Главная » 2 Распространение и сезон сбора » SA Преломление света. Явление преломления света

SA Преломление света. Явление преломления света

  • Углом падения α называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (рис. 1).
  • Углом отражения β называется угол между отраженным лучом света и перпендикуляром к отражающей поверхности, восстановленным в точке падения (см. рис. 1).
  • Углом преломления γ называется угол между преломленным лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (см. рис. 1).
  • Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается (см. рис. 1).
  • Лучи, выходящие из одной точки, называют расходящимися , а собирающиеся в одной точке - сходящимися . Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся - совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

При изучении свойств световых лучей были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Преломление света

Измерения показали, что скорость света в веществе υ всегда меньше скорости света в вакууме c .

  • Отношение скорости света в вакууме c к ее скорости в данной среде υ называется абсолютным показателем преломления :

\(n=\frac{c}{\upsilon }.\)

Словосочетание «абсолютный показатель преломления среды » часто заменяют «показатель преломления среды ».

Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред с показателями преломления n 1 и n 2 под некоторым углом α (рис. 2).

  • Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света .

Законы преломления:

  • отношение синуса угла падения α к синусу угла преломления γ есть величина постоянная для двух данных сред

\(\frac{sin \alpha }{sin \gamma }=\frac{n_2}{n_1}.\)

  • лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Для преломления выполняется принцип обратимости световых лучей :

  • луч света, распространяющийся по пути преломленного луча, преломившись в точке O на границе раздела сред, распространяется дальше по пути падающего луча.

Из закона преломления следует, что если вторая среда оптически более плотная через первая среда,

  • т.е. n 2 > n 1 , то α > γ \(\left(\frac{n_2}{n_1} > 1, \;\;\; \frac{sin \alpha }{sin \gamma } > 1 \right)\) (рис. 3, а);
  • если n 2 < n 1 , то α < γ (рис. 3, б).
Рис. 3

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II веке нашей эры. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Закон преломления света позволяет рассчитывать ход лучей в различных оптических системах.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн. Согласно закону сохранения энергии сумма энергий отраженной W o и преломленной W np волн равна энергии падающей волны W n:

W n = W np + W o .

Полное отражение

Как уже говорилось выше, при переходе света из оптически более плотной среды в оптически менее плотную среду (n 1 > n 2), угол преломления γ становится больше угла падения α (см. рис. 3, б).

По мере увеличения угла падения α (рис. 4), при некотором его значении α 3 , угол преломления станет γ = 90°, т. е. свет не будет попадать во вторую среду. При углах больших α 3 свет будет только отражаться. Энергия преломленной волны W np при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей: W n = W o . Следовательно, начиная с этого угла падения α 3 (в дальнейшем будет обозначать его α 0), вся световая энергия отражается от границы раздела этих сред.

Это явление получило название полное отражение (см. рис. 4).

  • Угол α 0 , при котором начинается полное отражение, называется предельным углом полного отражения .

Значение угла α 0 определяется из закона преломления при условии, что угол преломления γ = 90°:

\(\sin \alpha_{0} = \frac{n_{2}}{n_{1}} \;\;\; \left(n_{2} < n_{1} \right).\)

Литература

Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 91-96.

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление - свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда - читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет - во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

Закон преломления (частный случай).

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1 .

В точке падения проведён перпендикуляр (или, как ещё говорят, нормаль ) к поверхности среды. Луч , как и раньше, называется падающим лучом , а угол между падающим лучом и нормалью - углом падения. Луч - это преломлённый луч ; угол между преломлённым лучом и нормалью к поверхности называется углом преломления .

Всякая прозрачная среда характеризуется величиной , которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла , а для воды . Вообще, у любой среды ; показатель преломления равен единице только в вакууме. У воздуха , поэтому для воздуха с достаточной точностью можно полагать в задачах (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход "воздух–среда") .

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:

. (1)

Поскольку из соотношения (1) следует, что , то есть - угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: . И вот оказывается,что

. (2)

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2) :

. (3)

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме . Приняв это во внимание и глядя на формулу . (3) , делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

Обратимость световых лучей.

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2 ) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.

Раз геометрическая картинка не изменилась, той же самой останется и формула (1) : отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол - углом преломления.

В любом случае, как бы ни шёл луч - из воздуха в среду или из среды в воздух - работает следующее простое правило. Берём два угла - угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

Закон преломления (общий случай).

Пусть свет переходит из среды 1 с показателем преломления в среду 2 с показателем преломления . Среда с большим показателем преломления называется оптически более плотной ; соответственно, среда с меньшим показателем преломления называется оптически менее плотной .

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3 ). В этом случае угол падения больше угла преломления: .

Рис. 3.

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4 ). Здесь угол падения меньше угла преломления:

Рис. 4.

Оказывается, оба этих случая охватываются одной формулой - общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

. (4)

Нетрудно видеть, что сформулированный ранее закон преломления для перехода "воздух–среда" является частным случаем данного закона. В самом деле, полагая в формуле (4) , мы придём к формуле (1) .

Вспомним теперь, что показатель преломления - это отношение скорости света в вакууме к скорости света в данной среде: . Подставляя это в (4) , получим:

. (5)

Формула (5) естественным образом обобщает формулу (3) . Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

Полное внутреннее отражение.

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление - полное внутреннее отражение . Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света , испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5 ).

Луч падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч ) и частично отражается назад в воду (луч ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.

Угол падения луча больше. Этот луч также разделяется на два луча - преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч будет тусклее, чем луч (то есть получит меньшую долю энергии), а отражённый луч - соответственно ярче, чем луч (он получит большую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая - преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения , которому отвечает угол преломления . В данной ситуации преломлённый луч должен был бы пойти параллельно поверхности воды, да идти уже нечему - вся энергия падающего луча целиком досталась отражённому лучу .

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение - все такие лучи целиком отражаются назад в воду. Угол называется предельным углом полного отражения .

Величину легко найти из закона преломления. Имеем:

Но , поэтому

Так, для воды предельный угол полного отражения равен:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности - вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика . Световые лучи, запущенные внутрь оптоволоконного кабеля (световода ) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

Проведение опыта

Каждый из вас, наверное, обращал внимание на то, что в стакане с водой торчащая ложка на границе между водой и воздухом, кажется, что имеет какой-то переломанный вид. Точно такую же картину мы наблюдаем на берегу озера или реки, из водоема которой видна растущая трава. Когда мы на нее смотрим, то у нас создается впечатление, что на границе воды и воздуха эта травинка, как бы отклоняется в сторону. Конечно же, мы прекрасно понимаем, что эти предметы остаются такими же, как и были до того как попали в воду. А вот то, что мы наблюдаем и от чего возникает такой зрительный эффект, то это является преломлением света при его распространении.

Из пройденного материала, который вы уже изучали на предыдущих уроках, вы должны помнить то, что чтобы определить, в какую сторону будет отклоняться луч света при его переходе через границу, которая разделяет две среды, нам необходимо знать, в какой из них скорость света меньше, а в какой больше.

Для большей наглядности мы с вами проведем небольшой опыт. Давайте, например, возьмем оптический диск и в его центр поместим стеклянную пластину. А теперь попробуем направить на эту пластину луч света. И что мы с вами видим? А увидели мы то, что в том месте, где проходит граница воздуха со стеклом свет отражается. Но, кроме того, что свет отразился, мы еще видим, как он проник вовнутрь стекла и при этом еще и изменил направление своего распространения.

А теперь посмотрите, как это показано на рисунке:



А теперь давайте попробуем дать определение этому явлению.

Преломлением света называют такое явление, которое изменяет направления движения светового луча в момент перехода из одной среды в другую.

Давайте опять вернемся к нашему рисунку. На нем мы видим, что АО, обозначает падающий луч, ОВ является отраженным лучом, а ОЕ – это преломленный луч. А что бы произошло, если бы мы взяли и направили луч по направлению ЕО? А произошло вот то, что по закону «обратимости световых лучей», этот луч вышел бы из стекла по направлению ОА.

Из этого следует, что те среды, которые способны пропускать свет, как правило, имеют различную оптическую плотность и разную скорость света. И чтобы вы понимали, что от величины плотности зависит скорость света. То есть, чем большую оптическую плотность имеет среда, тем в ней будет меньшая скорость света и при этом она будет сильнее преломлять свет, который попадает извне.

Как же происходит преломление света?

Впервые такому явлению, как преломление света, в XVII в. дал объяснение патер Меньян. Согласно его утверждениям, следует, что при переходе света из одной среды в другую, его луч изменяет свое направление, которое можно сравнить с движением «солдатского фронта», который во время строевой ходьбы изменяет свое направление. Давайте представим луг, по которому идет колонна солдат, а дальше этот луг преграждается пашней, у которой граница проходит в отношении фронта под углом.

Солдаты, которые дошли до пашни, начинают замедлять свое движение, а те солдаты, которые до этой границы пока не дошли, продолжают свой путь с той же скоростью. А дальше происходит то, что у солдат, которые перешли рубеж и идут по пашне, начинают отставать от побратимов, которые все еще идут по лугу и так постепенно колонна войск начинает разворачивается. Для наглядности этого процесса можно посмотреть на рисунок ниже.



Точно такой же процесс мы наблюдаем и с лучом света. Для того чтобы узнать, в какую сторону будет отклоняться луч света, в момент его перехода границ двух сред, необходимо иметь представление, в какой из них скорость света будет больше, а в какой наоборот меньше.

А так как мы уже имеем представление о том, что свет является электромагнитными волнами, то все то, что мы знаем о скорости распространения электромагнитных волн, также относится и к скорости света.

Следует отметить, что в вакууме скорость света максимальна:



В веществе скорость света, в отличие от вакуума, всегда меньше: v



Оптическая плотность среды

Оптическая плотность среды определяется по тому, как распространяется световой луч в среде. Оптически более плотной будет та среда, которая имеет меньшую скорость света.

Среда, у которой скорость света меньше, называется «оптически более плотной»;
Среда, в которой скорость света больше, носит название «оптически менее плотной».

Если для сравнения оптической плотности взять воздух, стекло и воду, то при сравнении воздуха и стекла, оптически более плотной средой обладает стекло. Также в сравнении стекла и воды, оптически более плотной средой будет стекло.


Угол преломления

Из этого опыта мы видим, что при попадании в среду, которая более плотная, луч света отклоняется от того направления, которое он имел вначале и меняет направление в сторону к перпендикуляру, где находится граница раздела двух сред. А после попадания в среду, которая оптически менее плотная, в этом случае луч света отклоняется в обратную сторону.



«α» - угол падения, «β» - угол преломления.

Преломление света в треугольной призме

При помощи закона преломления света, есть возможность расчета хода лучей и для стеклянной треугольной призмы.

На рисунке 87 вы можете более подробно проследить за ходом лучей в данной призме:


Преломление света в глазу

Вы когда-нибудь замечали, что набрав в ванную воду, складывалось впечатление, что там ее меньше, чем на самом деле. В отношении реки, пруда и озера, складывается такая же картина, а вот причиной всего этого как раз и есть такое явление, как преломление света.

Но, как вы понимаете, во всех этих процессах активное участие принимают и наши глаза. Вот, например, чтобы мы смогли увидеть какую-то определенную точку «S» на дне водоема, в первую очередь необходимо, чтобы лучи света прошли через эту точку и попали в глаз того человека, который на нее смотрит.

А дальше пучок света, пройдя период преломления на границе воды с воздухом уже будет восприниматься глазом как свет, который идет от кажущегося изображения «S1», но находящегося выше, чем точка «S» на дне водоема.



Мнимая глубина водоема «h» составляет приблизительно ¾ его истинной глубины Н. Такое явление впервые было описано Евклидом.

Домашнее задание

1. Наведите свои примеры преломления света, которые вам встречались в повседневной жизни.

2. Найдите информацию об опыте Евклида и попробуйте этот опыт повторить.

Явление преломления света - это физическое явление, которое происходит каждый раз, когда волна перемещается из одного материала в другой, в котором ее скорость распространения изменяется. Визуально оно проявляется в том, что изменяется направление распространения волны.

Физика: преломление света

Если падающий луч попадает на раздел между двумя средами под углом 90°, то ничего не происходит, он продолжает свое движение в том же направлении под прямым углом к границе раздела. Если угол падения луча отличается от 90°, происходит явление преломления света. Это, например, производит такие странные эффекты, как кажущийся излом объекта, частично погруженного в воду или миражи, наблюдаемые в горячей песчаной пустыне.

История открытия

В первом столетии н. э. древнегреческий географ и астроном Птолемей попытался математически объяснить величину рефракции, но предложенный им закон позже оказался ненадежным. В XVII в. голландский математик Виллеброрд Снелл разработал закон, который определял величину, связанную с отношением падающего и преломленного углов, которая впоследствии была названа показателем рефракции вещества. По сути, чем больше вещество способно преломлять свет, тем больше этот показатель. Карандаш в воде «сломан», потому что лучи, идущие от него, изменяют свой путь на границе раздела воздух-вода прежде, чем достигают глаз. К разочарованию Снелла, ему так и не удалось обнаружить причину этого эффекта.

В 1678 году еще один голландский ученый Христиан Гюйгенс разработал математическую зависимость, объясняющую наблюдения Снеллиуса и предположил, что явление преломления света - это результат разной скорости, с которой луч проходит через две среды. Гюйгенс определил, что отношение углов прохождения света через два материала с разными показателями рефракции должно быть равным отношению его скоростей в каждом материале. Таким образом, он постулировал, что через среды, имеющие больший коэффициент преломления, свет движется медленнее. Иначе говоря, скорость света через материал обратно пропорциональна его показателю преломления. Хотя впоследствии закон был экспериментально подтвержден, для многих исследователей того времени это не было очевидным, т. к. отсутствовали надежные средства света. Ученым казалось, что его скорость не зависит от материала. Лишь через 150 лет после смерти Гюйгенса скорость света была измерена с достаточной точностью, доказывающей его правоту.

Абсолютный показатель рефракции

Абсолютный показатель преломления n прозрачного вещества или материала определяется как относительная скорость, при которой свет проходит через него относительно скорости в вакууме: n=c/v, где с - скорость света в вакууме, а v - в материале.

Очевидно, что преломление света в вакууме, лишенном любого вещества, отсутствует, и в нем абсолютный показатель равен 1. Для других прозрачных материалов это значение больше 1. Для расчета показателей неизвестных материалов может использоваться преломление света в воздухе (1,0003).

Законы Снеллиуса

Введем некоторые определения:

  • падающий луч - луч, который приближается к разделению сред;
  • точка падения - точка разделения, в которую он попадает;
  • преломленный луч покидает разделение сред;
  • нормаль - линия, проведенная перпендикулярно к разделению в точке падения;
  • угол падения - угол между нормалью и падающим лучом;
  • определить света можно как угол между преломленным лучом и нормалью.

Согласно законам рефракции:

  1. Падающий, преломленный луч и нормаль находятся в одной плоскости.
  2. Отношение синусов углов падения и рефракции равно отношению коэффициентов рефракции второй и первой среды: sin i/sin r = n r /n i .

Закон преломления света (Снеллиуса) описывает взаимосвязь между углами двух волн и показателями рефракции двух сред. Когда волна переходит из менее рефракционной среды (например, воздуха) в более преломляющую (например, воду), ее скорость падает. Наоборот, когда свет переходит из воды в воздух, скорость увеличивается. в первой среде по отношению к нормали и угол рефракции во второй будут отличаться пропорционально разнице в показателях преломления между этими двумя веществами. Если волна переходит из среды с низким коэффициентом в среду с более высоким, то она изгибается в направлении к нормали. А если наоборот, то она удаляется.

Относительный показатель рефракции

Показывает, что отношение синусов падающего и преломленного углов равно константе, которая представляет собой отношение в обеих средах.

sin i/sin r = n r /n i =(c/v r)/(c/v i)=v i /v r

Отношение n r /n i называется относительным коэффициентом преломления для данных веществ.

Ряд явлений, которые являются результатом рефракции, часто наблюдаются в повседневной жизни. Эффект «сломанного» карандаша - одно из самых распространенных. Глаза и мозг следуют за лучами обратно в воду, как будто они не преломляются, а приходят от объекта по прямой линии, создавая виртуальный образ, который появляется на меньшей глубине.

Дисперсия

Тщательные измерения показывают, что на преломление света длина волны излучения или его цвет оказывают большое влияние. Другими словами, вещество имеет много которые могут различаться при изменении цвета или длины волны.

Такое изменение имеет место во всех прозрачных средах и носит название дисперсии. Степень дисперсии конкретного материала зависит от того, насколько показатель рефракции изменяется с длиной волны. С ростом длины волны становится менее выраженным явление преломления света. Это подтверждается тем, что фиолетовый рефрагирует больше красного, так как его длина волны короче. Благодаря дисперсии в обычном стекле происходит известное расщепление света на его составляющие.

Разложение света

В конце XVII века сэр Исаак Ньютон провел серию экспериментов, которые привели к его открытию видимого спектра, и показал, что белый свет состоит из упорядоченного массива цветов, начиная от фиолетового через синий, зеленый, желтый, оранжевый и заканчивая красным. Работая в затемненной комнате, Ньютон помещал стеклянную призму в узкий луч, проникавший через отверстие в оконных ставнях. При прохождении через призму происходило преломление света - стекло проецировало его на экран в виде упорядоченного спектра.

Ньютон пришел к выводу о том, что белый свет состоит из смеси разных цветов, а также, что призма «разбрасывает» белый свет, преломляя каждый цвет под другим углом. Ньютон не смог разделить цвета, пропуская их через вторую призму. Но когда он поставил вторую призму очень близко к первой таким образом, что все диспергированные цвета вошли во вторую призму, ученый установил, что цвета рекомбинируют, снова образуя белый свет. Этот открытие убедительно доказало спектральный который может быть легко разделен и соединен.

Явление дисперсии играет ключевую роль в большом числе разнообразных явлений. Радуга возникает в результате преломления света в каплях дождя, производя впечатляющее зрелище спектрального разложения, подобное тому, которое происходит в призме.

Критический угол и полное внутреннее отражение

При прохождении через среду с более высоким показателем рефракции в среду с более низким путь движения волн определяется углом падения относительно разделения двух материалов. Если угол падения превышает определенное значение (зависящее от показателя рефракции двух материалов), он достигает точки, когда свет не преломляется в среду с более низким показателем.

Критический (или предельный) угол определяется как угол падения, результирующий в угол рефракции, равный 90°. Другими словами, пока угол падения меньше критического, рефракция происходит, а когда он равен ему, то преломленный луч проходит вдоль места разделения двух материалов. Если угол падения превышает критический, то свет отражается обратно. Явление это носит название полного внутреннего отражения. Примеры его использования - алмазы и Огранка алмаза способствует полному внутреннему отражению. Большинство лучей, входящих сквозь верхнюю часть бриллианта, будет отражаться, пока они не достигнут верхней поверхности. Именно это дает бриллиантам их яркий блеск. Оптическое волокно представляет собой стеклянные «волосы», настолько тонкие, что когда свет входит в один конец, он не может выйти наружу. И только когда луч достигнет другого конца, он сможет покинуть волокно.

Понимать и управлять

Оптические приборы, начиная от микроскопов и телескопов до фотокамер, видеопроекторов, и даже человеческий глаз полагаются на тот факт, что свет может быть сфокусирован, преломлен и отражен.

Рефракция производит широкий спектр явлений, в том числе миражи, радуги, оптические иллюзии. Из-за преломления толстостенная кружка пива кажется более полной, а солнце садится на несколько минут позже, чем на самом деле. Миллионы людей используют силу рефракции, чтобы исправить дефекты зрения с помощью очков и контактных линз. Благодаря пониманию этих свойств света и управлению ими, мы можем увидеть детали, невидимые невооруженным глазом, независимо от того, находятся ли они на предметном стекле микроскопа или в далекой галактике.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта