Главная » 2 Распространение » Какой процесс называется конденсацией. Что такое конденсация? Подробный разбор

Какой процесс называется конденсацией. Что такое конденсация? Подробный разбор

Конденсация водяного пара в воздухе над чашкой горячей воды

Конденсация имеет место во многих теплообменных аппаратах (например, в мазутоподогревателях на ТЭС), в опреснительных установках, технологических аппаратах (перегонные аппараты). Важнейшее применение на ТЭС - конденсаторы паровых турбин. В них конденсация происходит на охлаждаемых водой трубах. Для повышения КПД термодинамического цикла ТЭС важно снижать температуру конденсации (за счёт понижения давления), и обычно она близка к температуре охлаждающей воды (до 25÷30°С).

Конденсация - процесс, в определённом смысле обратный к кипению . Но при конденсации важнее проблемы повышения теплоотдачи, чтобы при малых температурных напорах обеспечить быстрый отбор теплоты.

Виды конденсации

Конденсация может происходить в объёме (туман, дождь) и на охлаждаемой поверхности. В теплообменных аппаратах – конденсация на охлаждаемой поверхности. Её далее и будем рассматривать. Разумеется, при такой конденсации температура поверхности стенки Tw должна быть меньше температуры насыщения Ts, то есть Tw < Ts. В свою очередь, конденсация на охлаждаемой поверхности может быть двух видов:

  • Плёночная конденсация – имеет место, когда жидкость смачивает поверхность (жидкость – смачивающая, поверхность – смачиваемая, эти свойства изучаются в курсе Физики), тогда конденсат образует сплошную плёнку.
  • Капельная конденсация – когда конденсат – несмачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.

При плёночной конденсации теплоотдача намного меньше из-за термического сопротивления плёнки (плёнка мешает отводу тепла от пара к стенке). К сожалению, реализовать капельную конденсацию сложно – несмачиваемые материалы и покрытия (например, типа фторопласта) сами плохо проводят теплоту. А использование добавок – гидрофобизаторов (для воды типа масла, керосина) оказалось неэффективным. Поэтому обычно в теплообменных аппаратах имеет место пленочная конденсация . Гидрофобизатор, гидрофобность – от греческих “hydör” – “вода” и “phóbos” – страх. То есть гидрофобный – то же, что водоотталкивающий, несмачиваемый. Такие добавки для произвольных жидкостей называются лиофобизаторами.

Термин “неподвижный пар” в данном случае подразумевает отсутствие существенного вынужденного движения (разумеется, свободно-конвективное движение будет иметь место).

На поверхности стенки образуется плёнка конденсата. Она стекает вниз, при этом её толщина растёт благодаря продолжающейся конденсации (рис. …). Из-за термического сопротивления плёнки температура стенки заметно меньше температуры поверхности плёнки, причём на этой поверхности имеется небольшой скачок температур конденсата и пара (для воды скачок обычно порядка 0,02–0,04 К). Температура пара в объёме несколько выше температуры насыщения.

Сначала пленка движется стабильно ламинарно – это ламинарный режим . Затем на ней появляются волны (со сравнительно большим шагом, пробегающие по плёнке и собирающие накапливающийся конденсат, так как в более толстом слое в волне скорость движения больше, и такой режим стекания энергетически выгоднее установившегося). Это ламинарно-волновой режим . Далее при большом количестве конденсата режим может стать турбулентным .

На вертикальных трубах картина аналогична случаю вертикальной стенки.

На горизонтальной трубе теплоотдача конденсации выше, чем на вертикальной (из-за меньшей в среднем толщины пленки). При движущемся паре теплоотдача растёт, особенно при сдуве плёнки.

В случае пучков труб (в частности, в конденсаторах) имеют место особенности:

1) Скорости пара по мере прохождения по пучку уменьшаются вследствие его конденсации.

2) В горизонтальных пучках конденсат стекает с трубы на трубу, с одной стороны, увеличивая толщину плёнки на нижних трубах, что уменьшает теплоотдачу, с другой стороны, падение капель конденсата возмущает плёнку на нижних трубах, увеличивая теплоотдачу.

Интенсификация теплообмена в конденсаторах

Основной путь интенсификации – уменьшать толщину плёнки, удаляя её с поверхности теплообмена. С этой целью на вертикальных трубах устанавливают конденсатоотводные колпачки или закрученные рёбра. Например, колпачки, установленные с шагом 10 см, увеличивают теплообмен в 2÷3 раза. На горизонтальных трубах ставят невысокие рёбра, по которым конденсат быстро стекает. Эффективна подача пара тонкими струйками, разрушающими плёнку (теплообмен увеличивается в 3÷10 раз).

Влияние примеси газов на конденсацию

При движении пара это влияние много меньше, но всё равно в промышленных установках воздух приходится откачивать из конденсаторов (иначе он занимает объём аппарата). И стараются вообще исключить его присутствие в паре.

Так как конденсация – процесс, обратный к кипению, то основная расчётная формула по существу та же, что при кипении:

G = Q / γ {\displaystyle G=Q/\gamma }

где G – количество образующегося конденсата (конденсирующегося пара), кг/с;

Q – отводимый от стенки тепловой поток, Вт;

γ – теплота фазового перехода, Дж/кг.

Эта формула не учитывает теплоту охлаждения пара до температуры насыщения t s и последующего охлаждения конденсата. Их нетрудно учесть при известных температурах пара на входе и конденсата на выходе. Но, в отличие от случая кипения, здесь сложно оценить даже приближенно величину Q из-за небольшого температурного напора теплопередачи (от пара к теплоносителю, охлаждающему стенку). Формулы для различных случаев конденсации имеются в учебниках и справочниках.

Конденсация насыщенных паров

При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

Конденсация перенасыщенного пара

Наличие перенасыщенного пара возможно в следующих случаях:

  • отсутствие жидкой или твёрдой фазы того же вещества.
  • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
  • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

Конденсация в твёрдую фазу

Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

Конденсат на окнах

Образование конденсата на стеклах происходит в холодное время года. Образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры точки росы . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

Конденсация пара в трубах

По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G" и его скорость в связи с уменьшением массы пара уменьшаются по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным. В вертикальных трубах при движении пара сверху вниз силы тяжести и динамического воздействия парового потока совпадают по направлению и пленка конденсата стекает вниз. В коротких трубах при небольшой скорости парового потока течение пленки в основном определяется силой тяжести аналогично случаю конденсации неподвижного пара на вертикальной стенке. Такой же оказывается и интенсивность теплоотдачи. При увеличении скорости пара интенсивность теплоотдачи растет. Это объясняется уменьшением толщины конденсатной пленки, которая под воздействием парового потока течёт быстрее. В длинных трубах при больших скоростях движения пара картина процесса усложняется. В этих условиях наблюдаются частичный срыв жидкости с поверхности пленки и образование парожидкостной смеси в ядре потока. При этом влияние силы тяжести постепенно утрачивается, и закономерности процесса перестают зависеть от ориентации трубы в пространстве. В горизонтальных трубах при не очень больших скоростях парового потока взаимодействие сил тяжести и трения пара о пленку приводит к иной картине течения. Под влиянием силы тяжести пленка конденсата стекает по внутренней поверхности трубы вниз. Здесь конденсат накапливается и образует ручей. На это движение накладывается движение конденсата в продольном направлении под воздействием парового потока. В итоге интенсивность теплоотдачи оказывается переменной по окружности трубы: в верхней части более высокая, чем в нижней. Из-за затопления нижней части сечения горизонтальной трубы конденсатом средняя интенсивность теплоотдачи при небольших скоростях пара может оказываться даже более низкой, чем при конденсации неподвижного пара снаружи горизонтальной трубы того же диаметра.

Конденсация (позднелатинское condensatio - сгущение, от латинского condenso уплотняю, сгущаю) - переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. Конденсация пара возможна только при температурах ниже критической для данного вещества. Конденсация, как и обратный процесс - испарение , является примером фазовых превращений вещества (фазовых переходов 1-го рода). При конденсации выделяется то же количество теплоты , которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней - все эти явления природы представляют собой следствие конденсации водяного пара в атмосфере.

Виды конденсации

Известны два режима поверхностной конденсации: плёночный и капельный. Первый наблюдается при конденсации на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата . На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной конденсации интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен .

Скорость поверхностной конденсации тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении . Наличие другого газа уменьшает скорость поверхностной конденсации, т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов конденсация начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке).

Конденсация может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной конденсации пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps , находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1 , при p/ps = 1 пар насыщен. Степень пересыщения p/ps , необходимая для начала. Конденсация, зависит от содержания в паре мельчайших пылинок (аэрозолей), которые являются готовыми центрами, или ядрами, конденсации. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами конденсации могут служить также электрически заряженные частицы, в частности ионизованные атомы . На этом основано, например, действие ряда приборов ядерной физики.

Применение

Конденсация широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации), в холодильной и криогенной технике , в опреснительных установках и т. д. Жидкость, образующаяся при конденсации, носит название

Что такое конденсация, как она происходит в природе и к чему приводит?

  1. Конденса#769;ция паров (лат. condense уплотняю, сгущаю) переход вещества в жидкое или тврдое состояние из газообразного. Температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.
    Виды конденсации

    Соотношения для разных видов конденсации выведены на основе опытных данных, а также статистической физики и термодинамики.

    править Давление насыщенных паров

    При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона Клаузиуса определяет параметры этого равновесия в частности, выделение тепла при конденсации, и охлаждение при испарении.

    править Конденсация перенасыщенного пара

    Наличие перенасыщенного пара возможно в следующих случаях:

    * отсутствие жидкой или тврдой фазы того же вещества.
    * отсутствие ядер конденсации взвешенных в атмосфере тврдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации) .
    * конденсация в атмосфере другого газа в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

    Прибор ядерной физики камера Вильсона основана на явлении конденсации на ионах.

    При отсутствии ядер конденсации пересыщение может достигать 8001000 и более процентов. В этом случае конденсация начинается во флюктуациях плотности пара (точках случайного уплотнения вещества) .

    править Конденсация ненасыщенного пара

    Конденсация ненасыщенного пара возможна в присутствии порошкообразных или тврдых пористых тел. Кривая (в данном случае вогнутая) поверхность изменяет равновесное давление и инициирует капиллярную конденсацию.

    править Конденсация в тврдую фазу

    Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация) . Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

  2. Здравствуйте!
    Конденсация - это переход вещества из газообразного состояния вещества в жидкое. Для конденсации водяного пара в атмосфере необходимы два условия:
    1) Насыщение воздуха водяным паром (это происходит при понижении температуры) ;
    2) Наличие ядер конденсации - частиц микроаэрозолей, на которых произойдт отложение микрокапелек воды см. про микровзвеси:
    http://otvet.mail.ru/question/24108702/
    (в очищенном от микроаэрозолей воздухе конденсация не происходит даже при пересыщении) .
    При конденсации водяного пара на поверхности Земли наблюдается роса, при конденсации в нижнем слое атмосферы наблюдается туман, при конденсации водяного пара на высотах - облака разных форм и на разных высотах (см приложение) , которые и приносят на Землю осадки. При отрицательной температуре воздуха происходит непосредственный переход водяного пара в кристаллы (сублимация) и соответственно возникает на Земле - иней, в нижнем слое атмосферы - морозный туман, а на высотах - формы облаков, состоящие из кристаллов. Интересна форма облаков и антропогенная - Перисто-кучевых конденсационных (Cc tract), вызванная пролтом самолта на больших высотах, вызванная сублимацией пара на продуктах сгорания, выбрасываемых двигателями самолта, см. подробнее мой ответ на вопрос:
Подробности Категория: Молекулярно-кинетическая теория Опубликовано 09.11.2014 21:08 Просмотров: 12353

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды - лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0 о С. А при повышении температуры до 100 о С вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость - конденсация .

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости .

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре . Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших - температура вещества . Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее. Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек. Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения . Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества . Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра . Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I 2 - простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод - фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, - это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой .

Кипение

Кипение - это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника. Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды. Когда температура воды достигнет 100 о С, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение - только при определённой температуре, которая называется температурой кипения .

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100 о С, спирт - при 78 о С, железо - при 2750 о С. А температура кипения кислорода - минус 183 о С.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 о С. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 о С.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром . Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость. И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром . А такой пар называется насыщенным .

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет ненасыщенным . Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой . Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар , который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы .

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь - всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации . Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией .

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем - тонкими кристалликами льда, в которые превратились водяные пары из воздуха.


Конденсация (от позднелат. condensatio - уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое при докритических параметрах; первого рода. Конденсация - экзотермический процесс, при котором выделяется теплота фазового перехода - теплота конденсация Конденсированная фаза может образовываться в объеме или на поверхности и жидкости, имеющих более низкую температуру, чем температура насыщения при данном (см. Росы точка ). Конденсация происходит при изотермическом сжатии, адиабатическом расширении и охлаждении или одновременном понижении его давления и температуры, которое приводит к тому, что конденсированная фаза становится термодинамически более устойчивой, чем газообразная. Если при этом давление и температура выше, чем в для данного вещества, образуется жидкость (сжижение), если ниже - вещество переходит в твердое состояние, минуя жидкое (десублимация).

Конденсация широко применяется в хим. технологии для разделения смесей посредством , при и очистке веществ и др., в энергетике, например в конденсаторах паровых турбин, в холодильной технике для конденсация рабочего тела, в опреснительных установках и др. При конденсации паров в узких порах адсорбентов последние могут поглощать значит. кол-ва вещества из газовой фазы (см. Капиллярная конденсация ). Следствие конденсация водяного в - дождь, снег, роса, иней.

Конденсация в жидкое состояние. В случае конденсации в объеме или парогазовой смеси (гомогенная конденсация) конденсированная фаза образуется в виде мелких капель (тумана) или мелких . Для этого необходимо наличие центров конденсация, которыми могут служить очень мелкие капельки (зародыши), образующиеся в результате флуктуации плотности газовой фазы, пылинки и частицы, несущие электрические заряд (ионы). При отсутствии центров конденсация пар может в течение длительного времени находиться в так называемом метастабильном (пересыщенном) состоянии. Устойчивая гомогенная конденсация начинается при так называемом критическом пересыщении П кp =p к /p н где р к - равновесное давление, соответствующее критическому диаметру зародышей, р н - давление насыщенного над плоской поверхностью (напр., для водяного в . очищенном от твердых частиц или . П кр =5-8). Образование тумана наблюдается как в природе, так и в технологических аппаратах, например при охлаждении парогазовой смеси вследствие лучеиспускания, влажных газов.

Конденсация на поверхности насыщенного или перегретого происходит при температуре поверхности, которая меньше, чем температура насыщения при его равновесном над ней. Наблюдается во многих промышленных аппаратах, которые служат для конденсация целевых продуктов, подогрева различных сред, разделения паровых и парогазовых смесей, охлаждения влажных и т.д. При сжижении на поверхности твердого тела, хорошо смачивающейся конденсатом, образуется сплошная пленка (пленочная конденсация); на поверхности, не смачивающейся конденсатом или смачивающейся частично, - отдельные капли (капельная конденсация); на поверхности с неоднородными свойствами (напр., на полированной металлической с окисленными загрязненными участками) - зоны, покрытые пленкой конденсата и каплями (смешанная конденсация).

При пленочной конденсации чистых паров неметаллов коэффициент теплоотдачи определяется в основном термическим сопротивлением пленки конденсата, которое зависит от режима ее течения. Последний в случае практически неподвижного определяется числом Рейнольдса пленки: Rе пл =w d/v к, где w, d - соотв. средняя по сечению скорость и толщина пленки конденсата, v к - кинематич. вязкость конденсата. Для конденсация на вертикальной пластине или трубе при Rе пл менее 5-8 течение пленки чисто ламинарное, при превышении этих значений Rе пл - ламинарно-волновое, при Re пл >>350-400 - турбулентное. На вертикальных поверхностях значительные высоты могут наблюдаться области с разл. режимами течения пленки конденсата. При ламинарном течении увеличение Re пл с возрастанием толщины пленки приводит к уменьшению коэф. теплоотдачи, при турбулентном течении - к его увеличению. Если пар перегрет, конденсация сопровождается конвективной теплоотдачей от пара к конденсату, температура поверхности которого практически равна температуре насыщения при пара. Для веществ с большой теплотой конденсация (напр., вода, спирты) теплота перегрева обычно незначительна по сравнению с теплотой конденсация, и ею можно пренебречь.

В случае пленочной конденсации движущегося касательное напряжение на поверхности раздела фаз, обусловленное межфазным трением и переносом импульса частицами сконденсировавшегося пара, которые присоединяются к пленке конденсата, вызывает при нисходящем потоке увеличение скорости и уменьшение толщины пленки, в результате чего коэф. теплоотдачи увеличивается. При более высоких скоростях парового потока воздействие его на пленку конденсата может приводить не только к изменению ее скорости и толщины, но и к возмущению течения (образование волн, турбулизация), интенсифицирующему теплоперенос в пленке. Если поток направлен вверх, движение ламинарной пленки конденсата тормозится, толщина ее увеличивается и коэф. теплоотдачи уменьшается по мере возрастания скорости до тех пор, пока действие межфазного трения не вызовет т. наз. обращенное (направленное вверх) течение пленки конденсата.

При конденсации движущегося внутри трубы (канала) режимы течения и характер взаимодействия паровой и жидкой фаз могут значительно изменяться в результате изменения по мере образования конденсата скорости пара, касательного напряжения трения на межфазной поверхности и Re пл. При больших скоростях (когда действие силы тяжести на пленку конденсата пренебрежимо мало и течение ее определяется в осн. силой трения) местные и средние по длине трубы коэф. теплоотдачи не зависят от пространств. ориентации трубы. Если силы тяжести и трения соизмеримы, условия конденсация определяются углом наклона трубы и взаимным направлением движения фаз. В случае конденсация внутри горизонтальной трубы и малой скорости кольцевая пленка конденсата образуется только на верх, части внутренней поверхности трубы. На ниж. части возникает "ручей", в зоне которого в результате относительно большой толщины слоя теплоотдача значительно менее интенсивна, чем на остальном участке поверхности.

В случае конденсации на пучке горизонтальных труб расход стекающего конденсата увеличивается сверху вниз вследствие натекания конденсата с вышележащих труб на нижележащие, а расход по пути его движения снижается. В пучке с постоянным или относительно немного уменьшающимся по высоте живым сечением между трубами скорость нисходящего потока постепенно снижается, а конденсат натекает с верх, труб на нижние. Вначале это приводит к уменьшению местных коэффициента теплоотдачи (осредненных по периметру труб) при увеличении отсчитываемого сверху номера горизонтального ряда труб. Однако, начиная с некоторого ряда, в результате натекания конденсата течение пленки возмущается и ее термическое сопротивление снижается. Благодаря этому коэффициенты теплоотдачи могут стабилизироваться, а при возрастающем воздействии возмущения течения пленки на ниж. трубках - увеличиваться с возрастанием номера ряда.

Интенсификация теплоотдачи при пленочной конденсации может достигаться профилированием ее поверхности (напр., применением т, наз. мелковолнистой поверхности), которое способствует уменьшению средней толщины пленки конденсата, созданием на поверхности искусств, шероховатости, приводящей к турбулизации пленки, воздействием на нее при диэлектрической жидкой фазе (напр., при конденсация хладонов) электростатическим полем, отсосом конденсата через пористую поверхность и др. При конденсации паров жидких металлов теплопроводность жидкой фазы весьма высока. Поэтому доля термич. сопротивления пленки конденсата в суммарном сопротивлении передаче тепла незначительна, и определяющим оказывается межфазное термич. сопротивление, обусловленное молекулярно-кинетич. эффектами на границе раздела фаз. Иногда пленочная конденсация на поверхности сопровождается гомогенная конденсация в прилегающем к поверхности раздела фаз слое пара. Если образование тумана при этом нежелательно (напр., в производстве H 2 SO 4 нитрозным способом или при улавливании летучих растворителей), процесс проводят при максимальном пересыщении ниже П кр.

При капельной конденсация первичные мелкие капли, образовавшиеся на сухой вертикальной или наклонной поверхности, растут в результате продолжения процесса, слияния близко расположенных и касающихся друг друга капель и подтягивания к ним возникающей между каплями и быстро разрывающейся тонкой пленки конденсата. Капли, достигшие "отрывного" диаметра, стекают вниз, объединяясь (коалесцируя) с нижележащими мелкими каплями, после чего на освободившейся поверхности опять образуются мелкие капли, и цикл повторяется. Условия, определяющие самопроизвольное возникновение капельной конденсация, наблюдаются редко. Обычно же для осуществления капельной конденсация на твердую поверхность наносят тонкий слой лиофобизатора - вещества, обладающего низким поверхностным натяжением и несмачиваемого конденсатом (напр., жиры, воски). В случае капельной конденсация коэффициент теплоотдачи намного выше (в 5-10 раз и более), чем при пленочной. Однако поддержание в условиях эксплуатации промышленных аппаратов устойчивой капельной конденсация затруднительно. Поэтому конденсац. устройства хим. промышленности, как правило, работают в режиме пленочной конденсация

Конденсация на поверхности того же вещества происходит в технол. аппаратах на поверхности подаваемых в объем диспергированных (напр., с помощью распылит, форсунок) струй или стекающих по насадке тонких пленок жидкости. Диспергирование или распределение на тонкие пленки позволяет сильно развить поверхность контакта фаз. В ряде случаев конденсация наблюдается при поступлении в объем в виде струй или пузырьков (барботаж), а также при образовании паровых пузырьков в объеме жидкости, например при кавитации.

Конденсация из смеси его с неконденсирующимися газами (или неконденсирующимися при данной температуре парами) на поверхности или менее интенсивна по сравнению с конденсация чистого пара. Поскольку при конденсация из парогазовой смеси температура и парциальное давление (концентрация)



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта