Главная » 2 Распространение и сезон сбора » Строение и состав литосферы. Вещественный состав литосферы

Строение и состав литосферы. Вещественный состав литосферы

Одной из важных тем при изучении географии считается состав и строение литосферы, которая оказывает значительно влияние на жизнь людей.

Понятие литосферы

Самой верхней и твердой оболочкой, состоящей из близких по составу к гранитам пород, является литосфера. Точно толщина литосферы еще не определена, многие считают, что толщина составляет 60-30 км, многие, что она равна 90-100 км.

К литосфере имеет определенное отношение и земная кора, особенно к верхней и твердой ее части. Зачастую к литосфере также относят рудную, базальтовую и гранитную оболочки - более мощные слои, их толщина может составлять около 1200 км.

Состав литосферы: химические элементы

Исследовать литосферу можно только в области суши, благодаря этому географы изучают состав и строение земной коры. На данный момент, есть возможность исследовать области, которые относятся к поверхности земной коры вплоть до больших глубин. Это происходит за счет естественных обнажений, который можно найти по берегам морей, рек и сильно разрушенных гор.

Поэтому состав и строение земной коры известен приблизительно до глубины 16 км. А о тех слоях, которые находятся намного глубже, мы можем лишь догадываться. Специальные гравиметрические исследования и изучение сейсмических явлений позволяет нам строить догадки по этому поводу.

Земная кора в основном состоит из пород магматического происхождения - это около 90 %. Граниты пользуются наибольшим распространением, именно из них сложена верхняя и твердая часть земной коры. Но химический состав гранитов существенно отличается от магматических пород, являющихся результатами современных извержений.

Первая группа пород носит название сиалических - в них содержится большое количество кремния и алюминия. Для второй группы характерно содержание большого количества магния - это симатические породы. Породы из первой группы имеют меньший удельный вес.

Благодаря многочисленным исследованиям, стало понято, что поверхностная часть литосферы - та часть, которая доступна для изучения людям, главным образом состоит из сиалических пород. А те слои, которые находятся намного глубже - это породы симатические.

Следует помнить, что большая часть поверхности литосферы скрыта от человеческих глаз океанами и морями. Поэтому состав и строение литосферы относится лишь к тем участкам, которые находятся на суше.

Также породы, из которых состоит литосфера можно разделить на три основные группы. Породы, которые произошли от расплавленных магматических масс, относят к первой группе. Это - базальт, диорит и гранит, их общее название -магматические породы .

Вторая группа состоит из осадочных пород , которые образовались путем осаждения материалов из воды и воздуха. К ним относятся песчаник, известняк и глинистый сланец. Третья группа - это породы, испытавшие сильные изменения под влиянием высокой температуры и давления. Их называют метаморфическими , в состав входит мрамор, гнейс и графит. Такие изменения также могли испытать и магматические, и осадочные породы.породы

Литосферой называют верхнюю твердую оболочку Земли, со­стоящую из земной коры и слоя верхней мантии, подстилающего земную кору. Нижняя граница литосферы проводится на глубинах около 100 км под континентами и около 50 км под дном океана. Верхняя часть ли­тосферы (та, где существует жизнь) - составная часть биосферы.

Земная кора сложена магматическими и осадочными породами, а также метаморфическими породами, образовавшимися за счет тех и других.

Горные породы - это естественные минеральные агрегаты оп­ределенного состава и строения, сформировавшиеся в результате геологических процессов и залегающие в земной коре в виде само­стоятельных тел. Состав, строение и условия залегания горных пород обусловлены особенностями формирующих их геологических про­цессов, которые происходят в определенной обстановке внутри зем­ной коры или на земной поверхности. В зависимости от характера главных геологических процессов различают три генетических клас­са горных пород: осадочные, магматические и метаморфические.

Магматические горные породы - это естественные мине­ральные агрегаты, возникающие при кристаллизации магм (силикат­ных, а иногда и несиликатных расплавов) в недрах Земли илина ее поверхности. По содержанию кремнезема магматические породы делятся на кислые (SiO 2 - 70-90%), средние (SiO 2 > около 60%), основные ( SiO 2 около 50%) и ультра­основные (SiO 2 менее 40%). Примером магматических пород служат вулканическая основная порода и гранит.

Осадочные горные породы - это те породы, которые су­ществуют в термодинамических условиях, характерных для по­верхностной части земной коры, и образуются в результате переотло­жения продуктов выветривания и разрушения различных горных по­род, химического и механического выпадения осадка из воды, жизне­деятельности организмов или всех трех процессов одновременно. Многие осадочные породы являются важнейшими полезными иско­паемыми. Примерами осадочных пород служат песчаники, которые можно рассматривать как скопления кварца и, следовательно, концен­траторы кремнезема (SiO 2), и известняки - концентраторы СаО. К ми­нералам, наиболее распространенных осадочных пород относятся кварц (SiO 2), ортоклаз (КalSi 3 O 8) каолинит (А1 4 Si 4 O 10 (ОН) 8), кальцит (СаСО 3), доломит СаМg(СО 3) 2 и др.



Метаморфическими называют породы, основные особенности которых (минеральный состав, структура, текстура) обусловлены процессами метаморфизма, тогда как признаки первичного магмати­ческого происхождения частично или полностью утрачены. Мета­морфические породы - сланцы, гранулиты, эклогиты и др. Типичные для них минералы - слюда, полевой шпат и гранат соответственно.

Вещество земной коры сложено в основном легкими элемента­ми (по Fе включительно), а элементы, следующие в Периодической системе за железом, в сумме составляют лишь доли процента. Отме­чается также, что элементы, имеющие четное значение атомной мас­сы, значительно преобладают: они образуют 86% общей массы зем­ной коры. Следует отметить, что в метеоритах это отклонение еще выше и составляет в металлических метеоритах 92%, в каменных -98%.

Средний химический состав земной коры, по данным разных авторов, приведен в табл. 25:

Таблица 25

Химический состав земной коры, маc. % (Гусакова, 2004)

Элементы и окислы Кларк, 1924 Фугт, 1931 Гольдшмидт, 1954 Полдерваатр, 1955 Ярошевский, 1971
SiO 2 59,12 64,88 59,19 55,20 57,60
TiO 2 1,05 0,57 0,79 1,6 0,84
Al 2 O 3 15,34 15,56 15,82 15,30 15,30
Fe 2 O 3 3,08 2,15 6,99 2,80 2,53
FeO 3,80 2,48 6,99 5,80 4,27
MnO 0,12 - - 0,20 0,16
MgO 3,49 2,45 3,30 5,20 3,88
CaO 5,08 4,31 3,07 8,80 6,99
Na 2 O 3,84 3,47 2,05 2,90 2,88
K 2 O 3,13 3,65 3,93 1,90 2,34
P 2 O 5 0,30 0,17 0,22 0,30 0,22
H 2 O 1,15 - 3,02 - 1,37
CO 2 0,10 - - - 1,40
S 0,05 - - - 0,04
Cl - - - - 0,05
C - - - - 0,14

Ее анализ позволяет сделать следующие важные выводы:

1) земная кора сложена в основном из восьми элементов: О, Si, А1, Fе, Са, Мg, Nа, К; 2) на долю остальных 84 элементов приходится менее одного процента массы коры; 3) среди главнейших по распро­страненности элементов особая роль в земной коре принадлежит ки­слороду.

Особая роль кислорода состоит в том, что его атомы со­ставляют 47% массы коры и почта 90% объема важнейших породо­образующих минералов.

Имеется ряд геохимических классификаций элементов. В на­стоящее время получает распространение геохимическая клас­сификация, согласно которой все элементы земной коры делятся на пять групп (табл. 26).

Таблица 26

Вариант геохимической классификации элементов (Гусакова, 2004)

Литофильные - это элементы горных пород. На внешней обо­лочке их ионов находится 2 или 8 электронов. Литофильные элемен­ты трудно восстанавливаются до элементарного состояния. Обычно они связаны с кислородом и составляют основную массу силикатов и алюмосиликатов. Встречаются также в виде суль­фатов, фосфатов, боратов, карбонатов и гадогенидов.

Халькофильные элементы - это элементы сульфидных руд. На внешней оболочкеих ионов располагается 8 (S,Sе,Те) иди 18 (у ос­тальных) электронов. В природе встречаются в виде сульфидов, селенидов, теллуридов, а также в самородном состоянии (Сu,Нg,Аg,Рb,Zn,As,Sb,Вi,S, Sе,Те,Sn).

Сидерофильные элементы - это элементы с достраивающимися электронными d- и f-оболочками. Они обнаруживают специфическое сродство к мышьяку и сере (PtAs 2 , FеАs 2 , NiAs 2 , FeS, NiS, МоS 2 и др.), а также к фосфору, углероду, азоту. Почти все сидерофильные элементы встречаются также и в самородном состоянии.

Атмофильные элементы - это элементы атмосферы. Боль­шинство изних имеет атомы с заполненными электронными оболоч­ками (инертные газы). К атмофильным относят также азот и водород. Вследствие вы­соких потенциалов ионизации атмофильные элементы с трудом вступают в соединения с другими элементами и потому в природе находятся (кроме Н) главным образом в элементарном (самородном) состоянии.

Биофильные элементы - это элементы, входящие в состав орга­нических компонентов биосферы (С,Н,N,О,Р,S). Из этих (в ос­новном) и других элементов образуются сложные молекулы угле­водов, белков, жиров и нуклеиновых кислот. Средний химический состав белков, жиров и углеводов приведен в табл. 27.

Таблица 27

Средний химический состав белков, жиров и углеводов, мас. % (Гусакова, 2004)

В настоящее время в различных организмах установлено более 60 элементов. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макробиогенными элементами. Элементы же и их соединения, которые хотя и не­обходимы для жизнедеятельности биосистем, но требуются в крайне малых количествах, называют микробиогенными элементами. Для растений, например, важны 10 микроэлементов: Fе, Мn, Сu, Zn, В, Si, Мо, С1, W, Со.

Все эти элементы, кроме бора, требуются и животным. Кроме того, животным могут требоваться селен, хром, никель, фтор, йод, олово. Между макро- и микроэлементами нельзя провести четкую и одинаковую для всех групп организмов границу.

Процессы выветривания

Поверхность земной коры подвержена действию атмосферы, что делает ее восприимчивой к физическим и химическим процессам. Физическое выветривание является механическим процессом, в ре­зультате которого порода размельчается до частиц меньшего размера без существенных изменений в химическом составе. Когда сдержи­вающее давление коры устраняется поднятием и эрозией, устраняют­ся и внутренние напряжения в пределах подстилающих пород, по­зволяя расширившимся трещинам открыться. Эти трещины могут потом раздвинуться за счет термического расширения (вызванного суточными флуктуациями температуры), расширения воды в процес­се замерзания, а также воздействия корней растений. Другие физиче­ские процессы, например ледниковая деятельность, оползни и исти­рание песком, производят дальнейшее ослабление и разрушение твердой породы. Эти процессы важны, поскольку они значительно увеличивают поверхностные участки породы, подверженные дейст­вию агентов химического выветривания, например воздуха и воды.

Химическое выветривание вызывается водой - особенно ки­слой водой - и газами, например кислородом, который разрушает ми­нералы. Некоторые ионы и соединения исходного минерала удаляют­ся с раствором, просачивающимся через обломки минералов и пи­тающим грунтовые воды и реки. Тонкозернистые твердые вещества могут вымываться из выветриваемого участка, оставляя химически измененные остатки, которые формируют основу почв. Из­вестны различные механизмы химического выветривания:

1. Растворение. Простейшая реакция выветривания - это раство­рение минералов. Молекула воды эффективна при разрыве ионных связей, например таких, которые соединяют ионы натрия (Na +) и хлора (Cl -) в галите (каменная соль). Мы можем выразить растворе­ние галита упрощенно, т.е.

NaCl (тв) Na + (водн) + Cl - (водн)

2. Окисление. Свободный кислород играет большую роль при разложении веществ в восстановленной форме. Например, окисление восстановленного железа (Fe 2+) и сера (S) в обычном сульфиде, пи­рите (FeS 2) приводит к образованию сильной серной кислоты (H 2 SO 4):

2FeS 2(тв) + 7,5 О 2(г) + 7Н 2 О (ж) 2Fe(OH) 3(тв) + Н 2 SO 4(водн).

Сульфиды часто встречаются в алеврито-глииистых породах, рудных жилах и угольных отложениях. При разработке рудных и угольных месторождений сульфид остается в отработанной породе, которая накапливается в отвалах. Такие отвалы пустой породы име­ют большие поверхности, подверженные влиянию атмосферы, где окисление сульфидов происходит быстро и в больших масштабах. Кроме того, заброшенные рудные выработки быстро затопляются грунтовыми водами. Образование серной кислоты делает дренажные воды с заброшенных рудников сильно кислыми (рН до 1 или 2). Та­кая кислотность может увеличить растворимость алюминия и стать причиной токсичности для водных, экосистем. В окисление сульфи­дов вовлечены микроорганизмы, что можно моделировать рядом ре­акций:

2FeS 2(тв) + 7О 2(г) + 2Н 2 О (ж) 2Fe 2+ + 4Н + (водн) + 4SO 4 2- (водн) (окисление пирита), затем следует окисление железа в :

2Fe 2+ + О 2(г) + 10Н 2 О (ж) 4Fe(OH) 3(тв) + 8Н + (водн)

Окисление - происходит очень медленно при низких значе­ниях рН кислых рудниковых вод. Однако ниже рН 4,5 окисление железа катализируют Thiobacillus ferrooxidans и Leptospirillum. Окисное железо может далее взаимодействовать с пиритом:

FeS 2(тв) + 14 Fe 3+ (водн) + 8Н 2 О (ж) 15 Fe 2+ (водн) + 2SO 4 2- (водн) + 16Н + (водн)

При значениях рН намного выше 3 железо (III) осаждается как обычный оксид железа (III), гетит (FеООН):

Fe 3+ (водн) + 2Н 2 О (ж) FеООН + 3Н + (водн)

Осажденный гетит покрывает дно ручьев и кирпичную кладку в виде характерного желто-оранжевого налета.

Восстановленные железосодержащие силикаты, например некоторые оливины, пироксены и амфиболы, также могут пре­терпевать окисление:

Fe 2 SiO 4(тв) + 1/2O 2(г) + 5H 2 O (ж) 2Fe(OH) 3(тв) + H 4 SiO 4(водн)

Продуктами являются кремниевая кислота (H 4 SiO 4) и коллоид­ный гидроксид железа , слабое основание, которое при де­гидратации дает ряд оксидов железа, например Fе 2 O 3 (гематит - темно-красного цвета), FеООН (гетит и лепидокрокит - желтого цвета или цвета ржавчины). Частая встречаемость этих оксидов же­леза говорит об их нерастворимости в окислительных условиях зем­ной поверхности.

Присутствие воды ускоряет окислительные реакции, о чем сви­детельствует ежедневно наблюдаемое явление окисления металличе­ского железа (ржавчина). Вода действует как катализатор, окисли­тельный-потенциал зависит от парциального давления газообразного кислорода и кислотности раствора. При рН 7 вода в контакте с воз­духом имеет Еh порядка 810 мВ - окислительный потенциал, на­много больший того, который необходим для окисления закисного железа.

Окисление органического вещества. Окисление восстановлен­ного органического вещества в почвах катализируется микроор­ганизмами. Опосредованное бактериями окисление мертвого органи­ческого вещества до СО 2 важно с точки зрения образования кислот­ности. В биологически активных почвах концентрация СО 2 может в 10-100 раз превышать ожидаемую при равновесии с атмосферным СО 2 приводя к образованию угольной кислоты (Н 2 СО 3) и Н + при ее диссоциации. Чтобы упростить уравнения, орга­ническое вещество представлено обобщенной формулой для углево­да, СН 2 О:

СН 2 О (тв) + О 2(г) СО 2(г) + Н 2 О (ж)

СО 2(г) + Н 2 О (ж) Н 2 СО 3(водн)

Н 2 СО 3(водн) Н + (водн) + НСО 3 - (водн)

Эти реакции могут понизить водный рН почв от 5,6(значение, которое устанавливается при равновесии с атмосферным СО 2) до 4- 5. Это является упрощением, поскольку органическое вещество почв (гумус) не всегда полностью разлагается до СО 2 . Однако продукты частичного разрушения обладают карбоксильными (СООН) и фенольными группами, которые при диссоциации дают ионы Н + :

RCOOH (водн) RCOO - (водн) + Н + (водн)

где R означает большую органическую структурную единицу. Кислотность, накапливаемая при разложении органического вещества, используется при разрушении большинства силикатов в процессе кислотного гидролиза.

3. Кислотный гидролиз. Природные воды содержат растворимые вещества, которые придают им кислотность - это и диссоциации атмосферного СО 2 в дождевой воде, и частично диссоциация почвен­ного СО 2 с образованием Н 2 СО 3 , диссоциация природного и антропогенного диоксида серы (SO 2) с образованием Н 2 SO 3 и Н 2 SО 4 . Реак­цию между минералом и кислыми агентами выветривания обычно называют кислотным гидролизом. Выветривание СаСО 3 демонстри­рует следующая реакция:

СаСО 3(тв) + Н 2 СО 3(водн) Са 2+ (водн) + 2НСО 3 - (водн)

Кислотный гидролиз простого силиката, например богатого магнием оливина, форстерита, можно обобщить следующим образом:

Mg 2 SiO 4 (тв) + 4H 2 CO 3(водн) 2Mg 2+(водн) + 4НСО 3 - (водн) + H 4 SiO 4(водн)

Отметим, что при диссоциации Н 2 СО 3 образуется ионизирован­ный НСО 3 - , немного более сильная кислота, чем нейтральная моле­кула (Н 4 SiO 4), образующаяся при разложении силиката.

4. Выветривание сложных силикатов. До сих пор мы рассматри­вали выветривание мономерных силикатов (например, оливина), кото­рые полностью растворяются (конгруэнтное растворение). Это упро­щало химические реакции. Однако присутствие измененных в процессе выветривания минеральных остатков предполагает, что более распро­странено неполное растворение. Упрощенная реакция выветривания на примере богатого кальцием анортита:

CaAl 2 Si 2 O 8(тв) +2H 2 CO 3(водн) +H 2 O (ж) Ca 2+ (водн) +2HCO 3 - (водн) + Аl 2 Si 2 O 5 (OH) 4(тв)

Твердым продуктом реакции является каолинит Аl 2 Si 2 O 5 (OH) 4 , важный представитель глинистых минералов.

Литосфера – внешняя твердая оболочка Земли, состоящая из осадочных и магматических пород. В настоящее время земной корой принято считать верхний слой твердого тела планеты, расположенный выше сейсмической границы Мохоровичича. Поверхностный слой литосферы, в котором осуществляется взаимодействие живой материи с минеральной (неорганической), представляет собой почву.

Остатки организмов после разложения переходят в гумус (плодородную часть почвы). Составными частями почвы служат минералы, органические вещества, живые организмы, вода, газы. Преобладающие элементы химического состава литосферы: O, Si, Al, Fe, Ca, Mg, Na, K.

Земная кора – наиболее неоднородная оболочка Земли, образованная различными минеральными ассоциациями в виде осадочных, изверженных и метаморфических горных пород, различных форм залегания.

В настоящее время под земной корой понимают верх­ний слой твердого тела планеты, расположенный выше сейс­мической границы. Эта граница находится на разных глу­бинах, где отмечается резкий скачок скорости сейсмиче­ских волн, возникающих при землетрясении.

Выделяют два типа земной коры – континентальный и океаниче­ский. Континентальный отличается более глубоким зале­ганием сейсмической границы. В настоящее время чаще используется термин литосфера, предложенный еще Э. Зюссом, под которым понимают более обширную, чем земная кора, область.

Литосфера – это верхняя твердая оболочка Земли, име­ющая большую прочность и переходящая в менее прочную астеносферу. Литосфера включает земную кору и верхнюю мантию до глубины примерно 200 км.

Строение земной коры имеет неровный характер. Гор­ные системы чередуются с равнинами на материках. Ма­терики, в свою очередь, представляют собой приподнятые над уровнем моря участки земной коры. Пространствен­ное расположение материков на планете В.И. Вернадский назвал «диссиметрией планеты». Если разделить земной шар по тихоокеанскому побережью на две половины, то получится как бы два полушария: континентальное, где сосредоточены все материки с Атлантическим и Индийским океанами, и океаническое, которое займет площадь всего Тихого океана. Это связано со строением и составом земной коры в пределах континентального и океаниче­ского полушарий. Разная толщина земной коры в области континентов и океанов связана с различием состава сла­гающих ее горных пород. Океаническая кора сложена в основном базальтовым материалом, континентальная – материалом, близким по составу к граниту. Гранитные породы содержат больше кремневой кислоты и меньше железа, чем базальтовые.

Общий химический состав земной коры определяют не­многие химические элементы. Всего лишь восемь элемен­тов: кислород, кремний, алюминий, железо, кальций, на­трий, магний, калий распространены в земной коре в весо­вом количестве более 1%. Ведущим, наиболее распростра­ненным элементом земной коры, является кислород, составляющий едва ли не половину массы (47,3%) и 92% ее объе­ма. Таким образом, в количественном отношении земная кора – это «царство кислорода», химически связанного с другими элементами.

Распространенность химических элементов в земной, коре неодинакова и повторяет в определенной мере кос­мическую распространенность. Преобладают легкие эле­менты четырех порядковых номеров, составляющих пер­вые четыре периода таблицы Менделеева. Преобладаниекислорода среди химических элементов земной коры оп­ределяет ведущее значение распространения минералов, в состав которых он входит. Используя данные о распрос­траненности элементов в земной коре, можно рассчитать соотношение слагающих ее минералов, обычно называе­мых породообразующими.

Поверхность континентов на 80% занята осадочными породами, а океаническое дно – почти полностью свежи­ми осадками как продуктами сноса материала континен­тов и деятельности морских организмов. Земная кора первоначально возникла как продукт выплавления первич­ной мантии, который затем был переработан в биосфере под влиянием воздуха, воды и деятельности живых орга­низмов.

Континентальная часть земной коры в течение длитель­ной геологической истории находилась в области биосферы, что наложило свой отпечаток на облик, состав и распростра­ненность осадочных пород и сосредоточенность в них полез­ных ископаемых в виде угля, нефти, горючих сланцев, крем­нистых и карбоновых пород, связанных в прошлом с жизне­деятельностью организмов. В связи с этим континенталь­ная земная кора имеет прямое отношение к биосфере Зем­ли.

ЛИТОСФЕРА

ТЕМА 4

Термин «литосфера» употребляется в науке с середины 19 в., но современное значение он приобрел менее полувека назад. Еще в геологическом словаре издания 1955 г. сказано: литосфера – то же, что земная кора. В словаре издания 1973 г. и в последующих: литосфера … в современном понимании включает земную кору… и жесткую верхнюю часть верхней мантии Земли. Верхняя мантия – это геологический термин, обозначающий очень большой слой; верхняя мантия имеет мощность до 500, по некоторым классификациям – свыше 900 км, а в состав литосферы входят лишь верхние от нескольких десятков до двух сотен километров.

Литосфера – это внешняя оболочка «твёрдой» Земли, расположенная ниже атмосферы и гидросферы над астеносферой. Мощность литосферы изменяется от 50 км (под океанами) до 100 км (под материками). В её составе – земная кора и субстрат, входящий в состав верхней мантии. Границей между земной корой и субстратом служит поверхность Мохоровичича, при пересечении которой сверху вниз скачкообразно увеличивается скорость продольных сейсмических волн. Пространственное (горизонтальное) строение литосферы представлено её крупными блоками – т.н. литосферными плитами, отделёнными друг от друга глубинными тектоническими разломами. Литосферные плиты движутся в горизонтальном направлении со средней скоростью 5-10 см в год.

Строение и мощность земной коры неодинаковы: та её часть, которую можно назвать материковой, имеет три слоя (осадочный, гранитный и базальтовый) и среднюю мощность около 35 км. Под океанами её строение более простое (два слоя: осадочный и базальтовый), средняя мощность – около 8 км. Выделяются также переходные типы земной коры (см. тема 3).

В науке прочно укрепилось мнение, что земная кора в том виде, в котором она существует, есть производное от мантии. В течение всей геологической истории происходил направленный необратимый процесс обогащения поверхности Земли веществом из земных недр. В строении земной коры принимают участие три основных типа горных пород: магматические, осадочные и метаморфические.

Магматические породы образуются в недрах Земли в условиях высоких температур и давлений в результате кристаллизации магмы. Они составляют 95% массы вещества, слагающего земную кору. В зависимости от условий, в которых происходил процесс застывания магмы, формируются интрузивные (образовавшиеся на глубине) и эффузивные (излившиеся на поверхность) горные породы. К интрузивным относятся: гранит, габбро, к изверженным – базальт, липарит, вулканический туф и др.

Осадочные породы образуются на земной поверхности различными путями: часть из них формируется из продуктов разрушения пород, образовавшихся ранее (обломочные: пески, гелечники), часть за счет жизнедеятельности организмов (органогенные: известняки, мел, ракушечник; кремнистые породы, каменный и бурый уголь, некоторые руды), глинистые (глины), химические (каменная соль, гипс).



Метаморфические породы образуются в результате превращения пород другого происхождения (магматических, осадочных) под воздействием различных факторов: высокой температуры и давления в недрах, контакта с породами другого химического состава и др. (гнейсы, кристаллические сланцы, мрамор и др.).

Большую часть объема земной коры занимают кристаллические породы магматического и метаморфического происхождения (около 90%). Однако для географической оболочки более существенна роль маломощного и прерывистого осадочного слоя, который на большей части земной поверхности непосредственно контактирует с водой, воздухом, принимает активное участие в географических процессах (мощность – 2,2 км: от 12 км в прогибах, до 400 – 500 м в океаническом ложе). Наиболее распространены – глины и глинистые сланцы, пески и песчаники, карбонатные породы. Важную роль в географической оболочке играют лёссы и лёссовидные суглинки, слагающие поверхность земной коры во внеледниковых районах северного полушария.

В земной коре – верхней части литосферы – обнаружено 90 химических элементов, но только 8 из них широко распространены и составляют 97,2%. По А.Е. Ферсману, они распределяются следующим образом: кислород – 49%, кремний – 26, алюминий – 7,5, железо – 4,2, кальций – 3,3, натрий – 2,4, калий – 2,4, магний – 2,4%.

Земная кора разделена на отдельные геологически разновозрастные, более или менее активные (в динамическом и сейсмическом отношении) глыбы, которые подвержены постоянным движениям, как вертикальным, так и горизонтальным. Крупные (несколько тысяч километров в поперечнике), относительно устойчивые глыбы земной коры с низкой сейсмичностью и слабо расчленённым рельефом получили название платформ (plat – плоский, form – форма (фр.). Они имеют кристаллический складчатый фундамент и разновозрастный осадочный чехол. В зависимости от возраста, платформы делятся на древние (докембрийские по возрасту) и молодые (палеозойские и мезозойские). Древние платформы являются ядрами современных континентов, общее вздымание которых сопровождалось более быстрым поднятием или опусканием их отдельных структур (щиты и плиты).

Субстрат верхней мантии, располагающийся на астеносфере, представляет собой своеобразную жёсткую платформу, на которой в процессе геологического развития Земли формировалась земная кора. Вещество астеносферы, по-видимому, отличается пониженной вязкостью и испытывает медленные перемещения (токи), которые, предположительно, являются причиной вертикальных и горизонтальных движений литосферных блоков. Они находятся в положении изостазии, предполагающем их взаимное уравновешивание: поднятие одних областей обусловливает опускание других.

Геосфе́ры (от греч. гео-Земля, и сфера - шар) - географические концентрические оболочки (сплошные или прерывистые), из которых состоит планета Земля .

Выделяются следующие геосферы:

атмосфера , гидросфера , литосфера , земная кора , мантия и ядро Земли.

Литосфера (от греч. - камень и шар, сфера)- внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25- 200 и 5-100км.

Ниже коры находится мантия , которая отличается составом и физическими свойствами- она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича , или сокращённо Мохо, на которой происходит резкое увеличение скоростей сейсмических волн . С внешней стороны большая часть коры покрыта гидросферой , а меньшая находится под воздействием атмосферы .

Земную кору составляет сравнительно небольшое число элементов. Около половины массы земной коры приходится на кислород, более 0,25 - на кремний . Всего 18 элементов: O, Si, Al, Fe, Ca, Na, K, Mg, H, Ti, C, Cl, P, S, N, Mn, F, Ba- составляют 99,8 % массы земной коры

Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. включает твердое минеральное вещество горных пород, в том числе органического происхождения, воду или другие жидкие компоненты (например, жидкие углеводороды), газы, присутствующие в порах и трещинах твердой фазы или растворенные в подземных водах.

Литосфера под океанами состоит в основном из базальтового слоя.

Поверхностная и приповерхностная части литосферыявляются средой обитания человека, всеобщим средством его труда. Здесь он живет и осуществляет хозяйственную деятельность: строит наземные и подземные сооружения, из недр добывает разнообразные твердые, жидкие и газообразные компоненты, проводит мелиорацию земель и т. д.

Решение экологических проблем невозможно без изучения литосферы – внешней оболочки Земли. Литосфера является материальной основой биосферы – сферы живого вещества. Именно в литосфере формируются почвы, ландшафты, биосообщества.

В настоящее время литосфера существенно изменяется в процессе хозяйственной деятельности человека.

18. Рекультивация земель.

Рекультивация земель это:

Искусственное воссоздание плодородия почвы и растительного покрова нарушенное вследствие горных разработок, строительства дорог, плотин и т.д.

Она включает:

Восстановление рельефа (засыпку оврагов, карьеров, уничтожение отвалов горных пород и т. д.;

Восстановление почв и растительности;

Лесовосстановление;

Создание новых ландшафтов.

Выполнение выше перечисленных мероприятий позволяет вернуть не пригодные земли для возделывания сельскохозяйственных культур.

Рекультивация земель - это комплекс работ, направленных на восстановление продуктивности и хозяйственной ценности земель, а также на улучшение условий окружающей среды.

Нарушенными считают земли, утратившие первоначальную природно-хозяйственную ценность и, как правило, являющиеся источником отрицательного воздействия на окружающую среду.

Нарушают земли при выполнении открытых и подземных горных работ, складировании промышленных, строительных и коммунально-бытовых отходов, строительстве линейных сооружений, а также при проведении геологоразведочных, изыскательских, строительных и других работ. При этом, как правило, нарушается почвенный покров, изменяются гидрогеологический и гидрологический режимы, образуется техногенный рельеф, а также происходят другие качественные изменения, ухудшающие экологическую обстановку в целом.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта