней феноменологии Гуссерля, сформулированное им в результате преодоления узкого горизонта строго феноменологического метода за счет обращения к проблемам мировых связей сознания. Такое включение "мировой"

Из книги автора

Жизненный цикл вируса Каждый вирус проникает в клетку своим, только ему свойственным путем. Проникнув, он должен прежде всего снять верхнюю одежду, чтобы обнажить, хотя бы частично, свою нуклеиновую кислоту и начать ее копирование.Работа вируса хорошо организована.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта