Главная » 2 Распространение » Нейробиологи определили, как человеческий мозг развил высокие интеллектуальные способности . Пересаженные нейроны встроились в мозг

Нейробиологи определили, как человеческий мозг развил высокие интеллектуальные способности . Пересаженные нейроны встроились в мозг

Дендрит нейрона (дендра — ветвь) — отросток тела нейрона, по которому к нему поступает сигнал от других клеток. Дендрит получает сигнал от аксона другого нейрона или белка-рецептора, реагирующего на среду.

Отвечая на вопрос, что такое дендриты, можно сказать, что традиционно дендриты рассматриваются как антенны нейрона. Обмен информацией происходит в одну сторону: от аксона к дендриту. Чем больше дендритов у нейрона, тем больше информационных каналов, тем более сложные решения принимает нейрон.

Сигнал от других клеток поступает к телу нейрона по одному из его дендритов. Дендрит в нервной системе человека получает обычно химический сигнал (нейромедиатор) от аксона. Место соединения дендрита и аксона называется синапсом.

Синапсы позволяют передавать точные сообщения от нейрона к нейрону. Благодаря синапсам существует нейропластичность и возможность тонкой настройки функций и поведения организма.

На дендрите находятся рецепторы, которые принимают нейромедиатор. Рецепторы - это специализированные белки, которые захватывают молекулу нейромедиатора и в зависимости от своего типа запускают дальнейшие реакции в клетке.

Дендритные шипики

На дендритах образуются маленькие наросты — шипики. Последние могут принимать множество форм, но наиболее устойчивая - это форма грибка.

Количество дендритных шипиков колеблется от 20 до 50 на 10 мкм длины дендрита. Шипики очень изменчивы по форме и объему.

В мозге 86 миллиардов нейронов. Аксоны, дендриты и тела нейронов образуют огромные

Дендриты отвечают за обучение и память, а также контролируют равновесие в системе. Когда происходит локальное усиление связей между определенными нейронами, именно в дендритах возрастает производство белка, регулирующего снижение активности других синапсов.

Обучение и шипики

Дендритные шипики отвечают за возможность обучения и формирования памяти. Благодаря шипикам и их пластичности, нейрон легко может подключаться к тем или другим соседям и быстро от них отсоединяться, контролируя возможность получения сигнала.

Логично было бы предположить, что если синаптические связи ответственны за воспоминания, то их пластичность — проблема для сохранения памяти о прошлом. В 2009 году в Nature вышла публикация, в которой авторы исследовали, как опыт обучения влияет на синаптические связи мышей.

В работе показано, что большое количество новых шипиков, образующихся от нового опыта, исчезало со временем, если опыт не повторялся периодически. Но те, что сохранялись, скорее всего, и отвечали за приобретенные навыки.

При этом если тренировка повторялась в течение длительного времени, происходило удаление шипиков, по-видимому, удаленные отвечали за неверные действия. Обучение и ежедневный сенсорный опыт оставляют постоянные пометы в виде немногочисленной группы шипиков, сформированных на разных этапах обучения.

Что такое дендриты, если не огромная библиотека воспоминаний? Но основная проблема дендритных шипиков в том, что они очень чувствительны к любым механическим и химическим воздействиям. Поэтому травмы мозга, даже если и локализованы в одном месте, обычно оказывают влияние на всю нейронную сеть.

В исследовании (Z.G. Yang) 2014 года было показано, как после обучения и сна, спустя 24 часа, появляются новые дендритные шипики у мышей, а некоторые из существующих исчезают. Авторы отмечают, что скорость образования новых шипиков у мышей, прошедших обучение новому поведению, была значительно выше в течение 6 часов после обучения по сравнению с нетренированными мышами.

Дендрит как самостоятельная единица

Что такое дендриты, выясняют до сих пор. Дело в том, что сложно изучать поведение и функции дендритов на живых объектах.

Если размер нейрона около десяти микрон, то длина дендрита может доходить до тысячи. Обычно под дендритами понимают не очень активных участников процесса.

В 2017 году в журнале Science было опубликовано исследование, которое позволяет пересмотреть классический взгляд на дендриты. Оказалось, дендриты генерируют сигналы в несколько раз чаще, чем это делает тело нейрона, что наводит на предположение о кодировании информации и на уровне дендритов.

Ранее уже было обнаружено, что если во время переживания опыта тела нейронов активировались, а дендриты молчали, то долговременная память не формировалась относительно этого опыта. Было высказано предположение, что активность нейронов связана в большей степени с реальным временем, с актуальными переживаниями, а дендритов — с тем, что от этого останется в памяти.

Что такое дендриты, учитывая новые данные? Это удивительные конструкции, которые составляя 90% нервной ткани и, возможно, берут на себя большую часть работы по сохранению и преобразованию опыта.

Сумма фактов

1. Дендритная ветвь изменчива, особенно в молодом мозге.

2. На пластичность дендритов оказывает влияние обогащенная среда.

3. Длительное обучение связано с сохранением шипиков, связанных с приобретенными навыками.

4. Сон позволяет лучше запоминать опыт.

5. Алкоголь оказывает негативное влияние на рост дендритов.

6. С возрастом количество ветвей дендритов становится меньше.

Дендриты — удивительные конструкции мозга. У каждого типа клеток свой "вид" дендритов, к тому же дендриты чрезвычайно пластичны и могут изменяться за несколько минут. По всей видимости, дендриты выполняют сложную обработку информации, берут на себя задачи, связанные с долговременной памятью и обучением.

Нервные клетки, пересаженные во взрослый мозг, установили правильные контакты с «местными» и включились в общую работу.

Нервные клетки, как мы сейчас знаем, хотя и восстанавливаются, но всё-таки не так быстро, как хотелось бы. С другой стороны, сейчас в лаборатории можно выращивать самые разные виды клеток, в том числе и нейроны.

Было бы хорошо, если бы в случае болезни, сопровождающейся массовой гибелью нейронов (вроде инсульта или синдромов Паркинсона или Альцгеймера), можно было вместо погибших клеток пересадить новые, свежие и здоровые - подобно тому, как меняют сгоревшую электропроводку или испортившуюся часть микросхемы. Однако нейроны, как известно, соединены друг с другом множеством контактов, и участвуют в самых разных нервных процессах, и потому, если мы захотим пересадить что-то во взрослый мозг, нам в первую очередь нужно ответить на вопрос: смогут ли новые элементы найти в нём своё место, встроиться в нервные цепи?

Два года назад мы писали об экспериментах исследователей из Университета Люксембурга, которые пересадили клетки-предшественники нейронов мышам в кору мозга и в гиппокамп (один из основных центров памяти) – по словам авторов той работы, клетки успешно дозрели на новом месте, наладили контакты с нервными цепочками, и . То есть в принципе мозг принимает пересаженные нейроны; но чтобы понять, есть ли от них польза, участвуют ли они в информационных процессах, требовались новые эксперименты.

И вот сейчас в Nature выходит статья Сюзанны Фолкнер (Susanne Falkner ) и её коллег из Института нейробиологии Общества Макса Планка и Мюнхенского университета Людвига-Максимилиана, которые установили, что, если пересадить нейроны в зрительную кору, они не только правильно встраиваются в нервные цепи, но и улучшают зрение.

Зрительная кора по сравнению с другими областями мозга изучена особенно хорошо, про её нейроны мы знаем, когда и почему они включаются и выключаются, и с какими другими зонами мозга соединены. В эксперименте у мышей удаляли фрагмент зрительной коры, а на его место пересаживали кусочек коры мозга, взятый у эмбриона, и затем, с помощью особой микроскопической техники, наблюдали за отдельными клетками.

За месяц, по словам авторов работы, пересаженные «протонейроны» нормально трансформировались в зрелые нейроны, проходя те же стадии, которые обычно проходят созревающие нервные клетки. (В частности, у пересаженных со временем точно так же уменьшалось число дендритных шипиков – участков на мембране нейрона, где может сформироваться синапс, контакт с отростком другого нейрона; считается, что уменьшение числа шипиков помогает лучше организовать потоки информации, помогает нервным клеткам не путаться в огромном количестве поступающих в мозг импульсов.)

Однако нейробиологи хотели большего: их цель была в том, чтобы увидеть, что каждая отдельная клетка после трансплантации не только превращается в нормальный нейрон, но и устанавливает правильные соединения с другими. Иными словами, здесь требовалось проанализировать коннектом пересаженного фрагмента: направление межнейронных соединений, которые пошли в другие области коры, и их силу.

Оказалось, что у прооперированных мышей дела тут обстоят так же, как и у обычных мышей, которым ничего не пересаживали. Иными словами, «пришлые» клетки не только налаживали контакты с тем, с кем нужно, но и сила таких контактов была такой же, какой и должна быть (где-то слабее, где-то сильнее, в зависимости от того, с кем данный участок коры обменивается информацией). Были некоторые расхождения с «оригиналом», некоторые нейроны установили синапсы не с теми, с кем нужно, однако причина здесь, очевидно, заключалась в том, что для пересадки взяли кусочек, не совсем точно соответствующий тому, который вынули из мозга. И в следующий раз избежать неверных соединений вполне возможно, если точнее выполнять всю процедуру.

Наконец, последнее испытание – тест на функциональность – пересаженные клетки тоже с успехом прошли. Мышам периодически показывали некие узоры из полос, и постепенно новые клетки научились отличать одни узоры от других: на какие-то они реагировали сильнее, чем на другие. То есть со временем происходила настойка, обучение нервных клеток, которые, как мы помним, не с самого начала были в мозге.

Итак, благодаря тому, что авторы работы следили за судьбой индивидуальных нейронов, им, в конце концов, удалось достаточно надёжно установить, что пересаживаемые клетки не просто встраиваются в систему уже сформированных нервных цепочек, но и вполне успешно начинают работать. (Что особенно любопытно, так как именно про зрительную кору считается, что она не склонна к перестройкам.)

В дальнейшем исследователи собираются выяснить, как поведут себя нейроны, полученные другим способом (то есть не взятые из мозга эмбриона, а, например, выращенные после перепрограммирования клеток кожи через стадию индуцированных стволовых клеток), и можно ли подобные заплатки использовать для лечения натуральных повреждений мозга – например, при физической травме или при инсульте.

Чтобы кратковременная память превратилась в долговременную, в мозге должны образоваться новые межнейронные контакты, а формирование таких контактов лучше всего происходит во время сонной активности нервных клеток.

Превращение кратковременной памяти в долговременную называют консолидацией памяти, и нейробиологи усердно пытаются выяснить, как и почему это происходит. Довольно давно удалось выяснить, что консолидация памяти очень хорошо идёт во время сна. То есть, чтобы запомнить прочитанный перед экзаменом учебник, нужно поспать, тогда информация, что называется, уляжется в голове, то есть перейдёт в долговременное хранилище. Доказательств связи между сном и памятью довольно много. Например, исследователи из Калифорнийского университета в Риверсайде обнаружили, что снотворные препараты не только нормализуют сон, но и улучшают память. А их коллеги из Калифорнийского университета в Лос-Анджелесе смогли описать информационные процессы в мозге, которые связаны с консолидацией памяти во время сна.

Дендритные шипики (окрашены зелёным) на поверхности нейронных отростков. (Фото skdevitt / Flickr.com.)

Дендритные шипики (синие точки) на нейроне. (Фото The Journal of Cell Biology / Flickr.com.)

То, что такой важный процесс происходит именно во сне, неудивительно: ведь давно уже все знают, что сон - лишь иная форма активности мозга. Считается, что специфические нейронные импульсы, «сонные» волны мозга связаны в том числе и с тем, что наша нервная система занимается сортировкой полученной днём информации, пока внешние сигналы не мешают. Но вот как при этом ведут себя нейроны, какие клеточные и молекулярные механизмы здесь задействованы, биологам долгое время выяснить не получалось.

Чтобы узнать, что же происходит с нейронами во время консолидации памяти, Вэнь-Бяо Гань (Wen-Biao Gan ) и его сотрудники из Нью-Йоркского университета создали генетически модифицированную мышь, у которой в нейронах моторной коры синтезировался флуоресцентный белок. С его помощью можно было наблюдать за изменениями в нервных клетках, например, где и когда образуются дендритные шипики, особые выросты на дендритных отростках нервных клеток. Появление шипика говорит о том, что в этом месте нейрон готов создать контакт с другим нейроном, иными словами, шипик предшествует синапсу. Благодаря синапсам образуются нейронные цепи, которые нужны для запоминания информации. Когда мы, например, учимся ездить на велосипеде, у нас в мозге складываются новые нервные цепи, которые возникли в ответ на необходимость по-новому координировать мышечные усилия. Потом, когда мы снова садимся на велосипед, эти нервные цепи снова включаются - если, конечно, они по какой-то причине не распались, если синапсы между нейронами не исчезли. Возвращаясь к дендритным шипикам, можно сказать, что они свидетельствуют о реакции нейрона на новую информацию и о готовности её запомнить.

Собственно, мышам в эксперименте устроили тоже что-то вроде велосипеда: животные должны были сохранять равновесие на вертящейся палке, которая вращалась всё быстрее и быстрее. Со временем мыши запоминали, что нужно делать, и уже не падали с неё. При этом у нейронов моторной коры появлялись те самые дендритные выросты - клетки понимали, что новый стимул важен для организма и готовились сформировать новые цепи. Тогда исследователи изменили условия опыта: мышей тренировали на поворачивающейся палке один час, но потом одних животных отправляли спать на семь часов, а другие должны были такое же время бодрствовать. Оказалось, что у тех мышей, которым разрешили поспать, дендритные шипики росли активнее. Иными словами, сон помогал нервным клеткам настроиться на запоминание новой информации.

Более того, характер появления дендритных выростов зависел от того, какое именно упражнение нужно было выполнить. Например, если мышь должна была идти по вращающейся палке в одну сторону, то шипики возникали на одних дендритах, а если нужно было идти в другую сторону, то шипики появлялись на других дендритах. То есть клеточная морфология нейронных отростков зависела от того, что за информацию нужно было обработать.

Наконец, нейробиологам удалось показать, что клетки моторной коры, от которых зависело выполнение упражнения, активировались во время медленно-волновой фазы сна. Такая активация во сне была важна для формирования пресловутых шипиков: если «сонную» активность клеток подавляли, то шипики не формировались. Это было похоже на то, как если бы мозг снова прокручивал для себя то, что он должен был недавно выполнять во время бодрствования - прокручивал, чтобы лучше запомнить.

В итоге получилась такая схема: нейроны во время бодрствования получают какой-то стимул или выполняют какую-то процедуру, затем во время сна эти клетки снова активируются, и такая повторная активация стимулирует клеточные перестройки, способствующие долговременному запоминанию стимула. То, что всё именно так и происходит, нейробиологи предполагали давно, однако сейчас удалось получить именно экспериментальное подтверждение, и не на каких-нибудь дрозофилах, а на мозге млекопитающих. Хотя, конечно, теперь учёным нужно выяснять, какие молекулярные процессы тут задействованы, что за гены и белки управляют увеличением дендритных шипиков во время сна, какие сигнальные пути тут работают и т. д.

К слову, о дрозофилах: несколько лет назад исследователи из Вашингтонского университета в Сент-Луисе и Университета Висконсина в Мадисоне ставили похожие эксперименты с плодовыми мушками, и тогда результаты говорили о том же - что сон необходим для консолидации памяти. Однако при этом нейробиологи наблюдали очистку мозга дрозофил от синапсов, то есть происходило что-то вроде редакции нервных контуров, очистки нейронов от ненужных связей, которые отнимали бы ресурсы от нужных контактов. Скорее всего, такое устранение ненужных синапсов не есть специфический процесс, свойственный одним лишь насекомым (или членистоногим, или беспозвоночным), и в мозге высших животных в момент «сонного» закрепления памяти наряду с формированием новых синапсов происходит и разрыв старых - осталось только увидеть это в эксперименте.

В норме в головном мозге происходит постоянный, и довольно интенсивный, процесс редукции шипиков и образования новых, что свидетельствует о больших пластических возможностях нервной ткани.

Имеется несколько путей формирования дендритных шипиков.

1 Развитие шипиков из тонких выростов дендритов (филлоподий). Во время ранних этапов синаптогенеза в развивающемся мозге дендриты образуют многочисленные тончайшие выросты – филлоподии, которые в течение нескольких минут вырастают и пропадают. При формировании синапсов, количество

филлоподий резко уменьшается, тогда как количество стабильных зрелых шипиков увеличивается, что подтверждает роль этих тонких выростов как предшественников пшипиков. Подобные филлоподии обнаруживаются и во взрослом мозге. Функции высокоподвижных филлоподий заключаются, возможно, в мобильном поиске в окружающем дендрит пространстве мест контакта с проходящими аксонами и формирование новых синаптических контактов.

2. Развитие шипиков из дендритного ствола . В этом случае шипик развивается в зоне синапсов, расположенных на дендритном стволе. Эта ситуация наблюдается, в основном, в ранние периоды развития нейронов, когда большинство синапсов располагаются непосредственно на дендритном стволе и формируются раньше, чем вырастают дендритные филлоподии. В дальнейшем количество таких «ранних» синапсов падает, а число зрелых аксо-шипиковых синапсов увеличивается, то есть присутствие в районе формирования шипиков элементов формирующегося синапса является важным индуцирующим сингналом для формирования структуры шипиков и зрелого аксо-шипикового синапса.

3. Формирование шипиков без индукционного воздействия формирующихся синапсов. Шипики на дендритах могут формироваться и раньше, чем в этом районе сформируются синаптические контакты. Так происходит, например, при формировании шипиков на дистальных веточках дендритной системы клеток Пуркинье мозжечка.



Аксон. Аксон – обычно самый длинный отросток нейрона, нередко интенсивно ветвящийся в своих терминальных отделах. Одной из отличительных черт аксона является наличие т.н. «возвратных коллатералей» - терминальных веточек аксона, образующих аксо-аксональные контакты на собственном нейроне. Они имеют важное регулирующее влияние (в основном тормозное) на работу аксона. Из-за большой длины аксона его аксоплазма может значительно превосходить общий объем цитоплазмы перикариона и дендритов нейрона вместе взятых. Принципиальное отличие аксона от остальных отделов нейрона заключается и в отсутствии в его

цитоплазме мРНК и рибосом и наличии (в спайк-генерирующих нейронах) в плазматической мембране большого числа Na-ионных каналов, участвующих в генерации и проведении потенциала действия.

В последнее время показано, что в растущих веточках аксона (конусах роста) и при регенерации в аксоне осуществляется локальный синтез белков. Компоненты белоксинтетического аппарата (субъединицы рибосом и сами рибосомы, мРНК, необходимые ферменты, аминокислоты) поставляются в районы синтеза аксональным транспортом. Неодинаковая структура цитоплазмы аксона и дендритов связаны, как полагают, и с отличиями в расположении элементов цитоскелета (см. ниже).

Место отхождения аксона от тела нейрона называется аксонным холмиком, который, суживаясь, постепенно переходит в начальный сегмент аксона. Именно эти начальные участки аксона являются местом генерации потенциала действия и отличаются большим числом ионных каналов в плазмолемме. Число рибосом в аксонном холмике невелико, и по мере сужения отростка они полностью исчезают. В начальном сегменте аксона рибосомы находятся только около постсинаптических активных зон аксо-аксональных синапсов. Этот сегмент характеризуется тем, что микротрубочки цитоскелета здесь собраны в небольшие группы и около плазмолеммы имеется слой электронно-плотного материала. Слой субплазмолеммального материала находится также в перехватах Ранвье. Это связано, по-видимому, со множеством ионных каналов, особенно натриевых, в плазматической мембране. В аксоне в большом количестве находятся элементы агранулярной эндоплазматической сети (АЭС) – важной транспортной системы отростков.

Морфология дендритов.

Нейроны имеют две системы отростков: аксон и дендриты и одной из задач нейроморфологии является определении ключевых различий или сходства между ними.

На светооптическом уровне исследования при изучении срезов нервной ткани, окрашенной солями серебра по методу Гольджи, видны некоторые морфологические отличия аксона от дендритов. Они в ряде случаев не абсолютны, но теме не менее позволяют проанализировать имеющийся нейрогистологический материал. (табл).

Табл. Ххх Некоторые сравнительные характеристики аксона и дендритов нервных клеток позвоночных

Свойства или признаки Аксон Дендриты Примечания
Количество на нейрон Всегда один (или отсутствует) Как правило несколько (может быть один дендрит и отсутствовать)
Длина отростков От нескольких микрон до метра и более От нескольких микрон до нескольких сот микрон
Характер отхождения отростка от нейрона Преимущественно от тела нейрона, иногда от крупных дендритов От тела нейрона
Степень разветвленности Самая разнообразная Самая разнообразная Разветвленность аксона, как правило, превышает таковую у дендритов данной клетки
Характер ветвления боковых веточек (коллатералей) Отходят преимущественно под прямым углом, встречаются возвратные ветвления и сильно извитые Отходят преимущественно под острым углом по ходу основной ветви, возвратные коллатерали редки.
Стабильность ветвлений Более вариабелен среди нейронов данного типа Более стабилен
Ниличие шипиков Есть, много и разного вида* Нет * Некоторые типы клеток не имеют на дендритах шипиков (бесшипиковые нейроны)
Наличие рибосом и ШЭР Рибосомы есть по всей длине дендрита, ШЭР есть в проксимальных сегментах дендритов и в узлах ветвления Нет * * Получены данные о наличии в аксонах и синапсах рибосом и механизма синтеза белка
Наличие цистерн ГЭР Есть по всей длине аксона Есть по всей длине дендритов
Наличие миелиновой и немиелиновой оболочек Есть оба вида оболочек Есть миелиновая оболочка (но редко и очень тонкая)
Диаметр отростков Уменьшается по мере удаления от тела клетки и ветвления Практически постоянный по всей длине аксона
Преобладающая ориентация и количество микротрубочек Однонаправленная (от клетки к синаптическому окончанию), в крупных аксонах меньше, чем в дендритах Разнонаправленная, особенно много в крупных дендритах и их ветвях
Скорость проведения импульса и направление* До 120 м/сек, в обоих направлениях До 1 м/сек, в обоих направлениях * В каждый данный момент времени по аксону или дендритам импульс идет в одном направлении
Способность к генерации, проведению и передачи нервного импульса есть Есть, но проведение возбуждения по дендриту идет в уменьшительной форме (угасания)* * Дендриты способны генерировать потенциал действия

Аксон и дендриты имеют помимо перечисленных выше морфологических и функциональных различий набор молекулярно-биохимических маркеров, присутствие которых на мембранах или в цитоплазме отростков во многом определяет их специфику и свойства.

Учёным, исследующим свойства человеческого мозга, давно известно, что он работает как мощнейший компьютер и способен, к примеру, вместить всю информацию Интернета.

Однако пока что открыты далеко не все факторы, определяющие «вычислительные способности» нашего мозга.

Очередным открытием в этой области поделились исследователи из Массачусетского технологического института. Они впервые провели запись электрической активности нейронов со сверхвысоким уровнем детализации.

Важно пояснить, что наш мозг содержит 85-86 миллиардов нейронов, и каждый функционирует как возбуждаемый элемент. Он накапливает входящие электрические сигналы в своём теле (соме) и, когда напряжение достигает определённого предела, генерирует короткий электрический импульс, отправляющийся в разветвлённые отростки - дендриты. Отметим, что именно такой накопительный подход позволяет миллионам и миллиардам отдельных клеток функционировать как единое целое без общего «центра управления».

На концах дендрита каждого нейрона расположены мембранные выросты - шипики. Шипики одного нейрона соединяются с шипиками другого, формируя место контакта - синапс. Через них и осуществляется передача нервного импульса.

Авторы новой работы решили сравнить «способности» дендритов людей и модельных животных - крыс. Они предполагали, что именно различия в работе этих нейронных отростков отвечают за вычислительную мощность мозга и могут объяснить интеллектуальное превосходство людей над всеми остальными видами.

Эксперты поясняют: каждый нейрон может иметь до 50 дендритов, и у человека они гораздо длиннее, чем у крыс и большинства других животных. Поэтому кора головного мозга у нас намного толще: она составляет около 75% от общего объёма мозга (для сравнения: у крыс - около 30%).

Но, несмотря на эти различие, структурная организация этой области у грызунов и людей схожая: кора мозга состоит из шести разных слоёв нейронов. При этом нейроны из пятого слоя имеют возможность передать сигнал нейронам из первого слоя.

Но, раз у людей кора значительно толще, чем у животных, получается, что в ходе эволюции нейронам приходилось удлинять свои дендриты, чтобы дотянуться до других слоёв. Да и сами сигналы путешествуют по таким путям дольше.

"Дело не только в том, что люди умны, потому что у нас больше нейронов и большая кора. [Наши] нейроны и действуют по-другому", - рассуждает глава научной группы Марк Харнетт (Mark Harnett).

Чтобы подробнее изучить работу дендритов людей, исследователи использовали срезы мозговой ткани пациентов с эпилепсией. В ходе операций добровольцам удаляли небольшие (с ноготь человека) участки передней височной доли, чтобы получить доступ к нужному участку мозга.

Отмечается, что передняя височная доля отвечает за множество функций, включая лингвистическую и визуальную обработку информации, но удаление крошечного её участка не снижает работоспособность мозга. А для нейробиологов такие «живые» ткани - уникальные образцы для изучения.

Как только команда получила срезы, их сразу же поместили в растворы, имитирующие спинномозговую жидкость. Это позволило сохранять жизнеспособность тканей в течение 48 часов.

Затем учёные использовали электрофизиологическую методику под названием локальная фиксация потенциала, которая позволяет изучать свойства ионных каналов. Последних очень много во внешних мембранах дендритов, и они фактически отвечают за пропускную способность «канала».

Ранее аналогичные эксперименты проводились с тканями мозга грызунов, однако электрические свойства дендритов человека команда изучала впервые.

В результате специалисты обнаружили, что, поскольку дендриты людей длиннее крысиных, сигнал, приходящий от нейрона из первого слоя к нейрону пятого слоя, намного слабее, чем аналогичный сигнал у грызунов.

Также выяснилось, что дендриты человека и крысы имеют одинаковое количество ионных каналов, но в наших дендритах они имеют более низкую плотность из-за общего удлинения дендритов.

Может показаться, что такое отличие снижает работоспособность мозга, но на самом деле это не так. Напротив, для того чтобы направить сигнал в нужное место, тысячи синапсов каждого дендрита должны «коллективно» определить «шаблон ввода», поясняет Харнетт.

На основе новых данных его коллеги разработали подробную биофизическую модель, которая показывает, что изменение плотности ионных каналов может объяснить некоторые различия в электрической активности дендритов человека и крысы.

Согласно гипотезе Харнетта, из-за выявленных различий большее количество частей дендритов может влиять на силу входящего сигнала, что позволяет отдельным нейронам нашего мозга выполнять более сложные задачи и повышать вычислительную мощность. Клетки мозга сами становятся своего рода мини-компьютерами.

"В человеческих нейронах существует больше «электрической независимости», что потенциально приводит к увеличению вычислительных возможностей одиночных нейронов", - полагает учёный.

Впрочем, существует множество других различий в работе мозга человека и животных, поэтому, возможно, удлинение дендритов и связанные с этим изменения - это лишь одно из преимуществ, которые получили сапиенсы в ходе эволюции.

В дальнейшем нейробиологи намерены более подробно исследовать электрическую активность мозга людей и отыскать другие особенности, отвечающие за наши умственные способности.

Коллеги нейробиологов из MIT назвали это открытие «замечательным достижением».

"Это наиболее тщательно детализированные измерения физиологических свойств нейронов человека на сегодняшний день. Эти эксперименты очень сложны, даже когда работа проводится с [образцами тканей] мышей и крыс, поэтому с технической точки зрения довольно удивительно, что они смогли проделать это с тканями людей", - отметил Нельсон Спрустон (Nelson Spruston) из Медицинского института имени Говарда Хьюза.

Ранее, напомним, авторы проекта «Вести. Наука» (nauka.vesti.ru) сообщали о том, что мозг интеллектуалов формирует меньше связей между нейронами. Также учёные отыскали в мозге человека новый тип клеток и узнали, как мозгу удаётся работать в режиме многозадачности.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта