Главная » 2 Распространение » Броуновское движение объяснение. Броуновское движение в физике

Броуновское движение объяснение. Броуновское движение в физике

«Физика - 10 класс»

Вспомните из курса физики основной школы явление диффузии.
Чем может быть объяснено это явление?

Ранее вы узнали, что такое диффузия , т. е. проникновение молекул одного вещества в межмолекулярное пространство другого вещества. Это явление определяется беспорядочным движением молекул. Этим можно объяснить, например, тот факт, что объём смеси воды и спирта меньше объёма составляющих её компонентов.

Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твёрдого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Броуновское движение - это тепловое движение взвешенных в жидкости (или газе) частиц.


Наблюдение броуновского движения.


Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна.

Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

Броуновское движение - тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растёт.

На рисунке 8.3 приведены траектории движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Объяснение броуновского движения.


Объяснить броуновское движение можно только на основе молекулярно-кинетической теории.

«Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе. Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя». R. Поль (1884-1976).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.


На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул.

При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955). Построение теории броуновского движения и её экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории. В 1926 г. Ж. Перрен получил Нобелевскую премию за исследование структуры вещества.


Опыты Перрена.


Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле то за счёт теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определённое распределение молекул по высоте, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причём чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжёлых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашёл, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счёт большой массы броуновских частиц убывание происходит очень быстро.

Все эти факты свидетельствуют о правильности теории броуновского движения и о том, что броуновские частицы участвуют в тепловом движении молекул.

Подсчёт броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с ранее известным.

Броуновское движение - беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.
При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времен). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная NА. Кроме поступательного Броуновского движения, существует также вращательное Броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного Броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Броуновское движение.

Сущность явления

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Теория броуновского движения

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения.В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц:

где D - коэффициент диффузии, R - универсальная газовая постоянная, T - абсолютная температура, N A - постоянная Авогадро, а - радиус частиц, ξ - динамическая вязкость.

Броуновское движение как немарковский
случайный процесс

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна - Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна - Смолуховского.
Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.

Бро́уновское движе́ние - в естествознании, беспорядочное движение микроскопических, видимых, взвешенных в жидкости (или газе) частиц (броуновские частицы) твёрдого вещества (пылинки, крупинки взвеси, частички пыльцы растения и так далее), вызываемое тепловым движением частиц жидкости (или газа). Не следует смешивать понятия «броуновское движение» и «тепловое движение»: броуновское движение является следствием и свидетельством существования теплового движения.

Сущность явления

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют),более мелкие частицы (менее 3мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Открытие броуновского движения

Это явление открыто Р. Броуном в 1827 году, когда он проводил исследования пыльцы растений. Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ.
В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».
Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».

Теория броуновского движения

Построение классической теории

В 1905 году была создана молекулярно-кинетическая теория для количественного описания броуновского движения. В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц:

где D - коэффициент диффузии, R - универсальная газовая постоянная, T - абсолютная температура , N A - постоянная Авогадро, a - радиус частиц, ξ - динамическая вязкость.

Экспериментальное подтверждение

Формула Эйнштейна была подтверждена опытами а и его студентов в 1908-1909 гг. В качестве броуновских частиц они использовали зёрнышки смолы мастикового дерева и гуммигута - густого млечного сока деревьев рода гарциния. Справедливость формулы была установлена для различных размеров частиц - от 0,212 мкм до 5,5 мкм, для различных растворов (раствор сахара, глицерин ), в которых двигались частицы.
http://ru.wikipedia.org/wiki/

Что такое Броуновское движение

Это движение характеризуется следующими чертами:

  • продолжается неограниченно долго без каких бы то ни было видимых изменений,
  • интенсивность движения броуновских частиц зависит от их размеров, но не зависит от их природы,
  • интенсивность возрастает с ростом температуры,
  • интенсивность возрастает с уменьшением вязкости жидкости или газа.

Броуновское движение не является молекулярным движением, но служит непосредственным доказательством существования молекул и хаотического характера их теплового движения.

Сущность Броуновского движения

Сущность этого движения в следующем. Частица вместе с молекулами жидкости или газа образуют одну статистическую систему. В соответствии с теоремой о равномерном распределении энергии по степени свободы на каждую степень свободы приходится 1/2kT энергии. Энергия 2/3kT, приходящаяся на три поступательные степени свободы частицы, приводит к движению ее центра масс, которое наблюдается под микроскопом в виде дрожания частицы. Если броуновская частица достаточно жесткая, то еще 3/2kT энергии приходится на ее вращательные степени свободы. Поэтому при своем дрожании она испытывает еще и постоянные изменения ориентировки в пространстве.

Можно объяснить броуновское движение и так: причиной Броуновского движения являются флуктуации давления, которое оказывается на поверхность малой частицы со стороны молекул среды. Сила и давление изменяется по модулю и направлению, в результате чего частица находится в беспорядочном движении.

Движение броуновской частицы является случайным процессом. Вероятность (dw) того, что броуновская частица, находившаяся в однородной изотропной среде в начальный момент времени (t=0) в начале координат, сместится вдоль произвольно направленной (при t$>$0) оси Ox так, что ее координата будет лежать в интервале от x до x+dx, равна:

где $\triangle x$- малое изменение координаты частицы, вследствие флуктуации.

Рассмотрим положение Броуновской частицы через некоторые фиксированные промежутки времени. Начало координат поместим в точку, в которой частица находилась при t=0. Обозначим $\overrightarrow{q_i}$ -- вектор , который характеризует перемещение частицы между (i-1) и i наблюдениями. По истечении n наблюдений частица сместится из нулевого положения в точку с радиус-вектором $\overrightarrow{r_n}$. При этом:

\[\overrightarrow{r_n}=\sum\limits^n_{i=1}{\overrightarrow{q_i}}\left(2\right).\]

Перемещения частицы происходит по сложной ломаной линии все время наблюдений.

Найдем средний квадрат удаления частицы от начала после n шагов в большой серии опытов:

\[\left\langle r^2_n\right\rangle =\left\langle \sum\limits^n_{i,j=1}{q_iq_j}\right\rangle =\sum\limits^n_{i=1}{\left\langle {q_i}^2\right\rangle }+\sum\limits^n_{i\ne j}{\left\langle q_iq_j\right\rangle }\left(3\right)\]

где $\left\langle q^2_i\right\rangle $- средний квадрат смещения частицы на i- м шаге в серии опытов (он для всех шагов одинаков и равен какой-то положительной величине a2), $\left\langle q_iq_j\right\rangle $- является средней величиной скалярного произведения при i-м шаге на перемещение при j-м шаге в различных опытах. Эти величины независимы друг от друга, одинаково часто встречаются как положительные значения скалярного произведения, так и отрицательные. Поэтому, считаем, что $\left\langle q_iq_j\right\rangle $=0 при$\ i\ne j$. Тогда имеем из (3):

\[\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle \left(4\right),\]

где $\triangle t$- промежуток времени между наблюдениями; t=$\triangle tn$ - время, в течение которого средний квадрат удаления частицы стал равен $\left\langle r^2\right\rangle .$ Получаем, что частица удаляется от начала. Существенно то, что средний квадрат удаления растет пропорционально первой степени времени. $\alpha \ $- можно найти экспериментально, а можно теоретически, как будет показано в примере 1.

Броуновская частица движется не только поступательно, но и вращаясь. Среднее значение угла поворота $\triangle \varphi $ броуновской частицы за время t равно:

\[{\triangle \varphi }^2=2D_{vr}t(5),\]

где $D_{vr}$ -- коэффициент вращательной диффузии. Для сферической броуновской частицы радиуса - а $D_{vr}\ $ равен:

где $\eta $ - коэффициент вязкости среды.

Броуновское движение ограничивает точность измерительных приборов. Предел точности зеркального гальванометра определяется дрожание зеркальца, подобно броуновской частице, которая подвергается ударам молекул воздуха. Случайное движение электронов вызывает шумы в электрических сетях.

Пример 1

Задание: Для того, чтобы математически полно охарактеризовать броуновское движение, надо найти $\alpha $ в формуле $\left\langle r^2_n\right\rangle =\alpha t$. Считать коэффициент вязкости жидкости известным и равным b, температура жидкости T.

Запишем уравнение движения броуновской частицы в проекции на ось Ox:

где m -- масса частицы, $F_x$ -- случайная сила, действующая на частицу, $b\dot{x}$- член уравнения, характеризующий силу трения, действующая на частицу в жидкости.

Аналогичный вид имеют уравнения для величин, относящиеся к другим координатным осям.

Умножим обе части уравнения (1.1) на x, а члены $\ddot{x}x\ и\ \dot{x}x$ преобразуем:

\[\ddot{x}x=\ddot{\left(\frac{x^2}{2}\right)}-(\dot{x})^2,\dot{x}x=(\frac{x^2}{2}\)(1.2)\]

Тогда уравнение (1.1) приведем к виду:

\[\frac{m}{2}(\ddot{x^2})-m(\dot{x})^2=-\frac{b}{2}\left(\dot{x^2}\right)+F_xx\ (1.3)\]

Усредним обе части этого уравнения по ансамблю броуновских частиц, учитывая при этом, что средняя от производной по времени равна производной от средней величины, так как это усреднение по ансамблю частиц, и, значит, переставим операцией дифференцирования по времени. В результате усреднения (1.3) получаем:

\[\frac{m}{2}\left(\left\langle \ddot{x^2}\right\rangle \right)-\left\langle m(\dot{x})^2\right\rangle =-\frac{b}{2}\left(\dot{\left\langle x^2\right\rangle }\right)+\left\langle F_xx\right\rangle \ \left(1.4\right).\]

Так как отклонения броуновской частицы в любом направлении равновероятны, то:

\[\left\langle x^2\right\rangle =\left\langle y^2\right\rangle =\left\langle z^2\right\rangle =\frac{\left\langle r^2\right\rangle }{3}\left(1.5\right)\]

Используем $\left\langle r^2_n\right\rangle =a^2n=\frac{a^2}{\triangle t}t=\alpha t=\left\langle r^2\right\rangle $, получаем $\left\langle x^2\right\rangle =\frac{\alpha t}{3}$, следовательно: $\dot{\left\langle x^2\right\rangle }=\frac{\alpha }{3}$, $\left\langle \ddot{x^2}\right\rangle =0$

Из-за случайного характера силы $F_x$ и координаты частицы x и их независимости друг от друга должно выполняться равенство $\left\langle F_xx\right\rangle =0$, тогда (1.5) сводится к равенству:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =\frac{\alpha b}{6}\left(1.6\right).\]

По теореме о равномерном распределении энергии по степеням свободы:

\[\left\langle m{\dot{\left(x\right)}}^2\right\rangle =kT\left(1.7\right).\] \[\frac{\alpha b}{6}=kT\to \alpha =\frac{6kT}{b}.\]

Таким образом, получим формулу для решения задачи о Броуновском движении:

\[\left\langle r^2\right\rangle =\frac{6kT}{b}t\]

Ответ: Формула $\left\langle r^2\right\rangle =\frac{6kT}{b}t$ решает задачу о броуновском движении взвешенных частиц.

Пример 2

Задание: Частицы гуммигута сферической формы радиуса r участвуют в броуновском движении в газе. Плотность гуммигута $\rho $. Найти среднеквадратичную скорость частиц гуммигута при температуре T.

Среднеквадратичная скорость молекул равна:

\[\left\langle v^2\right\rangle =\sqrt{\frac{3kT}{m_0}}\left(2.1\right)\]

Броуновская частица находится в равновесии с веществом, в котором она находится, и мы можем рассчитать ее среднеквадратичную скорость, используя формулу для скорости молекул газа, которые, в свою очередь, двигаясь, заставляют перемещаться броуновскую частицу. Для начала найдем массу частицы:

\[\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}\]

Ответ: Скорость частицы гуммигута взвешенного в газе можно найти как $\left\langle v^2\right\rangle =\sqrt{\frac{9kT}{4\pi R^3\rho }}$.

Тепловое движение

Любое вещество состоит из мельчайших частиц - молекул. Молекула - это наименьшая частица данного вещества, сохраняющая все его химические свойства. Молекулы расположены в пространстве дискретно, т. е. на некоторых расстояниях друг от друга, и находятся в состоянии непрерывного беспорядочного (хаотичного) движения .

Поскольку тела состоят из большого числа молекул и движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы, её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется определённым законам. В частности, хотя скорости молекул в некоторый момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость (v$cp ).

Нельзя выделить какое-то определённое направление, в котором движутся все молекулы. Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Такое непрерывное хаотическое движение атомов и молекул называют — . Такое название определяется тем, что скорость движения молекул зависит от температуры тела. Чем больше средняя скорость движения молекул тела, тем выше его температура. И наоборот, чем выше температура тела, тем больше средняя скорость движения молекул.

Броуновское движение

Движение молекул жидкости было обнаружено при наблюдении броуновского движения - движения взвешенных в ней очень мелких частиц твердого вещества. Каждая частица беспрерывно совершает скачкообразные перемещения в произвольных направлениях, описывая траектории в виде ломаной линии. Такое поведение частиц можно объяснить, считая, что они испытывают удары молекул жидкости одновременно с разных сторон. Различие в числе этих ударов с противоположных направлений приводит к движению частицы, поскольку ее масса соизмерима с массами самих молекул. Движение таких частиц впервые обнаружил в 1827 г. английский ботаник Броун, наблюдая под микроскопом частицы цветочной пыльцы в воде, почему оно и было названо — броуновское движение .



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта