Главная » 2 Распространение » Как нервная система может регенерироваться и изменяться после инсульта и других тяжелых заболеваний. Изменение характера и личности с точки зрения патологии мозга при черепно-мозговых травмах

Как нервная система может регенерироваться и изменяться после инсульта и других тяжелых заболеваний. Изменение характера и личности с точки зрения патологии мозга при черепно-мозговых травмах

В центральной нервной системе.

Общие закономерности

Процессы компенсации в нервной системе чаще рассматриваются как реакции, возникающие после травм, оперативных вмешательств, тех или иных па­тологических явлений. В значительном числе случа­ев клиницисты сталкиваются с состоянием, когда в нервной системе уже развивается патологический процесс, но он еще не вызывает нарушений функций и не выявляется без специальных исследований.

Компенсаторные процессы реализуются вначале в силу внутриструктурных механизмов, происходящих, например, в пределах одного ядра нервной системы. В основе этой компенсации лежит ряд сложных пере­строек в самой структуре. Она возможна за счет ис­пользования имеющихся резервов структуры и бла­годаря викарированию.

Викарирование в данном случае следует понимать как увеличение активности и функциональных воз­можностей сохранившихся структурных элементов. Например, переход мономодальных нейронов в поли­модальные, моносенсорных нейронов в полисенсор­ные. Этот механизм при нарушениях центральной нервной системы основывается на том, что каждая ее структура является потенциально полифункциональ­ной. Внутриструктурная компенсация часто зависит от индивидуальных особенностей организации анали­заторов у человека. Так, 17 поле у одних людей мо­жет быть в два раза больше, чем у других. У некото­рых людей отмечено расширение макулярной зоны 17 поля или передней части этого поля - области периферического зрения. Известно также, что лате­ральные коленчатые тела у отдельных индивидов


превышают среднюю величину на 185%. Естествен­но, во всех таких случаях компенсаторные возмож­ности значительно шире.

Другой путь компенсации обеспечивается внутри­системными взаимодействиями, например, в преде­лах стриопаллидарной системы, когда дисфункция хвостатого ядра в регуляции моторики может ком­пенсироваться скорлупой.

Третий путь компенсации реализуется межсистем­ными взаимодействиями. Компенсация, как межсис­темный процесс, обусловлена преимущественно учас­тием в ликвидации развивающейся патологии одной структуры связанными с нею функционально струк­турами других систем. В этом случае другая система, за счет образования новых временных связей, может обеспечивать сохранение функции, которую первич­но призвана выполнять повреждаемая патологичес­ким процессом система.



Следует отметить, что все пути компенсации реали­зуются параллельно, но вес участия каждого из них на разных этапах развития патологии различен. На на­чальных этапах большая доля компенсации осуществ­ляется благодаря внутриструктурным процессам, при усилении патологии большую значимость приобретает внутрисистемная компенсация, затем межсистемная.

Довольно часто отсутствует параллель между мор-фологическими нарушениями центральной нервной системы и способностью выполнять этой структурой присущую ей функцию. Например, при повреждени­ях мозжечка растущей опухолью компенсация на­столько совершенна, что клиническая симптоматика появляется при гибели большей части мозжечка. Бо­лее успешно компенсация функций реализуется при медленно растущем патологическом процессе в моло­дом возрасте.


Так, известно, что Луи Пастер в молодости пере­нес кровоизлияние в мозг, приведшее к значительно­му разрушению коры правого полушария его мозга. Однако это не помешало Пастеру сохранить и развить свои ментальные способности и выполнить выдающи­еся работы в области биологии.

В другом известном случае после четырехкратной операции по поводу опухоли мозга у 12-летнего ре­бенка практически была удалена большая часть лево­го полушария мозжечка. Сразу после каждой опера­ции у ребенка возникали нарушения двигательной сферы, речи и других функций мозга. Однако доволь­но быстро эти нарушения компенсировались.

Компенсаторные возможности мозга с возрастом уменьшаются, это обусловлено ослаблением лабильно­сти в формировании новых функциональных связей.

Свойства центральной нервной системы,

Обеспечивающие механизмы компенсации

Нарушенных функций

Физиологические механизмы компенсации наруше­ний функций образований ЦНС базируются на специ­фических свойствах нейронов подкорковых и корко­вых структур мозга.

К этим свойствам относятся:

Полифункциональность каждого из элементов
нервной системы;

Полисенсорность нейронов;

Относительная специализация нейронов отдель­
ных областей мозга;

Локализация функций в коре;

Параллельная (одновременная) обработка разно-
сенсорной информации;

Способность к саморегуляции, самоорганизации;

Доминантный механизм;


Рефлекторный принцип функционирования;

Обратная связь;

Избыточность структурная и функциональная;

Надежность;

Функциональная асимметрия;

Принцип общего конечного пути;

Способность нервных элементов к синхрониза­
ции активности;

Пластичность нервных центров и отдельных ней­
ронов;

Принцип иррадиации и концентрации активно­
сти;

Интегративность нервной системы.

Полифункциональность. Основная функция не­рвной системы заключается в сборе, переработке, хра­нении, воспроизведении и передаче информации с целью организации интеллектуальной, поведенческой деятельности, регуляции функционирования органов, систем органов и обеспечения их взаимодействия.

Многие из перечисленных функций реализуются уже на субнейронном уровне. Так, микротрубочки, синапс, дендриты, мембрана нейронов обладают спо­собностью выполнять все информационные функции нервной системы: восприятие, обработку, хранение, многократное воспроизведение и передачу информа­ции. В этом и заключается основной принцип функ­ционирования нервной системы - принцип полифун­кциональности.

Полифункциональность присуща большинству структур центральной нервной системы. Например, раздражение одной и той же структуры бледного шара разной частотой импульсов может вызывать либо дви­гательную, либо вегетативную реакцию. Сенсомотор-ная кора способна воспринимать сигналы кожной, зрительной, слуховой и других видов рецепции. В


ответ на эти сигналы в сенсомоторной коре формиру­ются реакции, которые обычно возникают при нор­мальной деятельности коркового конца зрительного, слухового или других анализаторов.

Следовательно, благодаря полифункциональности одна и та же функция может быть выполнена разны­ми структурами мозга. Этот принципиальный момент свидетельствует о практически безграничных возмож­ностях компенсации функции в центральной нервной системе.

Свойства полифункциональности нервных центров тесно связаны со свойством полисенсорности ней­ронов.

Полисенсорность - это способность одного нейро­на реагировать на сигналы разных афферентных сис­тем. Нейрофизиологи выделяют нейроны моносенсор­ные, реагирующие только на один вид сигналов, би-сенсорные - - реагирующие на два разных сигнала, например, некоторые нейроны зрительной коры мо­гут реагировать на зрительные и слуховые раздраже­ния. Наконец, в коре мозга имеются нейроны, кото­рые реагируют на три и более вида сигналов. Эти ней­роны называются полисенсорными.

Помимо способности реагировать на раздражения разных сенсорных систем, нейроны отдельных облас­тей мозга способны реагировать только на одну ха­рактеристику сенсорного раздражения, например на определенную частоту звука или только на один цвет. Такие нейроны называются мономодальными.

Мономодальные нейроны обладают высокой изби­рательностью и высокой чувствительностью к опре­деленным видам раздражений, т.е. эти нейроны яв­ляются специализированными. Локализуются специ­ализированные нейроны в зонах первичных проек-


ций анализаторов. Такими зонами являются первич­ные области зрительной, слуховой, кожной и других зон коры.

Преимущественное расположение моносенсорных нейронов определяет локализацию функций в коре. В истории изучения локализации функций в коре го­ловного мозга можно выделить два представления: по одному из них моторные и сенсорные функции пред­ставлены строго локальными участками, поврежде­ние которых должно навсегда исключать ту или иную функцию. Противоположное ему представление обо­сновывало эквипотенциалъностъ коры в реализации сенсорики и моторики.

В итоге многолетних исследований центральной нервной системы сформировалось компромиссное представление. В настоящее время можно считать установленным, что локализация функций в коре определяется прежде всего моносенсорными нейрона­ми, имеющими наименьшие пороги чувствительнос­ти на свои адекватные раздражения. Однако рядом с этими нейронами всегда имеются полисенсорные ней­роны, которые обеспечивают взаимодействие локаль­ной структуры с другими структурами мозга, а тем самым - возможность образования временной связи, компенсацию нарушений функций своей структуры и структур, с нею связанных.

В тех случаях, когда нейрон реагирует на два при­знака одного и того же сенсорного стимула, например, на два цвета зрительного раздражения или на два тона слухового, эти нейроны относят к бимодальным. Ней­роны, реагирующие на три и более признака одного сенсорного канала, называются полимодальными.

Полимодальные нейроны обеспечивают внутриси­стемную компенсацию нарушенных функций.


Параллельно с этим возможен и другой механизм компенсации - за счет способности мономодальных нейронов становиться би- и полимодальными.

В опытах с регистрацией активности отдельных ней­ронов показано, что мономодальные нейроны слухо­вой коры, реагирующие на тон с частотой 1 000 Гц, при подаче тона с частотой 500 Гц вначале не реагиро­вали на этот сигнал, а после ряда сочетаний тона 500 Гц с внеклеточной деполяризацией мономодального ней­рона через микроэлектрод, последний обучался реаги­ровать и на тон 500 Гц. Следовательно, нейрон стано­вился бимодальным и за -счет этого мог компенсиро­вать нарушения, вызываемые гибелью нейронов, спо­собных отвечать на сигналы с частотой 500 Гц.

Принципиально такой же механизм временной свя­зи лежит в основе обучения моносенсорных нейронов реагировать на стимулы разной сенсорности, т.е. на сигналы разных анализаторных систем. В этом слу­чае речь идет о межанализаторной, межсистемной компенсации.

В коре мозга нет такой зоны, которая была бы свя­зана с реализацией только одной функции. В разных отделах мозга имеется разное количество полисенсор­ных и полимодальных нейронов. Наибольшее коли­чество таких нейронов находится в ассоциативных и во вторичных, третичных зонах коркового конца ана­лизаторов. Значительная часть нейронов моторной коры (около 40%) также является полисенсорной, они реагируют на раздражения кожи, на звук, свет. В 17 поле зрительной коры к полисенсорным относится около 15% нейронов, а в 18-19 полях той же коры таких нейронов более 60%. В коленчатых телах на звуковое и световое раздражение реагирует до 70% нейронов, а на раздражение кожи - 24% . Свойством полисенсорности обладают также нейроны неспеци-


фических ядер таламуса, красного ядра среднего моз­га, хвостатого ядра, скорлупы, ядер слуховой систе­мы ствола мозга, ретикулярной формации.

Число полисенсорных нейронов в структурах моз­га меняется в зависимости от функционального со­стояния нервной системы и от выполняемой в дан­ный момент времени задачи. Так, в период обучения с участием зрительного и моторного анализаторов число полисенсорных нейронов в этих зонах коры возрастает. Следовательно, направленное обучение создает условия увеличения полисенсорных нейронов и, тем самым, компенсаторные возможности нервной системы возрастают.

Наличие полисенсорных нейронов, увеличение их числа при функциональных нагрузках на нервную систему определяют динамические возможности ком­пенсации ее структур при различного рода дисфунк­циях.

Для клинической медицины важно также, что не­которые нейроны коры мозга в результате обучения способны становиться полисенсорными, т.е. если до применения сочетания условного и безусловного сти­мулов нейрон реагировал только на безусловный сти­мул, то после ряда сочетаний этот нейрон становится способным реагировать и на условный стимул.

Полимодальность и полисенсорность позволяют нейрону одновременно воспринимать раздражения от разных анализаторов или, если от одного анализато­ра, то воспринимать одновременно сигналы с разны­ми его характеристиками. Одновременное параллель­ное восприятие сигналов предполагает и одновремен­ную параллельную их обработку. Об этом свидетель­ствуют условнорефлекторные эксперименты, в кото­рых показано, что в результате выработки условного рефлекса на одновременный комплекс сигналов,


предъявляемых разным анализаторам (например, слу­ховому и зрительному), его можно вызвать любым от­дельным сигналом этого комплекса.

Полифункциональность и полисенсорность связа­ны с другим свойством функционирования мозга -его надежностью. Надежность обеспечивается, поми­мо полисенсорности и полифункциональности, таки­ми механизмами, как избыточность, модульность, ко-оперативность.

Избыточность, как элемент обеспечения надежно­сти функционирования мозга, достигается разными способами. Наиболее распространенным является ре­зервирование элементов. У человека в коре постоян­но активны только доли процента нейронов, но их достаточно для поддержания тонуса коры, необходи­мого для реализации ее деятельности. При наруше­нии функционирования коры количество фоновоак-тивных нейронов в ней значительно увеличивается.

Избыточность элементов в ЦНС обеспечивает со­хранение функций ее структур даже при поврежде­нии значительной их части. Например, удаление зна­чительной части зрительной коры не приводит к на­рушениям зрения. Однополушарное повреждение структур лимбической системы не вызывает специ­фических для лимбической системы клинических симптомов. Доказательством того, что нервная систе­ма имеет большие резервы, являются следующие при­меры. Глазодвигательный нерв нормально реализует свои функции регуляции движений глазного яблока при сохранности в его ядре всего 45% нейронов. От­водящий нерв нормально иннервирует свою мышцу при сохранности 38% нейронов его ядра, а лицевой нерв выполняет свои функции всего при 10%-ной со­хранности числа нейронов, расположенных в ядре этого нерва.


Высокая надежность в нервной системе обусловле­на также множеством связей ее структур, большим количеством синапсов на нейронах. Так, нейроны мозжечка имеют на своем теле и дендритах до 60 тыс. синапсов, пирамидные нейроны двигательной коры - до 10 тыс., альфа-мотонейроны спинного мозга - до 6 тыс. синапсов.

Резервирование проявляется множеством путей ре­ализации сигнала; так, дублирующийся двигательный сигнал, идущий из коры к мотонейронам спинного мозга, может достигнуть их не только от пирамидных нейронов 4 поля коры, но и от добавочной моторной зоны, из других проекционных полей, из базальных ганглиев, красного ядра, ретикулярной формации и других структур. Следовательно, повреждение мотор­ной коры не должно приводить к полному выпадению двигательной информации к мотонейронам спинного мозга.

Следовательно, помимо резервирования, надеж­ность нервной системы достигается дублированием, что позволяет оперативно вводить, по мере надобнос­ти, дополнительные элементы, чтобы реализовать ту или иную функцию. Примером такого дублирования может служить многоканальная передача информа­ции, например в зрительном анализаторе.

Когда надежность функционирования мозга не обес­печивается за счет дублирования и резервирования, включается механизм вероятностного участия ней­ронов в реализации заданной функции. Вероятност­ный механизм создает оперативную избыточность уча­стия нервных клеток различных модулей для орга­низации той или иной реакции. Вероятностный прин­цип функционирования нервной системы заключает­ся в том, что нейроны действуют не изолированно, а в популяции. Естественно, единое состояние всех ней-


ронов популяции при приходе в нее сигнала невоз­можно. Участие отдельного нейрона в организации реакции обусловлено его состоянием (порог возбуди­мости, генерализация импульса и т.д.). В связи с этим участие в реакции может быть реализовано или нет, т.е. оно вероятностно.

Модульность - это принцип структурно-функци­ональной организации коры мозга, который заклю­чается в том, что в одном нейронном модуле осуще­ствляется локальная переработка информации от ре­цепторов одной модальности. Различают два вида мо­дулей: микромодули и макромодули. Микромодули в соматосенсорной коре представляют собой объедине­ние 5-6 нейронов, среди которых имеются пирамид­ные нейроны, их апикальные дендриты образуют ден­дритный пучок. Между дендритами этого пучка име­ют место не только синаптические связи, но и элект­ротонические контакты. Последние обеспечивают син­хронность работы нейронов микромодуля, что повы­шает надежность передачи информации.

В микромодуле представлены также звездчатые клетки. Они имеют синапсы на пирамидных нейро­нах своего модуля и контакты от восходящих таламо-кортикальных волокон. Некоторые звездчатые клет­ки посылают аксоны вдоль поверхности коры, созда­вая таким образом условия для передачи информа­ции от одного модуля коры к другому и образуя тор­мозное окружение вокруг активного модуля.

Микромодули объединяются в макромодули - вер­тикально ориентированные колонки (по Маунткаслу), их диаметр достигает 500-1 000 мкм. Маунткасл на­шел, что при погружении микроэлектрода перпенди­кулярно поверхности коры все регистрируемые при этом нейроны реагируют на раздражение одной сен-сорности (например, на свет).


При погружении микроэлектрода под углом к по­верхности коры на его пути встречались нейроны раз­ной сенсорности, т.е. реагирующие на разные сигна­лы (например, на свет, звук).

Считается, что в этом случае микроэлектрод прони­зывает соседние колонки и регистрирует нейроны раз­ной сенсорности. На основании исследований Ма-унткасла и др. признается моносенсорность, моно­функциональность колонки.

Такое заключение противоречит принципу поли-сенсорности нейронов. В одном модуле должны быть как нейроны моносенсорные или мономодальные, так и нейроны полисенсорные, в противном случае резко снижается информационная надежность нервной си­стемы, ее пластичность, а значит, и: способность к образованию новых функциональных компенсаторных связей.

В зрительной коре имеет место чередование коло­нок, нейроны которых реагируют на зрительные сти­мулы либо только правого, либо только левого глаза. Следовательно, в зрительной коре обоих полушарий мозга имеются глазодоминантные колонки, т.е. ко­лонки, реагирующие на стимуляцию одного глаза.

В слуховой коре выделяются колонки, способные дифференцировать сигналы, идущие от обоих ушей, и колонки, не способные к такой дифференциации.

В сенсомоторной коре рядом расположенные ко­лонки выполняют разнонаправленные реакции: на­пример, одни из них возбуждают мотонейроны спин­ного мозга, другие - тормозят их.

Модульный принцип структурно-функциональной организации работы мозга является проявлением ко­оперативного характера функционирования нейронов мозга. Кооперативность позволяет нейронам модуля участвовать в реализации функции по вероятностно-


му типу, что создает возможность относительной вза­имозаменяемости нейронов, и, тем самым, повышает надежность нервной деятельности. В результате фун­кционирование системы становится малозависящим от состояния отдельной нервной клетки. С другой сто­роны, подвижная структура таких рабочих единиц, формируемых вероятностным участием в них нервных клеток, обусловливает большую гибкость межнейрон­ных связей и легкость их перестроек, которые опре­деляют свойства пластичности, характерные для выс­ших отделов мозга.

Кооперативность дает возможность структуре вы­полнять функции, не присущие отдельным ее элемен­там. Так, отдельный нейрон мозга не способен к обу­чению, но, находясь в сети нейронов, он приобретает такую способность.

Кооперативность позволяет реализовывать механиз­мы саморегуляции и самоорганизации, присущие не­рвной системе с самых ранних этапов ее организации.

Саморегуляция - свойство структур нервной си­стемы автоматически устанавливать и поддерживать на определенном уровне свое функционирование. Ос­новным механизмом саморегуляции является меха­низм обратной связи. Этот механизм хорошо иллюс­трируется на примере поддерживающей ревербера­ции при межполушарном развитии эпилептического судорожного состояния. Обратная связь в нервной системе имеет либо усиливающее, либо тормозное, либо чисто информационное значение о результатах деятельности, реакции системы, куда был адресован сигнал.

Обратная связь упорядочивает, суживает множе­ство вариантов прохождения сигнала, создавая тор­мозное окружение пути возбуждения из неактивных нейронов.


Тесно связан с саморегуляцией нервной системы механизм ее самоорганизации. Самоорганизующие­ся системы вообще имеют ряд особенностей, которые присущи и ЦНС:

Множество входов;

Множество выходов;

Высокий уровень сложности взаимодействия сво­
их элементов;

Большое количество функционирующих элемен­
тов;

Наличие вероятностных и жестких детермини­
рованных связей;

Наличие функции переходных состояний;

Множество функций;

Наличие выходной функции с обратной связью.
Благодаря принципу самоорганизации компенса­
ция функций в нервной системе обеспечивается пу­
тем изменения весов функционирования связей, фор­
мированием новых связей на основе включения в ак­
тивность потенциальных синапсов, использованием
накопленного опыта данного индивида.

Развитие нервной системы в фило- и онтогенезе приводит к непрерывному усложнению взаимодей­ствия ее систем. Чем больше форм, видов, число ус­ловных рефлексов, организуемых в онтогенезе, тем больше связей устанавливается между структурами нервной системы.

Увеличение количества функциональных связей ме­жду структурами нервной системы имеет решающее значение, так как в этом случае возрастает число вари­антов прохождения сигналов, значительно расширя­ются возможности компенсации нарушенных функции.

Благодаря самоорганизации развитие клинических признаков патологии нервной системы на определен­ном этапе не проявляется.


Самоорганизация приводит к качественным изме­нениям взаимодействия систем, что позволяет реали­зовать нарушаемую патологией функцию. Здесь нема­ловажно то, что нервная система, помимо возможно­сти большого выбора путей для достижения цели, спо­собна избирательно усиливать или ослаблять сигналы.

В первом случае, при усилении сигнала, обеспечи­вается надежная передача информации при частич­ной морфологической сохранности структуры.

Во втором случае, при ослаблении сигнала, появляет­ся возможность снизить помеху, идущую от других ис­точников. Так как нервная система способна к избира­тельной фильтрации нужного сигнала, то это позволя­ет ей, выделив нужный, но слабый сигнал, во-первых, прямо усилить его, а во-вторых, дать ему преимущест­во при прохождении к воспринимающей структуре за счет снижения силы ненужных, мешающих сигналов.

Компенсаторные возможности нервной системы связаны также со специфической локализацией фун­кций в коре мозга, которая не является абсолютной. Прежде всего каждый корковый конец анализатора имеет первичные, вторичные и третичные поля.

Первичные поля коры соответствуют архитектони­ческим полям коры, в которых оканчиваются сенсор­ные проекционные пути. Эти зоны связаны с перифе­рическими рецептирующими системами наиболее пря­мыми путями, они имеют четкую соматотопическую локализацию, в них осуществляется качественный анализ приходящих специфических сигналов. Пора­жение этих зон ведет к элементарным расстройствам чувствительности.

Вторичные поля коры находятся вблизи первич­ных. Во вторичных полях, связанных с рецептирую­щими системами прямо и опосредованно, продолжа-


ется обработка сигнала, определяется его биологичес­кая значимость, устанавливаются связи с другими анализаторами и с исполнительной, чаще с двигатель­ной системой. Поражение этой зоны приводит к рас­стройствам специфических для данного анализатора памяти и восприятия.

Третичные, или ассоциативные, зоны располага­ются в областях взаимного перекрытия анализаторов и занимают у человека большую часть коркового пред­ставительства данного анализатора.

Нейронные объединения этих зон наиболее адап­тированы для установления связи с другими областя­ми мозга, а тем самым наиболее приспособлены к ре­ализации компенсаторных процессов. Поражения ас­социативных областей не ведут к расстройствам спе­цифических функций анализаторов, а проявляются в наиболее сложных формах аналитико-синтетической деятельности (гнозиса, праксиса, речи, целенаправ­ленного поведения), связанных с функцией данного анализатора.

Структурная локализация функций предполагает, что мозг имеет детерминированные пути, системы, реализующие проведение сигнала, организацию той или иной реакции и т.д. Однако помимо жестко де­терминированных связей в мозту реализуются функ­циональные связи, развивающиеся в онтогенезе.

Чем более упрочены, закреплены связи между структурами мозга в процессе индивидуального раз­вития, тем труднее использование компенсаторных возможностей при патологиях.

На основе принципа структурности реализуется механизм иерархичности. Он заключается не столько в соподчинении, сколько в организации компенсатор­ных процессов. Каждая вышележащая структура уча­ствует в реализации функций нижележащей, но де-


лает это тогда, когда нижележащая структура за­трудняется в выполнении своих функций.

Структуры мозга при обучении, при дисфункции одной из них не локализуют возбуждение в своих гра­ницах, а позволяют ему широко распространяться по мозгу - принцип иррадиации.

Иррадиация состояния активности распространя­ется в другие структуры мозга как по прямым свя­зям, так и по опосредованным путям. Возникновение иррадиации при гипофункции структуры, участвую­щей в реализации того или иного процесса, позволяет найти пути компенсации гипофункции и реализовать нужную реакцию.

Нахождение нового пути закрепляется по рефлек­торному принципу и заканчивается концентрацией активности в определенных структурах, заинтересо­ванных в выполнении реакции.

С концентрацией активности в определенных струк­турах мозга тесно связаны конвергентность и прин­цип общего конечного пути. Этот принцип реализу­ется на отдельном нейроне и на системном уровне. В первом случае информация в нейроне собирается на дендритах, соме нейрона, а передается преимуществен­но через аксон. Информация из нейрона может быть передана не только через аксон, но и через дендрит­ные синапсы. Информация через аксон подается в нейроны других структур мозга, а через синапсы ден-дритов только на соседние нейроны.

Наличие общего конечного пути позволяет нервной системе иметь разные варианты достижения нужного эффекта через разные структуры, имеющие выход на один и тот же конечный путь.

Трудности компенсаций, отмечаемые в более стар­ших возрастах, обусловлены не тем, что резервы моз­га исчерпаны, а тем, что сформировано большое ко-


личество оптимальных путей реализации функции, которые хотя и задеиствуются в случае патологии, но из-за нее же и не могут быть реализованы. Чаще при патологии требуется формирование новых путей реа­лизации той или иной функции.

В основе формирования новых путей, новых функ­ций структуры мозга лежит следующий принцип его функционирования - принцип пластичности.

Пластичность позволяет нервной системе под воз­действием различных стимулов осуществлять реорга­низацию связей для целей сохранения основной фун­кции или для реализации новой функции.

Пластичность позволяет нервным центрам реали­зовать функции, которые ранее им не были присущи, но благодаря имеющимся и потенциальным связям эти центры становятся способными участвовать в ком­пенсации нарушенных в других структурах функций. Полифункциональные структуры обладают больши­ми возможностями пластичности. В связи с этим не­специфические системы мозга, ассоциативные струк­туры, вторичные зоны проекций анализаторов, как имеющие значительное число полифункциональных элементов, более способны к пластичности, чем зоны первичных проекций анализаторов. Четким приме­ром пластичности нервных центров является класси­ческий опыт П.К. Анохина с изменением связей цен­тров диафрагмального и плечевого нервов.

В этом опыте были перерезаны диафрагмальный и плечевой нервы и центральный конец диафрагмаль­ного нерва был присоединен к периферическому кон­цу плечевого, и, наоборот, центральный конец плече­вого нерва к периферическому диафрагмального. По истечении некоторого времени после операции у жи­вотного восстанавливались правильная регуляция дыхания и правильная последовательность произволь­ных движений.


Следовательно, нервные центры перестроили свою функцию таким образом, как этого требовала пери­ферическая мышечная система, с которой была уста­новлена новая связь.

На ранних этапах онтогенеза перестройки такого типа идут более совершенно, динамично.

Наиболее существенную роль в компенсации дис­функций структур мозга играет рефлекторный прин­цип его функционирования. Каждая новая рефлек­торная связь между структурами мозга является но­вым его состоянием, позволяющим реализовывать тре­буемую в данный момент функцию.

Обзор нейропсихологических данных позволяет сделать общий вывод относительно роли биологических факторов в формировании психических функций. Любое повреждение мозга приводит к нарушениям в работе нейрофизиологических функциональных систем, следствием этого, в свою очередь, становится измененное функционирование психических систем. Эти изменения в каждом конкретном случае проявляются специфическим образом в последующем развитии психических функций.
В ряде исследований было показано, что существует функциональная неравнозначность различных отделов мозга в обеспечении психических функций в детском возрасте. Поражение разных отделов мозга ребенка приводит, так же, как и у взрослых, к разным по характеру нарушениям психических функций. Эти различия наблюдаются и при локализации поражения в разных полушариях и в разных отделах внутри каждого полушария, а также при поражениях срединных структур.
Мозговая организация психических процессов не остается одинаковой в ходе онтогенеза. Меняется качество работы механизмов, связанных с определенным участком мозга, меняется характер внутри– и межполушарных связей между ними. Симптомы, выявляемые при поражении разных участков мозга, у детей при общем сходстве с теми же симптомами у взрослых имеют различия, которые по-разному выступают в разные возрастные периоды.
Развитие функциональной организации мозга идет по пути расширения межполушарных и внутриполушарных связей. В хорошо развитой системе возбуждение определенного участка мозга приводит к его распространению не только на близлежащие, но и далеко расположенные участки мозга. Это означает, что тормозящее влияние одного участка при нарушении его работы имеет широкое распространение. У взрослых, в связи с наличием обширной системы сформированных связей, это проявляется в большом наборе специфических расстройств и в низкой динамике обратного развития дефекта. У детей наблюдается обратная картина – эффект очагового поражения более ограничен, меньше специфических расстройств, больше возможностей для восстановления. Тормозящее влияние поврежденного участка мозга на другие структуры, в связи с недостаточной сформированностью системы связей, распространяется незначительно, и эти структуры могут быть вовлечены в работу компенсировать возникающие нарушения.
Анализ нарушения психических функций у детей позволяет ответить на методологические вопросы, связанные с возможностью топической диагностики в детском возрасте.
Проявляется ли поражение той или иной зоны мозга у детей в тех же симптомах, что и у взрослых?
Можно ли на основе выявленных у детей симптомов проводить синдромный анализ, указывающий на топику нарушения так же, как и у взрослых?
Первый вопрос связан с характером проявления нарушений психических функций при поражениях мозга у детей. На него можно ответить, что хотя наблюдаемые у детей симптомы нарушения психических функций могут проявляться иначе по сравнению со взрослыми, но возникают они при той же локализации мозгового поражения, что и у взрослых.
Это означает, что общая морфологическая архитектура нейрофизиологических функциональных систем мозга при нормальном физиологическом созревании ребенка складывается уже к моменту рождения ребенка. На первых этапах функциональные системы работают по генерализованному типу, а дальнейшее их развитие идет по пути все большей дифференциации в работе отдельных компонентов и смены иерархического взаимодействия между компонентами систем.
Это определяет специфику нарушений, возникающих при поломке какого-либо звена системы. Несформированность системы не дает тех четких локальных симптомов, которые характерны для взрослого человека, где каждое звено, с одной стороны, выполняет конкретную, специализированную задачу, «полученную» в ходе формирования системы, и, с другой стороны, включено в сложившуюся систему соподчиненности с другими центрами.
Поэтому у ребенка с локальными поражениями мозга, в холодном периоде, после быстрой адаптации мозга к новым условиям, соответствующие симптомы выявляются только в специализированном обследовании и носят генерализованный характер, не проявляются в виде обширных симптомокомплексов, которые наблюдаются у взрослого человека. В первую очередь это относится к наиболее поздно формирующимся функциональным системам.
Второй вопрос относится к возможности сопоставления работы мозговых структур ребенка и взрослого на основе выявленных в обследовании симптомов. Здесь можно ответить положительно, поскольку симптомы, выявляемые в остром периоде болезни, совпадают с симптомами повреждения тех же зон мозга у взрослых.
Сведения о роли разных мозговых зон в обеспечении психических функций на разных этапах онтогенеза дают возможность более адекватной оценки формирующейся структуры психических функций и компенсаторных возможностей.
Важнейшей задачей в клинике органических повреждений мозга является анализ материальной основы тех новообразований, которые возникают в результате выпадения из нейрофизиологических функциональных систем отдельных высокоспециализированных мозговых отделов. Действие компенсаторных механизмов приводит к перестройке функциональных систем, в их состав включаются менее специализированные отделы мозга, и это приводит к качественным изменениям в протекании психических функций.
Характеристики нейрофизиологических процессов формируются под решающим воздействием среды и, в свою очередь, становятся основой психологических процессов, которые консолидируются в психологические функциональные системы.
С этой точки зрения можно, используя идею «градуального» (Э. Голдберг, 2003) принципа работы мозга, попытаться объяснить, за счет каких механизмов осуществляется компенсация работы поврежденных участков мозга.
«Градуальный» принцип работы нейронных ансамблей предполагает, что каждая нейронная группа (мозговой центр) в онтогенезе специализируется и начинает максимально реагировать на определенные характеристики внешней стимуляции, становится ведущей для конкретных видов стимула. Рядом расположенные, смежные группы также активируются при наличии тех же стимулов, но их реакция меньше, и по мере удаления от ведущей нейронной группы активация на одни стимулы снижается, но в то же время возрастает активация на другие стимулы, которые являются ведущими уже для этой группы нейронов.
Компенсация возможна, если при повреждении ведущей группы остаются сохранными смежные нейронные группы, которые могут быть активированы тем же видом стимулов. По градуальному принципу работают, вероятно, не только нейронные группы в каждом полушарии, но и симметричные, викарирующие центры, противоположного полушария. В ходе онтогенеза возрастает как внутриполушарная, так и межполушарная специализация нейронных центров, и это резко ограничивает возможности компенсации. В детском возрасте возможности компенсации поздно формирующихся функций (например, речевой), в отличие от рано формирующихся (например, перцептивной), высоки. Это связано с разными сроками специализации мозговых зон, обеспечивающих эти функции.
Можно предположить, что большие возможности компенсации речевых расстройств в детском возрасте обусловлены двумя факторами.
Первый из них – невысокая степень дифференциации мозговых зон, когда специализация рядом расположенных отделов невелика, и они выполняют сходные функции. Это позволяет им взять на себя роль поврежденного участка.
Второй – участие симметричных, правополушарных мозговых зон в речевой системе, которые могут взять на себя при определенных условиях несвойственную им функцию.
По данным нейропсихологических исследований становится очевидным, что роль этих двух факторов в компенсации речевых и перцептивных расстройств неодинакова и по-разному проявляется на разных этапах онтогенеза. Решение вопроса о том, когда и при каких условиях эти факторы могут оказывать влияние на процессы компенсации нарушенных функций, является одной из задач нейропсихологии детского возраста. Так, например, известно, что длительная активность эпилептического очага при резистентных (устойчивых) формах эпилепсии может приводить у детей к компенсаторной перестройке функциональных связей между речевыми зонами.
Ранее отмечалось, что специалисты (М. Куртен с соавторами) показали наличие межполушарной разобщенности моторного и сенсорного компонентов речевой системы (размещены в разных полушариях) у пациентов с длительно существующими сложными парциальными припадками. По данным амобарбиталового теста выявлено, что у части больных имеется двусторонняя речевая доминантность. Было выявлено несколько пациентов с четкой диссоциацией моторной и сенсорной речевых функций. При расположении очага в височной области сенсорные функции были представлены в контрлатеральном полушарии. То же происходило при поражении лобных отделов в отношении моторных функций речи.
Таким образом, при ограниченном мозговом повреждении может происходить перемещение речевых функций, анатомически связанных с этим очагом, в противоположное полушарие, а не в соседние зоны. Это подтверждает предположение о том, что в особых случаях передняя (моторная) речевая зона может быть расположена в одном полушарии, а задняя (сенсорная) – в другом.
Предполагается, что пластичность мозга, обеспечивающая такие перестройки, возможна только до определенного времени (примерно до 7 лет) (Kurthen M., et al., 1992).

Нейродегенеративные заболевания, такие как болезнь Альцгеймера или Паркинсона, инсульты, травмы приводят к потере нервных клеток и, соответственно, функции органа, которую эти клетки выполняли. Способность мозга взрослых млекопитающих, включая человека, компенсировать эти потери очень ограничена. Поэтому ученые исследуют возможности трансплантации нервных клеток, замены утраченных нейронов новыми. До последнего времени было неизвестно, могут ли пересаженные нейроны интегрироваться в существующие нервные цепи настолько, чтобы восстановить функции пораженного участка мозга.

Немецкие исследователи из Института нейробиологии Макса Планка, Мюнхенского университета Людвига-Максимилиана и Мюнхенского центра Гельмгольца решили выяснить , могут ли пересаженные эмбриональные клетки нервной ткани мыши интегрироваться в поврежденную зрительную кору взрослых мышей. По словам ученых , эта область мозга идеально подходит для таких экспериментов, потому что о структурных и функциональных взаимосвязях нейронов зрительной коры известно достаточно, чтобы можно было легко оценить, будут ли новые нейроны на самом деле выполнять необходимую функцию.

Ученые хирургическим путем разрушили клетки первичной зрительной коры мышей, области мозга, где интегрируются сигналы, поступающие с сетчатки глаза. Через несколько дней в место повреждения трансплантировали эмбриональные, незрелые нейроны мыши.

В течение следующих недель за «поведением» имплантированных нейронов наблюдали с помощью метода двухфотонной микроскопии, чтобы выяснить, дифференцируются ли они в тот тип клеток, который обычно находится в данной зоне мозга – это так называемые пирамидальные нейроны. Процесс интеграции пересаженных нейронов был похож на процесс нормального развития, включая порядок морфологического созревания клеток – развития аксонов, дендритов, дендритных шипиков. В пределах двух месяцев привнесенные нейроны приобрели морфологию типичных зрелых пирамидальных клеток.

Что касается функции, то пирамидальные клетки, полученные из трансплантированных незрелых нейронов, образовали нормальные функциональные связи, могли отвечать на визуальные стимулы, обрабатывать информацию и корректно передавать ее дальше. То есть, имплантированные нейроны с высокой точностью интегрировались в нейронные сети.

Без вмешательства ученых новые нервные клетки никогда бы не появились в поврежденном участке коры. Мозг взрослого млекопитающего может регенерировать – но с помощью внесения в место повреждения незрелых нейронов.

Подобные экспериментальные операции делают и на людях, например, трансплантация эмбриональных стволовых клеток в пораженный участок мозга пациента с болезнью Паркинсона впервые была произведена более двадцати лет назад, и такие эксперименты продолжаются – впрочем, с переменным успехом. Конечно, до лечения людей таким способом «на потоке» еще очень далеко в силу проблем использования эмбриональных клеток – как этических, так и практических, связанных с высоким риском развития злокачественной опухоли.

Фото: https://www.flickr.com NIH Image Gallery. Credit: Scott Vermilyea, Neuroscience Training Program, School of Medicine and Public Health and neurobiology undergraduate Scott Guthrie, with SCRMC members Ted Golos and Marina Emborg, professors in the School of Medicine and Public Health and Wisconsin National Primate Research Center.

Подготовила Мария Перепечаева

«Нервные клетки не восстанавливаются» — эту фразу знают все. Но не все знают, что на самом деле это неправда. Природа дала мозгу все возможности для репарации. Проект Fleming рассказывает, как нервные клетки изменяют свое предназначение, зачем человеку второе полушарие и как в ближайшее время будут лечить инсульт.

Путь к изменению

На вопрос «Возможно ли восстановление нервной ткани?» врачи и ученые со всего мира в течение долгого времени в один голос твердо отвечали «Нет». Однако, некоторые энтузиасты не оставляли надежд доказать обратное. В 1962 г. американский профессор Джозеф Альтман поставил эксперимент по восстановлению нервной ткани у крысы. В 1980 г. советский физиолог, нейроэндокринолог Андрей Поленов обнаружил у земноводных нейрональные стволовые клетки в стенках мозговых желудочков, начинающие делиться при повреждении нервной ткани. В 1990-х годах профессор Фред Гейдж при лечении опухолей мозга использовал бромдиоксиуридин, который накапливался в клетках делящихся тканей. Впоследствии следы этого препарата были обнаружены по всей коре головного мозга, что позволило ему сделать вывод о наличии в мозге человека нейрогенеза. Сегодня наука имеет достаточно данных, позволяющих ей утверждать, что рост и возобновление функций нервных клеток возможно.

Нервная система предназначена для обеспечения связи между организмом и окружающим миром. С точки зрения строения нервную ткань делят на собственно нервную и нейроглию – совокупность клеток, обеспечивающих обособление отделов нервной системы, их питание и защиту. Нейроглия также играет роль в образовании гематоэнцефалического барьера. Гематоэнцефалический барьер защищает нервные клетки от внешнего воздействия, в частности, препятствует возникновению аутоиммунных, направленных против собственных клеток, реакций. В свою очередь, собственно нервная ткань представлена нейронами, имеющими два вида отростков: многочисленные дендриты и единственный аксон. Сближаясь, эти отростки формируют синапсы – места перехода сигнала от одной клетки к другой, причем сигнал всегда передаётся с аксона одной клетки на дендрит другой. Нервная ткань очень чувствительна к воздействию внешней среды, запас питательных веществ в самих нейронах приближен к нулю, поэтому необходим постоянный приток глюкозы и кислорода для обеспечения клеток энергией, в противном случае происходит дегенерация и гибель нейронов.

Подострый инфаркт головного мозга

Ещё в 1850 г. английский врач Август Валлер изучил дегенеративные процессы в травмированных периферических нервах и обнаружил возможность восстановления функции нерва при сопоставлении концов нерва. Валлер заметил, что поврежденные клетки поглощаются макрофагами, а аксоны с одной стороны поврежденного нерва начинают расти в сторону другого конца. Если аксоны сталкиваются с препятствием, то их рост прекращается и образуется неврома – опухоль из нервных клеток, причиняющая нестерпимую боль. Однако, если очень точно сопоставить концы нерва, возможно полное восстановление его функции, например, при травматической ампутации конечностей. Благодаря этому сейчас микрохирурги пришивают отрезанные ноги и руки, которые в случае успешного лечения полностью восстанавливают свою функцию.

Сложнее дело обстоит с нашим мозгом. Если в периферических нервах передача импульса идёт в одном направлении, то в центральных органах нервной системы нейроны образуют нервные центры, каждый из которых отвечает за конкретную, уникальную для него функцию организма. В головном и спинном мозге эти центры связаны между собой и объединены в проводящие пути. Эта особенность позволяет человеку выполнять сложные действия и даже объединять их в комплексы, обеспечивать их синхронность и точность.

Ключевое отличие центральной нервной системы от периферической – в стабильности внутренней среды, обеспечиваемой глией. Глия препятствует проникновению факторов роста и макрофагов, а выделяемые ей вещества ингибируют (тормозят) клеточный рост. Таким образом, аксоны не могут свободно расти, поскольку нервные клетки просто не имеют условий для роста и деления, которые даже в норме могут привести к серьёзным расстройствам. Вдобавок ко всему, клетки нейроглии формируют глиальный шрам, препятствующий прорастанию аксонов как в случае с периферическими нервами.

Удар

Инсульт, острая стадия

Повреждение нервной ткани происходит не только на периферии. Согласно данным центра по контролю за заболеваемостью США, более 800 тысяч американцев госпитализируется с диагнозом «инсульт», каждые 4 минуты от этой болезни погибает один пациент. По данным Росстата, в 2014 году в России инсульт стал непосредственной причиной смерти более чем у 107 тысяч человек.

Инсульт – это острое нарушение мозгового кровообращения, возникающее в результате кровоизлияния с последующим сдавлением мозгового вещества (геморрагический инсульт ) или слабого кровоснабжения участков мозга, возникшего в результате закупорки или сужения сосуда (инфаркт мозга, ишемический инсульт ). Вне зависимости от природы инсульта, он приводит к нарушению различных чувствительных и двигательных функций. По тому, какие функции нарушены, врач может определить локализацию очага инсульта и в ближайшее время начать лечение и последующее восстановление. Врач, ориентируясь на природу инсульта, назначает терапию, обеспечивающую нормализацию кровообращения и, тем самым, минимизирует последствия заболевания, но даже при адекватной и своевременной терапии восстанавливаются менее 1/3 пациентов.

Переквалифицированные нейроны

В головном мозге восстановление нервной ткани может происходить разными путями. Первый – формирование новых связей в зоне головного мозга рядом с повреждением. Первым делом восстанавливается зона около непосредственно поврежденной ткани – она называется зоной диашиза. При постоянном поступлении внещних сигналов, в норме обрабатываемых пораженной зоной, соседние клетки начинают формировать новые синапсы и брать функции поврежденной зоны на себя. Например, в опыте у обезьян при повреждении моторной коры ее роль на себя брала премоторная зона.

В первые месяцы после инсульта особую роль играет и наличие у человека второго полушария. Оказалось, что на ранних стадиях после поражения мозга, часть функций поврежденного полушария берет на себя противоположная сторона. К примеру, при попытке движения конечностью на пораженной стороне, активируется то полушарие, которое в норме не отвечает за эту половину тела. В коре наблюдается перестройка пирамидальных клеток – они образовывают связи с аксонами двигательных нейронов с поврежденной стороны. Этот процесс активен в острой фазе инсульта, в дальнейшем этот механизм компенсации сходит на нет и часть связей разрывается.

В головном мозге взрослого человека также есть зоны, где активны стволовые клетки. Это т.н. зубчатая извилина гиппокапма и субвентрикулярная зона. Активность стволовых клеток у взрослых, конечно, не такая, как в эмбриональном периоде, но тем не менее клетки из этих зон мигрируют в обонятельные луковицы и там становятся новыми нейронами или клетками нейроглии. В эксперименте на животных некоторые клетки покидали привычный маршрут миграции и достигали поврежденной зоны коры головного мозга. Достоверных данных о подобной миграции у людей нет, из-за того, что этот процесс может быть скрыт другими явлениями восстановления мозга.

Трансплантация «мозга»

Инсульт, острая фаза

В отсутствии естественной миграции клеток, нейрофизиологи предложили искусственно замещать поражённые участки мозга эмбриональными стволовыми клетками. При этом клетки должны дифференцироваться в нейроны, а иммунная система не сможет их уничтожить из-за гематоэнцефалического барьера. По одной из гипотез, нейроны сливаются со стволовыми клетками, образуя двуядерные синкарионы; «старое» ядро в последствии погибает, а новое продолжает контролировать клетку, продлевая ей жизнь за счёт отдаления предела клеточных делений.

Экспериментальные операции, проводимые международной группой ученых под руководством французкого нейрохирурга Анны-Катерины Башу-Леви из госпиталя Генри Мондора уже показали действенность этого метода при лечении хореи Хантингтона (генетического заболевания, вызывающего дегенеративные изменения в головном мозге) . К сожалению, в ситуации с хореей Хантингтона функционирующий трансплантат, внесенный с заместительной целью, не может противостоять прогрессу нейродегенерации в целом, поскольку причиной болезни является наследственный генетический дефект. Тем не менее, на материале вскрытия было показано, что пересаженные нервные клетки длительно выживают и не подвергаются изменениям, характерным для болезнью Хантингтона. Таким образом, внутримозговая трансплантация эмбриональной нервной ткани пациентам с болезнью Хантингтона, по предварительным данным, может обеспечить период улучшения и длительной стабилизации в течение заболевания. Положительный эффект может быть получен лишь у ряда пациентов, поэтому необходим тщательный отбор и отработка критериев для проведения трансплантации. Как и в онкологии, неврологам и их пациентам в будущем придется выбирать между степенью и продолжительностью ожидаемого терапевтического эффекта и рисками, связанными с хирургическим вмешательством, использованием иммуннодепрессантов и т.д. Подобные операции проводят и в США, но американские хирурги используют очищенные ксенотрансплантаты (взятые у организмов другого вида) и пока сталкиваются с проблемой возникновения злокачественных опухолей (30-40% от числа всех проводимых операций подобного плана).

Получается, что будущее нейротрансплантологии не за горами: хотя существующие методы не обеспечивают полного выздоровления и носят лишь только экспериментальный характер, они существенно улучшают качество жизни, но это всё ещё только будущее.

Мозг – невероятно пластичная структура, которая адаптируется даже к таким повреждениям как инсульт. В ближайшем будущем мы перестанем ждать, пока ткань перестроится сама, и начнем помогать ей, что сделает реабилитацию больных еще более быстрым процессом.

За предоставленные иллюстрации благодарим портал http://radiopaedia.org/

Вконтакте

В настоящее время взаимодействие полушарий го­ловного мозга понимается как взаимодополняющее, взаимокомпенсирующее в реализации различных фун­кций центральной нервной системы.

Несмотря на то, что каждое полушарие выполняет ряд специфичных для него функций, нужно иметь в виду, что любая функция мозга, выполняемая левым полушарием, может быть выполнена и правым полу­шарием. Речь идет только о том, насколько успешно, быстро, надежно, полно выполняется эта функция.


По-видимому, следует говорить о доминировании по­лушария в выполнении той или иной задачи, но не о полном распределении между ними функций.

Такое представление наиболее точно отражает зна­чение полушарий головного мозга в компенсаторных процессах.

Рассечение комиссур головного мозга у человека по клиническим показаниям, у животных в экспери­ментальных целях показало, что при этом нарушает­ся целостная, интегративная деятельность мозга, зат­рудняются процессы образования временной связи, а также выполнение функций, которые считаются спе­цифичными только для данного полушария.

После рассечения комиссур мозга, например зри­тельных, вначале нарушается опознание предметов, если они адресуются только в левое полушарие. В этом случае человек не узнает предмет, но стоит дать этот предмет ему в руку, как опознание происходит. Ком­пенсация функции при этом осуществляется за счет подсказки из другого анализатора.

Если изображение предмета адресуется только в правое полушарие, то больной узнает предмет, но не может назвать его. Однако он может выполнить дей­ствия, которые обычно выполняются с помощью дан­ного предмета. После разобщения полушарий голов­ного мозга компенсаторные процессы затрудняются.

Исследования мозга с удаленным 17 полем зритель­ной коры в одном полушарии показали, что в симмет­ричной, сохраненной области этого поля другого полу­шария увеличивалась фоновая активность нейронов, процент фоновоактивных нейронов возрастал. Одновре­менно росла синхронизация нейрональной активнос­ти, что проявлялось ростом амплитуды положитель­ной и отрицательной фаз вызванных потенциалов на применение одиночных световых стимулов* Важнолх»,


что удаление 17 поля коры одного полушария приво­дило к увеличению количества нейронов, реагирую­щих на гетеросенсорные раздражения, т.е. увеличива­лось количество полисенсорных нейронов.

Повышение фоновой активности нейронов в сохра­нившейся симметричной зоне зрительной коры, рост синхронизации их активности можно отнести к внут­рисистемной компенсации. Увеличение же числа по­лисенсорных, полимодальных нейронов связано с межсистемной компенсацией, так как в этом случае создаются условия для новых взаимоотношений меж­ду разными анализаторными структурами.

Принципиально та же картина наблюдается и при повреждении других проекционных зон коры одного полушария.

Несколько иначе происходят перестройки компен­саторного плана в ассоциативной теменной коре при однополушарном удалении зрительной проекционной зоны. Ассоциативная кора имеет существенное зна­чение в процессах организации межсистемной ком­пенсации.

После повреждения зрительной коры амплитуда вызванной и частота импульсной активности возрас­тали.

В том случае, когда кондиционирующим стимулом служили раздражения, наносимые на теменную ассо­циативную кору полушария, в котором была повреж­дена проекционная кора, а активность отводилась из симметричного пункта теменной коры противополож­ного полушария, оказалось, что повреждение проек­ционной коры приводило к увеличению по амплитуде вызванных потенциалов как на кондиционирующий, так и на тестовый транскаллозальный стимулы.

Следовательно, повреждение проекционных зон коры повышает функциональную активность в ассо-



циативной теменной зоне мозга, содержащей большое число полисенсорных нейронов. Такая реакция ассо­циативной коры расценивается как межсистемная регуляция компенсаторных процессов при дисфунк­ции проекционных областей мозга и может быть ис­пользована в клинических целях.

О межсистемности процессов, имеющих здесь мес­то, свидетельствуют также следующие данные. Сома­тическая электрокожная стимуляция вызывает в сен-сомоторной коре и зоне S-1 противоположного полу­шария вызванный ответ. Этот ответ незначительно мо­дулируется по амплитуде и ЛП при предварительной световой стимуляции.

В том случае, когда кондиционирующим стимулом служит транскаллозальная активация, затем подается световой стимул и только после этого соматическая электрокожная активация, вызванный ответ на сома­тический стимул резко возрастает по амплитуде, ла­тентные периоды его возникновения укорачиваются.

Следовательно, межполушарное взаимодействие, усиленное предварительной стимуляцией через транс-каллозальную систему, облегчает межсистемное, в дан­ном случае зрительно-сенсомоторное взаимодействие.

Проведение тех же экспериментов после разруше­ния межполушарных связей между симметричными пунктами сенсомоторной коры полушарий показало отсутствие облегчающего взаимодействия полушарий головного мозга. Оказалось также, что разобщение полушарий приводило к ослаблению активности сен­сомоторной коры на зрительные стимулы. Это пря­мое доказательство того, что межполушарное взаимо­действие способствует межсистемной компенсации на­рушенных функций.

Таким образом, односторонняя дисфункция коры полушарий головного мозга сопровождается повыше-


нием функциональной активности симметричного поврежденной зоне участка. Нужно отметить, что при повреждениях проекционных участков коры повышен­ная функциональная активность наблюдается и в ас­социативных областях мозга, что выражается увели­чением числа полисенсорных нейронов, повышением средней частоты их разрядов, снижением порогов ак­тивации этих зон.

14.9. Компенсаторные процессы в спинном мозгу

В тех случаях, когда к спинному мозгу, его мото­нейронам ограничивается приток информации по ре-тикул оспин ал ьному пути от ретикулярного ядра мос­та или гигантоклеточного ядра продолговатого мозга, тела мотонеёронов, суммарная длина их дендритов увеличиваются. Ориентация дендритного дерева при ограничении притока информации по ретикулоспи-нальному пути изменяется в сторону увеличения кон­тактов с медиальным ретикулоспинальным путем и передней комиссурой. Параллельно уменьшается чис­ло дендритов, ориентированных к латеральному ре-тикулоспинальному пути, имеющему преимуществен­ные связи с гигантоклеточным ядром продолговатого мозга.

Следовательно, происходит компенсаторная пере­стройка функциональных нисходящих связей за счет увеличения дендритного дерева, воспринимающего информацию от сохранившейся ретикулоспинальной системы.

При ампутации одной конечности у собак проис­ходит увеличение тел и ядер нейронов задних и перед­них рогов спинного мозга, отмечается гипертрофия отростков, мотонейроны становятся многоядерными и многоядрышковыми, т.е. расширяются ядерно-про­топлазменные отношения. Последнее свидетельству-


ет о гипертрофии функций нейронов, что сопровож­дается увеличением диаметра капилляров, подходя­щих к нейронам передних и задних рогов спинного мозга противоположной половины, относительно ам­путированной конечности. Вокруг нейронов этой по­ловины спинного мозга отмечается увеличение коли­чества глиальных элементов.

Анализ восстановления движений у эксперимен­тальных животных после перерезки различных отде­лов спинного мозга позволил заключить, что в основе появления двигательных координированных актов лежит образование временных связей, закрепляемых при тренировке и обучении.

Компенсация нарушенных функций при пораже­нии спинного мозга реализуется благодаря полисен­сорной функции мозга, которая обеспечивает взаимо­заменяемость одного анализатора другим, например, глубокой чувствительности зрением и т.д. Некоторые функции спинного мозга в регуляции работы внут­ренних органов хорошо компенсируются вегетатив­ной нервной системой. Так, даже при грубых нару­шениях спинного мозга восстанавливается регуляция деятельности органов брюшной полости, тазовых ор­ганов (межсистемная компенсация).

Таким образом, после возникновения патологии спинного мозга и снятия спинального шока наступа­ет фаза экзальтации нейронов, а это сопровождается повышением мышечного тонуса, усилением глубоких рефлексов, восстановлением спинальной автоматии, гиперэстезией на разные виды чувствительности. Поз­же наступает перестройка координаторных взаимоот­ношений между симметричными структурами сегмен­тов спинного мозга. При этом усиливаются синергич-ные реакции, повышается активность симметричных мышц, наблюдается извращение антагонистических


взаимоотношений. В дальнейшем подключаются ме­ханизмы, связанные с обучением, т.е. используются межсистемные механизмы компенсации.

14.10. Компенсаторные процессы,

обеспечивающие сохранение временной связи

После повреждения различных структур ЦНС воз­никают нарушения поведения, которые постепенно восстанавливаются. Это восстановление может быть не полным, но достаточно эффективным и при посто­янной тренировке достигает такого высокого уровня, что без специальных провокационных методов откло­нения не выявляются.

Видимо, в основе компенсаторных процессов выс­шей нервной деятельности лежит описанный М.Н. Ли­вановым феномен, который заключается в том, что при обучении повышается сходство состояний мно­жества структур головного мозга.

Так, при образовании пищедобывательного услов­ного рефлекса у обезьян изменяется активность: пре-и постцентральной, слуховой, зрительной, ассоциа­тивной теменной, нижневисочной коры, зубчатой фасции, мозжечка, хвостатого ядра, скорлупы, блед­ного шара, подушки, ретикулярной формации.

В этих структурах в динамике выработки пищево­го условного рефлекса можно зарегистрировать посте­пенное формирование специфического вызванного потенциала с наличием в нем поздней позитивной волны. При упроченном рефлексе эта позитивная вол­на регистрируется только в структурах, непосредствен­но заинтересованных в реализации рефлекса. Однако в тех случаях, когда возникали затруднения в функ­ционировании зоны восприятия сигнала или зоны его реализации, поздняя позитивная волна вновь возни-


кала во множествах отведений. Следовательно, ком­пенсация обеспечивалась всей системой, которая была задействована при обучении.

Таким образом, следы памяти фиксируются не толь­ко в структурах, заинтересованных в восприятии и реализации ответной реакции на сигнал, но и в дру­гих структурах, участвующих в формировании вре­менной связи. В случае патологии эти структуры спо­собны замещать друг друга и обеспечивать нормаль­ную реализацию условного рефлекса.

Однако в компенсации нарушений функций вре­менной связи лежат и другие механизмы. Так, извес­тно, что один и тот же нейрон коры может участво­вать в реализации условного рефлекса при разных видах подкрепления, т.е. полифункциональность ней­рона позволяет компенсировать дисфункции, возни­кающие при использовании других путей нервной системы.

Наконец, компенсация нарушений условнорефлек-торных процессов может обеспечиваться установле­нием новых межцентральных отношений между кор­ковыми структурами, корой и подкорковыми образо­ваниями. Новые межцентральные отношения возни­кают и в случае повреждения различных образова­ний лимбической системы. Так, одновременное, од­нополушарное повреждение дорсальных и вентраль­ных областей гиппокампа, ядер медиальной области перегородки, базолатеральной части миндалины, ядер задней и латеральной частей гипоталамуса вызывает только кратковременное, до двух недель, специфи­ческое, для отдельной из названных структур, нару­шение условнорефлекторной деятельности.

В тех случаях, когда на стороне повреждения лим­бической структуры одновременно функционально выключалась кора больших полушарий головного


мозга, нарушения условнорефлекторной деятельнос­ти сохранялись длительно. Следовательно, наиболее оптимально компенсаторные механизмы условнореф-лекторных процессов реализуются с участием коры головного мозга.

Наиболее успешно проявляется компенсация на­рушений высшей нервной деятельности за счет меж-полушарных связей при повреждении отдельных об­ластей коры мозга после выработки условного реф­лекса.

Экспериментальная проверка такого рода компен­сации может быть продемонстрирована следующими опытами. У кошки вырабатывается оборонительный условный рефлекс удара лапой по мишени. Условным сигналом служит световое раздражение, безусловным подкреплением - электрокожное раздражение. Удар лапой по мишени прекращает болевое раздражение или предупреждает его. После упрочения такого реф­лекса удаляется сенсомоторная кора одного полуша­рия, или точно так же удаляется в одном полушарии, но только зрительная кора.

Повреждение сенсомоторной коры, как правило, приводит к незавершенности двигательной реакции на сигнал, неточности реакции, появлению некоордини­рованных движений в ответ на сигнальный стимул.

Повреждение зрительной коры приводит к тому, что кошка на сигнал реагирует, но промахивается при попытке ударить по мишени. Такие нарушения после повреждения сенсомоторной или зрительной коры регистрируются не более двух недель. Спустя этот срок условнорефлекторная деятельность животных прак­тически полностью восстанавливается.

Для того чтобы убедиться в том, что эта компенса­ция обусловлена межполушарными механизмами, после восстановления условнорефлекторной деятель-


ности у животных рассекают мозолистое тело, разоб­щая тем самым корковые межполушарные связи.

Рассечение мозолистого тела восстанавливает дис­функции условнорефлекторного поведения - именно того характера, которые возникают на начальных эта­пах после удаления коры в одном из полушарий.

Такие эксперименты показывают прямую зависи­мость компенсации дефицита корковой функции от межполушарных связей. Эти связи формируют новую систему между интактным полушарием и рассеянны­ми элементами коры, полисенсорными нейронами поврежденного полушария, что позволяет компенси­ровать нарушенную функцию.

Помимо отмеченного пути компенсации через меж­полушарные корковые связи, мозг имеет и другие возможности компенсации условнорефлекторного по­ведения. Так, если затруднено выполнение движе­ния одной конечностью, нужная реакция может быть выполнена другой.

Следовательно, компенсаторные механизмы услов­норефлекторной деятельности позволяют организовать поведенческую реакцию различными путями. Особен­но легко это осуществляется, когда страдает выход­ная структура коры, которая первоначально была обу­чена этой функции.

Такой путь компенсации обеспечивается прежде всего перестройками активности в симметричном от­носительно повреждения пункте коры другого полу­шария. В норме стимуляция коры вызывает в сим­метричном участке локальную активацию нейронов. Вокруг этой зоны формируется тормозное окружение, как правило, в два раза большей площади. После по­вреждения участка коры в симметричном ему пункте увеличивается число фоновоактивных нейронов, чис­ло полисенсорных нейронов, растет средняя частота


разрядов нейронов. Такая реакция коры свидетель­ствует о том, что у нее появляются большие возмож­ности участвовать в процессах компенсации.

Значительную роль в компенсации процессов выс­шей нервной деятельности играют структуры ассо­циативной системы мозга.

К таким системам следует отнести ассоциативные ретикулярные образования ствола мозга, ассоциатив­ные ядра таламуса, ассоциативные поля области коры мозга и ассоциативные структуры проекционных зон коры мозга. У человека ассоциативные области мозга являются доминирующими по размерам.

В исследованиях на животных было показано, что разрушение задней доли гипофиза или всего гипофи­за нарушало условнорефлекторную деятельность. Это нарушение устранялось введением вытяжек из гипо­физа или вазопрессина, интермедина, АКТГ. Систе­матическое введение вазопрессина полностью восста­навливало условнорефлекторную деятельность. У ин-тактных животных вазопрессин ускорял образова­ние временной связи. У животных с депрессией нео-стриатума, вызывающей нарушения выработки и вос­произведение ранее закрепленных выработанных ус­ловных рефлексов, введение вазопрессина также восстанавливает нормальную условнорефлекторную деятельность.

Оказалось также, что вазопрессин оптимизирует ус-ловнорефлекторное, сексуальное поведение. Например, условнорефлекторная побежка крысы самца к самке по лабиринту при введении вазопрессина вырабатыва­лась намного быстрее, чем в обычных условиях.

Вазопрессин вызывает разные эффекты в зависи­мости от способа введения. Подкожная инъекция нор­мализует водно-солевой обмен, не сказываясь на ус-ловнорефлекторной деятельности. Введение этого же


препарата непосредственно в желудочки мозга устра­няет нарушения обучения и памяти и не влияет на процессы водно-солевого обмена.

Точно так же окситоцин при подкожном его введе­нии оказывает тормозное влияние на условнорефлек­торную деятельность, а введение его в желудочки мозга улучшает долгосрочную память, облегчает об­разование рефлексов.

Вазопрессин ухудшает кратковременную память и улучшает долгосрочную. Введение этого вещества пе­ред началом обучения затрудняет запоминание, или вообще делает обучение невозможным. Инъекция этого же препарата после обучения облегчает воспроизве­дение следов памяти.

В настоящее время существует представление, что вазопрессин участвует в регуляции процессов запо­минания и воспроизведения, а окситоцин в процес­сах забывания. Применение вазопрессина, как уже говорилось, улучшает процессы памяти и условно-рефлекторной деятельности, но и активная условно-рефлекторная деятельность увеличивает концентра­цию вазопрессина в крови в мозгу.

Следовательно, чем более активно мозг вовлекает­ся в условнорефлекторный процесс, тем больше в нем вазопрессина и тем успешнее процессы сохранения новых временных связей. Особенно это важно при деструктивных процессах в ЦНС, так как в это время возможно формирование новых временных связей, компенсирующих развивающуюся патологию.

Введение вазопрессина снижает зависимость жи­вотных от наркотиков, инъекция антител к вазопрес-сину увеличивает потребление наркотиков.

У человека интраназальное введение вазопрессина улучшает внимание, память, умственную работоспособ­ность, различные виды интеллектуальной деятельности.


14.11. Гемодинамические механизмы

компенсации нарушенных функций структур

нервной системы

Через мозг проходит одна пятая часть крови, выб­расываемой сердцем, мозг потребляет одну пятую часть кислорода, попадаемого в организм в покое. В связи с этим любые изменения мозгового кровообра­щения сказываются на функционировании мозга.

Сенсорная активация мозга изменяет характер кро­вотока отдельных его структур, двигательная актив­ность, помимо неспецифической реакции сосудов моз­га, вызывает перестройки кровотока в моторных об­ластях мозга. В динамике умственной деятельности: в период врабатываемости, период оптимальной рабо­тоспособности, при утомлении, монотонии, при теку­щей коррекции утомления, в условиях посттрудовой реабилитации - кровоснабжение мозга существенно меняется, оптимизируя кровоток в наиболее нагру­женных структурах головного мозга.

Корреляция сосудистого тока крови в мозгу при различных нагрузках на его структуры осуществля­ется на уровне пиальных сосудов. Именно пиальные сосуды образуют сеть коллатерального кровообраще­ния, обеспечивая надежность притока крови к отдель­ным структурам мозга.

Пиальные артериолы, являясь «краниками» сосу­дистого русла, обеспечивают нужный объем кровото­ка к данному образованию мозга. Регуляция пиаль­ных артериол в значительной мере осуществляется по биообратной связи от структуры, которая обеспе­чивается кровью бассейна данного пиального сосуда.

Эти изменения в пиальном кровотоке не зависят от величины системного артериального давления, т.е. они связаны только с повышением функциональной активности соответствующей области мозга. Унила-


теральная подача зрительного или слухового сигнала увеличивает сосудистый кровоток в полушарии, кон-тралатеральном относительно стимуляции.

Анализ компенсаторных процессов сосудистого кровотока в ассоциативных и проекционных зонах коры наиболее удобно исследовать при изменении функционирования их симметричных областей моз­га. Известно, что при деструкции или ишемии одной из симметричных областей мозга другая принимает участие в компенсации дефицита, возникающего в результате возникшей патологии.

Эксперименты на животных, у которых под нар­козом функционально выключали теменную или со-матосенсорную зону коры левого полушария и одно­временно контролировали сосудистое русло пиальной системы над симметричными областями мозга, пока­зали следующее.

В симметричных областях реакция на функцио­нальное выключение активности одного полушария (гемодинамические изменения) протекает в две фазы. В первую фазу, которая длится до 15 минут, крово­ток снижается. Затем наступает вторая фаза, в тече­ние которой кровоток восстанавливается и постепен­но усиливается сравнительно с нормой. Причем уси­ление кровотока происходит не только в симметрич­ной выключению соматосенсорной коре, но и в те­менной коре противоположного полушария.

Принципиально такая же картина усиления крово­тока наблюдается и в исследованиях на бодрствующих животных. Отличием является только то, что при фун­кциональном выключении области коры одного полу­шария изменения гемодинамики в первую фазу - сни­жения кровотока - длились меньше и продолжались не более 10 минут, затем начиналось восстановление кровотока и его усиление сравнительно с нормой.


Гемодинамика соматосенсорной коры, симметрич­ного пункта относительно выключенного, по сравне­нию с гемодинамикой теменной коры, изменялась более динамично, восстановление сосудистого русла происходило более быстро и гиперактивность его про­должалась более короткое время. Инертность измене­ний гемодинамики в ассоциативных областях, дли­тельное сохранение изменений в них свидетельству­ют, что именно эти области играют решающую роль в обеспечении компенсации нарушенных функций в структурах центральной нервной системы.

14.12. Биообратная связь в компенсации нарушений функций нервной системы

Активация естественных резервов организма с по­мощью биологической обратной связи является рас­пространенным механизмом компенсации нарушений функций центральной нервной системы.

Биоуправление с обратной связью представляет собой форму обучения, позволяющую реализовывать непроизвольные функции на основе наблюдения за результатами своей деятельности.

Пример использования биообратной связи приво­дит Н. Миллер (1977). Он рассказывает о спортсмене-баскетболисте, который перестраивает свои движения в соответствии с удачей или неудачей попадания мяча в кольцо. Обратной связью является результат, на­блюдаемый визуально. При удачном результате авто­матически запоминаются поза, мышечное напряже­ние, сила толчка и проч., которые в последующем используются при повторном броске неосознанно.

Биообратная связь часто используется в психоло­гии для регулирования определенного психического состояния на основе регистрации и предъявления ис­пытуемым уровня выраженности альфа-ритма в ак­тивности коры мозга.


В клинике биообратная связь используется для управления активностью мозга, мышц, температуры, частоты сердечных сокращений, частоты и глубины дыхания, уровня кровяного давления, для лечения бронхиальной астмы, гипертонической болезни, бес­сонницы, заикания, состояния беспокойства после мозгового инсульта, эпилепсии и др.

Компенсация с помощью биообратной связи явля­ется обучением человека новому виду деятельности, который произвольно не контролируется.

Принципиальная схема выработки компенсации на основе биообратной связи на примере эпилепсии вы­глядит следующим образом.

Как известно, эпилепсия сопровождается специфи­ческим характером электроэнцефалограммы с особы­ми признаками в виде высокоамплитудного негатив­ного колебания, сразу после которого возникает низ­коамплитудная медленная волна - «пик-волна».

Больной располагается в удобном кресле для реги­страции ЭЭГ. Ему накладываются электроды, и ак­тивность, отводимая от определенных областей моз­га, демонстрируется больному на мониторе. Объясня­ется, что для данной болезни характерна активность в виде «пик-волны» в ЭЭГ, что большая часть таких колебаний остается за пределами видимости на экра­не, но она регистрируется с помощью ЭВМ и о ее на­личии свидетельствует появление на экране монито­ра зеленой полосы: чем больше выражена пик-волно­вая активность, тем шире зеленая полоса. Задачей больного является нахождение такого состояния, при котором зеленая полоса имеет минимальную широту, т.е. количество пик-волновой активности минимизи­руется или она не возникает вовсе.

В результате обучения у больных, ранее не имев­ших ауры, она появлялась, т.е. вырабатывалась спо-


собность чувствовать предвестники приступа, наблю­далось более медленное наступление пароксизмаль-ного приступа, фаза потери сознания при наступле­нии приступа укорачивалась, часто не развивалась по-слеприступная амнезия. У некоторых больных боль­шие судорожные припадки заменялись малыми, ло­кальными, абортивными. В ряде случаев отмечалось прекращение или урежение частоты появления судо­рожных припадков сроком от двух недель до года.

В результате обучения больной при появлении ауры пользовался приемами предотвращения приступов, как это он делал во время обучения, уменьшая коли­чество пароксизмальных пик-волновых разрядов.

В ЭЭГ после обучения подавления пик-волновой активности с помощью биообратной связи встречае­мость пароксизмальной активности уменьшалась.

Таким образом, в динамике лечения при помощи биообратной связи формировалось новое функциональ­ное состояние мозга, препятствующее развитию паро­ксизмальной активности. Это функциональное состо­яние фиксируется в долговременной памяти.

Достаточно успешно биообратная связь может быть использована для компенсации нарушений двигатель­ных функций, дискинезий разной этиологии.

Дискинезии могут характеризоваться избыточнос­тью или недостаточностью.

Избыточные дискинезии вызывают внимание ок­ружающих, что травмирует психику больного, вызы­вает отрицательные эмоциональные реакции и при­водит к усилению дискинезий - положительная био­обратная связь, приводящая в данном случае к ухуд­шению состояния больного.

Лечение дискинезий лекарственными препарата­ми делает больного фармакозависимым. Хирургичес-


кое лечение стереотаксическим способом имеет небла­гоприятные отдаленные последствия.

Из дискинезий в форме гиперкинезов наиболее ус­пешно применение биообратной связи для целей ком­пенсации при паркинсонизме и писчем спазме.

Паркинсонизм возникает в результате нарушения функций паллидо-нигро-ретикулярных структур, что приводит к нарушению механизмов саморегуляции и обратной связи между подкорковыми и корковыми структурами экстрапирамидной системы. В то же вре­мя паркинсоническая симптоматика подвержена су­точному ритму и на нее влияет эмоциональное состо­яние больного, следовательно, она зависит от функ­ционального состояния мозга, т.е. может быть управ­ляема.

Писчий спазм появляется у лиц определенной про­фессии и приводит к нарушению профессиональной деятельности, а это, в свою очередь, к эмоциональ­ным отрицательным реакциям. Последнее не может не сказаться на усилении заболевания.

7 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 42 | | | | | | | | |



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта