Главная » 2 Распространение » Фотовзгляд от Ilya BIM. Что такое радиотелескоп

Фотовзгляд от Ilya BIM. Что такое радиотелескоп

Опытные радисты знают: когда в радиоприёмнике иногда раздаются шум и треск, не стоит сразу винить аппаратуру: вполне возможно, что это подаёт голос... Солнце!

Впервые о том, что Солнце имеет собственную «радиостанцию», люди узнали в 30-х годах прошлого века. Открывателем космических радиоволн стал молодой физик Карл Янский. Он работал в одной из американских радиокомпаний, и ему поручили изучить направление прихода атмосферных коротковолновых радиопомех.

Молодой исследователь сконструировал специальную антенну, способную принимать короткие волны. Вооружившись этой антенной, он стал изучать источники радиопомех и их направление. Каково же было его удивление, когда прибор упрямо стал указывать на... солнечный диск! Причем эти шипящие помехи повторялись каждые 24 часа. Это указывало на то, что источник помех может быть связан с Солнцем (24 часа, как мы помним, длятся солнечные сутки на Земле). Но проанализировав полученные данные более тщательно, Карл Янский увидел, что обнаруженный им радиосигнал повторялся на каждые 24 часа, а каждые 23 часа 56 минут - это уже длительность звёздных суток, а не солнечных, то есть период вращения Земли относительно дальних звезд, а не Солнца. Сверившись с астрономическими картами, Карл Янский обнаружил, что источником излучения была область в центре нашей галактики Млечный Путь , в созвездии Стрельца.

Карл Янский опубликовал статью, в которой рассказал о своем открытии, однако ему не поверили. Но факты - упрямая вещь. Радиоголоса были обнаружены и у других звёзд, у планет и прочих небесных объектов. Так было положено начало новой науке - радиоастрономии. Она позволила узнать о Вселенной много такого, о чем люди раньше и не подозревали.


Круговая "антенна-карусель" Карла Янского - первый радиотелескоп

Антенна современного радиотелескопа давно уже не напоминает ту «раскладушку», с которой работал Янский.


Радиотелескоп РТ-32 РАО "Бадары"
Находится в урочище Бадары Тункинского р-на республики Бурятия (Россия).

Чаще всего это гигантская металлическая чаша диаметром в несколько десятков, а то и сотен метров.

Например, крупный радиотелескоп Аресибо расположен в кратере потухшего вулкана на Больших Антильских островах. Склоны кратера выровняли и прикрыли металлическими щитами. Получилась огромная чаша-зеркало, с помощью которой и улавливаются радиоголоса звёзд.


Обсерватория Аресибо (Пуэрто-Рико).
Радиотелескоп Аресибо, построенный в 1963 году,
по размерам уступает только китайскому телескопу FAST, запущенному в 2016 году.
Диаметр зеркала радиотелескопа Аресибо - почти 305 метров

Один из крупнейших радиотелескопов мира РАТАН-600 находится в нашей стране, в районе станицы Зеленчукской в Ставропольском крае.

Даже построив такую махину, астрономы на этом не успокоились. В 1980 году совместными усилиями специалистов стран Восточный и Западной Европы, а также Китая и Южной Африки был создан радиотелескоп, антенна которого оказалась диаметром... в половину земного шара! Самое удивительное, что никаких новых установок при этом не строили.

Вся хитрость в оригинальном подходе, который использовали учёные. Представьте себе, скажем, у нас в Крыму и где-то в Швеции два радиотелескопа направлены на один и тот же небесный объект. На обоих телескопах принятые сигналы записываются и передаются на компьютер. Затем радиоастрономы сравнивают записи, оценивают информацию с помощью электронных вычислительных машин. В итоге получается, что два телескопа работают как один - в общей упряжке.

Причём таким образом не только два, но и большее количество телескопов могут действовать сообща. Антенна такого всепланетарного радиотелескопа получается гигантской, простираясь на тысячи километров. Такие сети радиотелескопов называют РСДБ-сетями (расшифровывается как радиоинтерферометрия со сверхдлинными базами). Метод РСДБ придумали американцы в 1970-х годах. В наше время существует три крупных сети: "КВАЗАР" в России, EVN в Европе (в ней тоже участвуют российские радиотелескопы), и VLBA в США.

В будущем учёные замахиваются создать радиотелескоп размерами во всю Солнечную систему. Каким образом? Точно таким же. Один из радиотелескопов они хотят разместить на борту автоматической межпланетной станции и отравить её куда-нибудь на окраину Солнечной системы, допустим, к орбите Сатурна или Плутона. Другие радиотелескопы включатся на Земле. А когда полученные сведения обработают с помощью сверхмощных компьютеров, получится, будто работал сверхгигантский радиотелескоп.

Первый шаг в этом направлении уже сделан - это международный проект "РадиоАстрон". Размеры этой сети уже превышают диаметр нашей планеты, потому что в неё, помимо наземных радиотелескопов, включен космический радиотелескоп на российском космическом аппарате «Спектр-Р», запущенном на околоземную орбиту в 2011 году.

Зачем учёным такие гулливеровы «игрушки»? Оказывается, чем больше радиотелескоп, тем при прочих равных условиях чувствительнее его «радиоухо». Особенно удобны «упряжки» радиотелескопов для обнаружения источников со сложной пространственной структурой. То есть когда из одного места доносится не один, а сразу хор радиоголосов, и надо разобраться, кому какой принадлежит.

В свою очередь, накопленные знания нужны специалистам, чтобы лучше понять устройство мира. Например, мы до сих пор плохо знаем, как именно шло образование нашей Солнечной системы. Геологические процессы на планетах, химические реакции в их недрах сильно изменили облик небесных тел, и теперь нелегко представить, какими они были первоначально. Так что было бы важно отследить образование какой-либо другой планетной системы. Тогда по аналогии мы могли бы получить наглядное представление и о том, как образовывалась наша.

Так, проводя совместными усилиями «прослушивание» газопылевой туманности в созвездии Ориона, радиоастрономы пяти стран сумели не только услышать в общем хоре отдельные радиоголоса, но и догадаться, о чём шёл «разговор». Скорее всего, полагают учёные, радиотелескопам удалось обнаружить протозвёзды (звёзды, формирование которых ещё не закончено), возможно, даже отдельные далёкие системы, подобные Солнечной, как раз в разгар строительства. Так что, наблюдая за ними, мы можем узнать, судя по всему, немало интересного и о собственной.

Удалось радиоастрономам отыскать и следы Большого взрыва. Радиоастрономы зафиксировали в глубинах Вселенной фоновое или реликтовое радиоизлучение, которое представляет собой не что иное, как эхо Большого взрыва . Представляете, сколько миллиардов лет прошло, а радиоэхо до сих пор разгуливает по просторам Вселенной. И учёным удалось услышать его.

Благодаря РСДБ-сетям, астрономы получили возможность изучать такие загадочные космические объекты, как пульсары, нейтронные звёзды, чёрные дыры .

Появление радиотелескопов изменило характер труда астрономов. Как шутят они сами, многие теперь перестали смотреть по ночам на звёзды через «ночезрительную трубу» обычного, оптического телескопа, бормоча себе под нос стихи М. В. Ломоносова: «Открылась бездна звёзд полна...» Они теперь работают на сверхмощных компьютерах, выполняя сложные астрономические расчёты, напевая слова из романса на слова М. Ю. Лермонтова: «...И звезда с звездою говорит...»

Продолжаю рассказ о новогодней поездке в "страну телескопов", начатый (крупнейший в Евразии оптический телескоп с диаметром главного монолитного зеркала 6 м). На этот раз речь пойдет о двух его родственниках — радиотелескопах РАТАН-600 и РТФ-32. Первый занесен в Книгу Рекордов Гиннеса, а второй входит в единственный постоянно действующий в России радиоинтерферометрический комплекс "Квазар". Кстати, сейчас комплекс "Квазар" играет важную роль в работе системы ГЛОНАСС. Давайте обо всем подробнее и доступнее, по возможности!

А сейчас позанудствуем! :)

Для науки основными преимуществами телескопа является многочастотность (диапазон от 0,6 до 35 ГГц) и большое безаберрационное поле (что позволяет измерять почти мгновенно радиоспектры космических источников в широком диапазоне частот), высокая разрешающая способность и высокая чувствительность по яркостной температуре (которые позволяют проводить исследования протяженных структур, таких как флуктуации микроволнового фонового излучения на малых угловых масштабах, недостижимых даже на специализированных космических аппаратах и наземных инструментах).

Телескоп состоит из двух основных отражателей:

1. Круговой отражатель (справа и вдоль всего снимка).
Это наиболее крупная часть радиотелескопа, она состоит из 895 прямоугольных отражающих элементов размером 11,4 на 2 метра, расположенных по кругу с диаметром 576 метров. Они могут перемещаться по трём степеням свободы. Круговой отражатель разделён на 4 независимых сектора, названных по частям света: север, юг, запад, восток. Общая площадь 12"000м². Отражающие элементы каждого сектора выставляются по параболе, образуя отражающую и фокусирующую полосу антенны. В фокусе такой полосы располагается специальный облучатель.

2. Плоский отражатель (слева).
Плоский отражатель состоит из 124 плоских элементов высотой 8,5 метра и общей длинной 400 метров. Элементы могут вращаться относительно горизонтальной оси, расположенной вблизи уровня земли. Для проведения некоторых измерений отражатель может быть убран совмещением его поверхности с плоскостью земли. Отражатель используется как перископическое зеркало. При работе поток радиоизлучения, попавший на плоский отражатель, направляется в сторону южного сектора кругового отражателя. Отразившись от кругового отражателя, радиоволна фокусируется на облучателе, который устанавливается на кольцевых рельсах. Установкой облучателя в заданную позицию и перестройкой зеркала можно направлять радиотелескоп в заданную точку неба. Также возможен режим слежения за источником, при этом облучатель непрерывно движется, а также перестраивается зеркало.

12. Вид на плоский отражатель с обратной стороны. Видны механизмы, приводящие пластины в движение.

13. На радиотелескопе имеется пять приёмных кабин-облучателей, установленных на железнодорожных платформах с радиоприемной аппаратурой и наблюдателями. Одни напоминают бронепоезд, другие инопланетные корабли. На фото мы видим две такие кабины. По задумке, платформы могут перемещаться по одному из 12 радиальных путей, что обеспечивает набор фиксированных азимутов с шагом 30°. Перестановка облучателей между путями должна была осуществляется с помощью центрального поворотного круга (в центре фото)... Так было задумано, но потом от этого отказались (и так хватает) и поворотный круг не используется, а часть рельсов демонтирована.

14. В конце 1985 года установлен дополнительный конический отражатель-облучатель. Основу составляет коническое вторичное зеркало, под которым расположен облучатель. Он позволяет принимать излучение со всего кругового отражателя, при этом реализуется максимальная разрешающая способность радиотелескопа. Однако в таком режиме можно наблюдать только радиоисточники, направление на которые отклоняется от зенита не более ±5 градусов. Этот облучатель чаще всего фигурирует на иллюстрациях, связанных с телескопом, наверное из-за своего инопланетного вида:)

15. А еще с верхней площадки этого облучателя хорошо снимать общий радиотелескопа. Ну и вообще радует, что есть возможность полазать:) На РТФ-32 такой возможности не было.

Кстати, был курьез, приведший к образованию устойчивой местной "городской легенды". Когда проводились первые наблюдения на РАТАНе, во избежание помех от автотранспорта останавливалось движение по станице Зеленчукской вблизи РАТАНа. Закрытость телескопа и отсутствие достаточной информации об этом близком к станице и впечатляющем своими размерами сооружении породило разнообразные мифы среди местного населения - о том, что РАТАН якобы "облучает". Возможно, этому слуху способствовало еще и названием "облучатели" - хотя на самом деле они абсолютно ничего не излучают, а лишь принимают сигнал.

16. Кабина №1 на позиции, через несколько минут начнутся наблюдения, а пока нас приглашают зайти внутрь этого "бронепоезда".

14. Наш экскурсовод и рабочее место наблюдателя.

Какие же задачи ставятся перед РАТАНом?
- обнаружение большого числа космических источников радиоизлучения, отождествление их с космическими объектами;
- изучение радиоизлучения звезд;
- изучение квазаров и радиогалактик;
- исследование тел солнечной системы;
- исследования областей повышенного радиоизлучения на Солнце, их строения, магнитных полей;
- обнаружения искусственных сигналов внеземного происхождения (SETI);
- исследования реликтового излучения.

Телескоп исследует астрономические объекты во всем диапазоне расстояний во Вселенной: от самых близких - Солнца, солнечного ветра, планет и их спутников в Солнечной системе и до самых далеких звездных систем - радиогалактик, квазаров и космического микроволнового фона. На радиотелескопе выполняется свыше 20 научных программ как отечественных, так и иностранных заявителей.
По проекту "Генетический код Вселенной" на РАТАН-600 исследуются все компоненты фонового излучения на всех угловых масштабах. Ежедневные наблюдения Солнца на радиотелескопе дают уникальную, дополняемую другими инструментами, информацию о свойствах солнечной плазмы в диапазоне высот от хромосферы до нижней короны, то есть тех областей атмосферы Солнца, где зарождаются мощные солнечные вспышки. Эта информация позволяет прогнозировать вспышки солнечной активности, влияющие на самочувствие людей и на работу энергосистем на планете. В настоящее время архив наблюдательных данных РАТАН-600 содержит более полумиллиона записей радиообъектов.

15. А так выглядят радиометры, измерительная и фиксирующая аппаратура. Что-то осталось со времен первых наблюдений, а что-то уже заменено на современное оборудование. Одно можно сказать - радиотелескоп живет и развивается, являясь еще и опытной площадкой для инженеров.

16. На этом завершилась наша экскурсия на РАТАН-600: радиотелескоп загружен наблюдениями и отвлекать работающих там людей нельзя.

Итак, РАТАН-600 до сих пор является крупнейшим в мире рефлекторным зеркалом и основным радиотелескопом России, работающим в центральном "окне прозрачности" земной атмосферы в диапазоне длин волн 1-50 см. Ни один другой радиотелескоп в мире не имеет подобного частотного перекрытия с возможностью проведения одновременных наблюдений на всех частотах. Благодаря ему и БТА по соседству астрономы всего мира знают названия станицы Зеленчукской и Карачаево-Черкесской республики.


17. Сфотографировался на вершине "НЛО", на память:)

P.S. Надеюсь, я вас не сильно утомил техническими деталями?

ФГБОУ ВПО «Таганрогский государственный педагогический институт имени А.П. Чехова»

Радиоастрономия. Радиотелескопы.

Основные характеристики.

Выполнила студентка

физико-математического факультета

51 группы: Мазур В.Г.

Таганрог

Введение

Радиоастрономия

1. Сравнение с оптической астрономией………………………….

2. Диапазоны регистрируемого радиоизлучения………………..

3. Историческая справка…………………………………………..

Радиотелескопы………………………………………………….

4. Принцип работы ………………………………………………..

5. Радиоинтерферометры………………………………………….

6. Первые радиотелескопы ……………………………………….

7. Классификация радиотелескопов………………………………

а) Антенны с заполненной апертурой……………………………

б) Параболоиды вращения…………………………………………

в) Параболические цилиндры……………………………………

г) Антенны с плоскими отражателями……………………………

д) Земляные чаши………………………………………………….

е) Антенные решётки (синфазные антенны)……………………

ж) Антенны с незаполненной апертурой…………………………

Заключение

Список литературы


Введение

Радиоастрономия - это раздел астрономии, который изучает космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа. Радиоизлучением сопровождаются такие явления, как взаимодействие турбулентных потоков газа и ударные волны в межзвездной среде, быстрое вращение нейтронных звезд с сильным магнитным полем, "взрывные" процессы в ядрах галактик и квазаров, солнечные вспышки и др. Приходящие к Земле радиосигналы естественных объектов имеют характер шумов. Эти сигналы принимаются и усиливаются с помощью специальной электронной техники, а затем регистрируются в аналоговом или цифровом виде. Часто радиоастрономическая техника оказывается более чувствительной и дальнодействующей, чем оптическая.

Радиотелеско́п - астрономический инструмент для приёма собственного радиоизлучения небесных объектов (вСолнечной системе, Галактике и Метагалактике) и исследования их характеристик, таких как: координаты,пространственная структура, интенсивность излучения, спектр и поляризация .


РАДИОАСТРОНОМИЯ

§1.Сравнение с оптической астрономией

Из всех видов космического электромагнитного излучения к поверхности Земли сквозь ее атмосферу проходят, практически не ослабевая, только видимый свет, близкое (коротковолновое) инфракрасное излучение и часть спектра радиоволн. С одной стороны, радиоволны, имеющие значительно большую длину волны, чем оптическое излучение, легко проходят сквозь облачные атмосферы планет и облака межзвездной пыли, непрозрачные для света. С другой стороны, только самые короткие радиоволны проходят сквозь прозрачные для света области ионизованного газа вокруг звезд и в межзвездном пространстве. Слабые космические сигналы радиоастрономы улавливают с помощью радиотелескопов, основными элементами которых служат антенны. Обычно это металлические рефлекторы в форме параболоида. В фокусе рефлектора, там, где концентрируется излучение, помещают собирающее устройство в виде рупора или диполя, которое отводит собранную энергию радиоизлучения к приемной аппаратуре. Рефлекторы диаметром до 100 м делают подвижными и полноповоротными; они могут наводиться на объект в любой части неба и следить за ним. Более крупные рефлекторы (до 300 м в диаметре) - неподвижные, в виде огромной сферической чаши, а наведение на объект происходит за счет вращения Земли и перемещения облучателя в фокусе антенны. Рефлекторы еще большего размера обычно имеют вид части параболоида. Чем больше размер рефлектора, тем детальнее наблюдаемая радиокартина. Часто для ее улучшения один объект наблюдают синхронно двумя радиотелескопами или целой их системой, содержащей несколько десятков антенн, разнесенных иногда на тысячи километров.

§2. Диапазоны регистрируемого радиоизлучения

Сквозь земную атмосферу проходят радиоволны длиной от нескольких миллиметров до 30 м, т.е. в диапазоне частот от 10 МГц до 200 ГГц. Таким образом, радиоастрономы имеют дело с частотами, заметно более высокими, чем, например, широковещательный радиодиапазон средних или коротких волн. Однако с появлением УКВ и телевизионного вещания в диапазоне частот 50-1000 МГц, а также радиолокаторов (радаров) в диапазоне 3-30 ГГц у радиоастрономов возникли проблемы: мощные сигналы земных передатчиков в этих диапазонах мешают приему слабых космических сигналов. Поэтому путем международных соглашений радиоастрономам выделено для наблюдения космоса несколько диапазонов частот, в которых запрещена передача сигналов.

§3. Историческая справка

Радиоастрономия как наука началась в 1931, когда К.Янский из компании "Белл телефон" стал изучать помехи радиосвязи и обнаружил, что они приходят из центральной части Млечного Пути. Первый радиотелескоп построил в 1937-1938 радиоинженер Г.Ребер, самостоятельно сделавший у себя в саду из листов железа 9-метровый рефлектор, в принципе такой же, как нынешние гигантские параболические антенны. Ребер составил первую радиокарту неба и обнаружил, что на волне 1,5 м излучает весь Млечный Путь, но наиболее сильно - его центральная часть. В феврале 1942 Дж.Хей заметил, что в метровом диапазоне Солнце создает помехи радиолокаторам, когда на нем происходят вспышки; радиоизлучение Солнца в сантиметровом диапазоне в 1942-1943 открыл Дж. Саутворт. Планомерное развитие радиоастрономии началось после Второй мировой войны. В Великобритании были созданы крупная обсерватория Джодрелл-Бэнк (Манчестерский университет) и станция Кавендишской лаборатории (Кембридж). Радиофизическая лаборатория (Сидней) организовала несколько станций в Австралии. Нидерландские радиоастрономы стали изучать облака межзвездного водорода. В СССР были построены радиотелескопы под Серпуховом, в Пулкове, в Крыму. Крупнейшими радиообсерваториями США являются Национальные радиоастрономические обсерватории в Грин-Бэнк (шт. Зап.Виргиния) и Шарлотсвилле (шт. Виргиния), обсерватория Корнеллского университета в Аресибо (о.Пуэрто-Рико), обсерватория Калифорнийского технологического института в Оуэнс-Вэлли (шт. Калифорния), Линкольновская лаборатория Массачусетского технологического института и обсерватория Ок-Ридж Гарвардского университета (шт. Массачусетс), обсерватория Хэт-Крик Калифорнийского университета в Беркли (шт. Калифорния), Радиоастрономическая обсерватория пяти колледжей Массачусетского университета (шт. Массачусетс).

РАДИОТЕЛЕСКОПЫ

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов для исследования электромагнитного излучения. Более высокочастотными являются телескопы теплового, видимого,ультрафиолетового, рентгеновского и гамма излучения .

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и других излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение, и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

§4. Принцип работы

Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

,

где - мощность собственных шумов радиотелескопа, - эффективная площадь (собирающая поверхность) антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

§5. Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

§6. Первые радиотелескопы

Начало - Карл Янский

Копия радиотелескопа Янского

История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени .

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. - период полного оборота антенны.

В декабре 1932 г. Янский уже сообщал о первых результатах, полученных на своей установке . В статье сообщалось об обнаружении «… постоянного шипения неизвестного происхождения», которое «… трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа». В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики . Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути .

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США .

Второе рождение - Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты .

Радио карта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн.

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

§7. Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей)

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненной апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета , индийский телескоп в Ути .

Ход лучей в телескопе Нансэ

Антенны с плоскими отражателями

Для работы на параболическом цилиндре требуется, чтобы на фокальной линии было размещено несколько детекторов, сигнал с которых складывается с учетом фаз. На коротких волнах это сделать непросто из-за больших потерь в линиях связи. Антенны с плоским отражателем позволяют обойтись лишь одним приёмником. Такие антенны состоят из двух частей: подвижного плоского зеркала и неподвижного параболоида. Подвижное зеркало «наводится» на объект и отражает лучи на параболоид. Параболоид концентрирует лучи в точке фокуса, где располагается приёмник. Такому телескопу доступна только часть неба для наблюдений. Представители: радиотелескоп Крауса, Большой радиотелескоп в Нансэ.

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристики радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение - максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой

Телескоп ДКР-1000, с незаполненной апертурой

площадью, но большой разрешающей способностью. Такие антенны получили название антенн с незаполненной апертурой , так как они имеют «дыры» в апертуре, превосходящие длину волны. Чтобы получить изображение с таких антенн, наблюдения нужно проводить в режиме синтеза апертур. Для апертурного синтеза достаточно двух синхронно работающих антенн, расположенных на некотором расстоянии, которое называют базой . Чтобы восстановить изображение источника, нужно промерить сигнал на всех возможных базах с некоторым шагом вплоть до максимальной .

Если антенны всего две, то придется проводить наблюдение, затем менять базу, проводить наблюдение в следующей точке, опять менять базу и т. д. Такой синтез называется последовательным . По такому принципу работает классический радиоинтерферометр. Недостаток последовательного синтеза состоит в том, что он требует много времени и не может выявить переменность радиоисточников на коротких временах. Поэтому чаще применяется параллельный синтез . В нём участвует сразу много антенн (приёмников), которые одновременно проводят измерения для всех нужных баз. Представители: «Северный крест» в Италии,радиотелескоп ДКР-1000 в Пущино.

Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.

Список радиотелескопов.

Расположение

Тип антенны

Размер

Минимальная рабочая длина волны

США, Грин Бэнк

Параболический сегмент с активной поверхностью

Россия, Калязинская радиоастрономическая обсерватория

Параболический рефлектор

Россия, Медвежьи Озера

Параболический рефлектор

Япония, Нобеяма

Параболический рефлектор

Италия, Медичина

Параболический рефлектор

Испания, Гранада

Параболический рефлектор

Пуэрто-Рико, Пуэрто-Рико, Аресибо

Сферический рефлектор

Россия, Бадары, Сибирский солнечный радиотелескоп

Массив антенн 128х128 элементов (крестообразный радиоинтерферометр)

Франция, Нанси

Двухзеркальный

Индия, Ути

Параболический цилиндр

Италия, Медичина, «Северный крест»

«Т» из двух параболических цилиндров


Список литературы

1. Физика космоса: мал. энц., 1986, с. 533

2. Каплан С. А. Как возникла радиоастрономия // Элементарная радиоастрономия. - М.: Наука, 1966. - С. 12. - 276 с.

3. 1 2 Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. - М.: Советское радио, 1973. - С. 14-21. - 456 с.

4. Большая советская энциклопедия. - СССР: Советская энциклопедия, 1978.

5. Электромагнитное излучение. Википедия.

6. Радиотелескоп // Физика космоса: Маленькая энциклопедия / Под ред. Р. А. Сюняева. - 2-е изд. - М.: Сов. энциклопедия, 1986. - С. 560. - 783 с. - ISBN 524(03)

7. П.И.Бакулин, Э.В.Кононович, В.И.Мороз Курс общей астрономии. - М.: Наука, 1970.

8. 1 2 3 4 Джон Д. Краус. Радиоастрономия. - М.: Советское радио, 1973.

9. Jansky K.G. Directional Studies of Atmospherics at Hight Frequencies. - Proc. IRE, 1932. - Т. 20. - С. 1920-1932.

10. Jansky K.G. Electrical disturbances apparently of extraterrestrial origin.. - Proc. IRE, 1933. - Т. 21. - С. 1387-1398.

11. Jansky K.G. A note on the source of interstellar interference.. - Proc. IRE, 1935. - Т. 23. - С. 1158-1163.

12. Reber G. Cosmic Static. - Astrophys. J., June, 1940. - Т. 91. - С. 621-624.

13. Reber G. Cosmic Static. - Proc. IRE, February, 1940. - Т. 28. - С. 68-70.

14. 1 2 Reber G. Cosmic Static. - Astrophys. J., November, 1944. - Т. 100. - С. 279-287.

15. Reber G. Cosmic Static. - Proc. IRE, August, 1942. - Т. 30. - С. 367-378.

16. 1 2 Н.А.Есепкина, Д.В.Корольков, Ю.Н.Парийский. Радиотелескопы и радиометры. - М.: Наука, 1973.

17. Радиотелескоп Иллинойского университета.

18. 1 2 Л. М. Гиндилис «SETI: Поиск Внеземного Разума»



01.09.2017 13:40 1037

Радиотелескопом называется устройство, с помощью которого астрономы изучают космические объекты, находящиеся далеко от Земли. В отличие от обычного оптического телескопа , исследуемый объект нельзя увидеть сразу. Радиотелескоп улавливает излучение небесных тел и полученный сигнал передаёт на специальный монитор.

Идея создать такой аппарат принадлежит американскому физику Карлу Янскому. Исследуя атмосферные радиопомехи, учёный обнаружил радиоволны неизвестного происхождения. Впоследствии выяснилось, что источником радиоизлучения является центр нашей галактики Млечный Путь. Это открытие образовало новую науку – радиоастрономию, изучающую небесные объекты с помощью электромагнитного излучения.

Внешне радиотелескоп напоминает простую спутниковую антенну, способную принимать радиоизлучения из космоса. Источниками радиоизлучения во вселенной являются планеты, астероиды и кометы . С помощью радиотелескопа астрономам удалось вести наблюдения за солнцем и разными процессами, которые на нём происходят. Также данные измерений помогли определить размеры и массы планет нашей солнечной системы.

Радиоастрономические обсерватории расположены в разных уголках нашей планеты. Самый крупный радиотелескоп в мире находится на юге России, в Карачаево-Черкессии. Он входит в комплекс Зеленчукской радиоастрономической обсерватории.



План:

    Введение
  • 1 Устройство
  • 2 Принцип работы
    • 2.1 Радиоинтерферометры
  • 3 Первые радиотелескопы
    • 3.1 Начало - Карл Янский
    • 3.2 Второе рождение - Гроут Ребер
  • 4 Классификация радиотелескопов
    • 4.1 Антенны с заполненной апертурой
      • 4.1.1 Параболоиды вращения
      • 4.1.2 Параболические цилиндры
      • 4.1.3 Антенны с плоскими отражателями
      • 4.1.4 Земляные чаши
      • 4.1.5 Антенные решётки (синфазные антенны)
    • 4.2 Антенны с незаполненной апертурой
  • 5 Список радиотелескопов
  • Примечания

Введение

Радиотелескоп РТФ-32 обсерватории «Зеленчукская», ИПА РАН. Расположен на Северном Кавказе.

Радиотелеско́п - астрономический инструмент для приёма собственного радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования их характеристик: координат, пространственной структуры, интенсивности излучения, спектра и поляризации .

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов исследующих электромагнитное излучение, - более высокочастотными являются телескопы теплового, видимого, ультрафиолетового, рентгеновского и гамма излучения .

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и др. излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.


1. Устройство

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и дальнейшей обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.


2. Принцип работы

Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором "смотрит" телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где λ - длина волны, D - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока ΔP :

где P - мощность собственных шумов радиотелескопа, S - эффективная площадь (собирающая поверхность) антенны, Δf - полоса частоти и t - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.


2.1. Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением λ / d . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.


3. Первые радиотелескопы

3.1. Начало - Карл Янский

Точная копия радиотелескопа Карла Янского в натуральную величину. Национальная радиоастрономическая обсерватория (NRAO), Грин Бэнк, Западная Вирджиния, США

История радиотелескопов берёт своё начало с экспериментов Карла Янского, проведённых в 1931 г. В то время Янский работал радиоинженером на полигоне фирмы Bell Telephone Labs. Ему было поручено исследование направления прихода грозовых помех. Для этого Карл Янский построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени .

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. - период полного оборота антенны.

В декабре 1932 г. Янский уже сообщал о первых результатах, полученных на своей установке . В статье сообщалось об обнаружении «… постоянного шипения неизвестного происхождения», которое «… трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа». В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики . Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути .

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США, и радиоастрономия зачахла .


3.2. Второе рождение - Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты .

Радиокарта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы . Карты Ребера достаточно хороши даже по сравнению с современными картами.

После Второй Мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии.


4. Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей) :


4.1. Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненой апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.


4.1.1. Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.


4.1.2. Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета , индийский телескоп в Ути .

Ход лучей в телескопе Нансэ


4.1.3. Антенны с плоскими отражателями

Для работы на параболическом цилиндре требуется, чтобы на фокальной линии было размещено несколько детекторов, сигнал с которых складывается с учетом фаз. На коротких волнах это сделать непросто из-за больших потерь в линиях связи. Антенны с плоским отражателем позволяют обойтись лишь одним приёмником. Такие антенны состоят из двух частей: подвижного плоского зеркала и неподвижного параболоида. Подвижное зеркало "наводится" на объект и отражает лучи на параболоид. Параболоид концентрирует лучи в точке фокуса, где располагается приёмник. Такому телескопу доступна только часть неба для наблюдений. Представители: радиотелескоп Крауса , Большой радиотелескоп в Нансэ .


4.1.4. Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.


4.1.5. Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.


4.2. Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристика радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение - максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой

Телескоп ДКР-1000, с незаполненной апертурой

площадью, но большой разрешающей способностью. Такие антенны получили название антенн с незаполненной апертурой , так как они имеют "дыры" в апертуре, превосходящие длину волны. Чтобы получить изображение с таких антенн, наблюдения нужно проводить в режиме синтеза апертур. Для апертурного синтеза достаточно двух синхронно работающих антенн, расположенных на некотором расстоянии, которое называют базой . Чтобы восстановить изображение источника, нужно промерить сигнал на всех возможных базах с некоторым шагом вплоть до максимальной .

Если антенны всего две, то придется проводить наблюдение, затем менять базу, проводить наблюдение в следующей точке, опять менять базу и т. д. Такой синтез называется последовательным . По такому принципу работает классический радиоинтерферометр. Недостаток последовательного синтеза состоит в том, что он требует много времени и не может выявить переменность радиоисточников на коротких временах. Поэтому чаще применяется параллельный синтез . В нём участвует сразу много антенн (приёмников), которые одновременно проводят измерения для всех нужных баз. Представители: «Северный крест» в Италии, радиотелескоп ДКР-1000 в Пущино.

Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.

РАДИОТЕЛЕСКОПЫ
антенны с заполненной апертурой антенны с незаполненной апертурой
параллельный синтез параллельный синтез последовательный синтез системы с независимой
записью сигналов
рефлекторы рефракторы рефлекторы рефракторы рефлекторы рефракторы
- параболоиды вращ.
- сферические чаши
- антенна Огайо
- антенна Нансе
- синфазные полотна
- цилиндры
- ант. "Клевер.лист"
- антенна Хорнера
- АПП набл. в зен.
- решётки
- кресты
- кольц.ант. в Кулгуре
- АПП
- перископический интерферометр
- двухэлем. интерферометр
- суперсинтез Райла
- система VLA

5. Список радиотелескопов

Расположение Тип антенны Размер Минимальная рабочая длина волны
США , Грин Бэнк Параболический сегмент с активной поверхностью 110x100 м 6 мм
, Эффельсберг Параболический рефлектор 100 м 7 мм
, Джодрелл Бэнк Параболический рефлектор 76 м 1.3 см
, Евпатория, РТ-70 Параболический рефлектор 70 м 1 см
, Калязинская радиоастрономическая обсерватория Параболический рефлектор 64 м 1 см
, Медвежьи Озера Параболический рефлектор 64 м 1 см
, Паркс Параболический рефлектор 64 м 7 мм
, Нобеяма Параболический рефлектор 45 м 1 мм
, Медичина Параболический рефлектор 32 м 1.3 см
, Светлое, РТФ-32 Параболический рефлектор 32 м 5 мм
, Зеленчукская, РТФ-32 Параболический рефлектор 32 м 5 мм
, Бадары, РТФ-32 Параболический рефлектор 32 м 5 мм
, Гранада Параболический рефлектор 30 м 1 мм
, Пуэрто-Рико, Аресибо Сферический рефлектор 300 м 10 см
, Зеленчукская, РАТАН-600 Антенна переменного профиля 588 м 3 мм
, Бадары, Сибирский солнечный радиотелескоп Массив антенн 128х128 элементов (крестообразный радиоинтерферометр) 622х622 м 5.2 см
, Нанси Двухзеркальный 2х40х300 м 11 см
, Пущино, ДКР-1000 Крест из двух параболических цилиндров 2х1000х40 м 2.5 м
, Харьков, УТР-2 Система дипольных антенн, «Т» 1860х50 м, 900х50 м 12 м
, Ути Параболический цилиндр 500х30 м 91 см
, Медичина, «Северный крест» «Т» из двух параболических цилиндров 2х500х30 м 70 см
, Санкт-Петербург, Главная Астрономическая Обсерватория РАН, Большой Пулковский Радиотелескоп Параболический рефлектор 130х3 м 2.3 см

Примечания

  1. Большая советская энциклопедия - slovari.yandex.ru/dict/bse/article/00064/63300.htm?text=радиотелескоп&encid=bse&stpar3=1.1. - СССР: Советская энциклопедия, 1978.
  2. Электромагнитное излучение
  3. Радиотелескоп // Физика космоса: Маленькая энциклопедия - www.astronet.ru/db/FK86/ / Под ред. Р. А. Сюняева. - 2-е изд. - М .: Сов. энциклопедия, 1986. - С. 560. - 783 с. - ISBN 524(03)
  4. П.И.Бакулин, Э.В.Кононович, В.И.Мороз Курс общей астрономии. - М .: Наука, 1970.
  5. 1 2 3 Джон Д. Краус. Радиоастрономия. - М .: Советское радио, 1973.
  6. Jansky K.G. Directional Studies of Atmospherics at Hight Frequencies. - Proc. IRE, 1932. - Т. 20. - С. 1920-1932.
  7. Jansky K.G. Electrical disturbances apparently of extraterrestrial origin.. - Proc. IRE, 1933. - Т. 21. - С. 1387-1398.
  8. Jansky K.G. A note on the source of interstellar interference.. - Proc. IRE, 1935. - Т. 23. - С. 1158-1163.
  9. Reber G. Cosmic Static. - Astrophys. J., June, 1940. - Т. 91. - С. 621-624.
  10. Reber G. Cosmic Static. - Proc. IRE, February, 1940. - Т. 28. - С. 68-70.
  11. 1 2 Reber G. Cosmic Static. - Astrophys. J., November, 1944. - Т. 100. - С. 279-287.
  12. Reber G. Cosmic Static. - Proc. IRE, August, 1942. - Т. 30. - С. 367-378.
  13. Кип Торн. Чёрные дыры и складки времени. - М .: Издательство физико-математической литературы, 2007. - С. 323-325. - 616 с. - ISBN 9785-94052-144-4
  14. 1 2 3 Н.А.Есепкина, Д.В.Корольков, Ю.Н.Парийский. Радиотелескопы и радиометры. - М .: Наука, 1973.
  15. Радиотелескоп Иллинойского университета. - www.ece.illinois.edu/about/history/reminiscence/400ft.html
  16. Телескоп в Ути - rac.ncra.tifr.res.in/ort.html
  17. , Радиотелескоп Грин-Бэнк , Very Large Array (радиотелескоп) , Сибирский солнечный радиотелескоп .


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта