Главная » 2 Распространение » Продольные механические волны обладают следующими свойствами. Механические волны

Продольные механические волны обладают следующими свойствами. Механические волны

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной . Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной . Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами . В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига . Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появится. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах .


Значительный интерес для практики представляют простые гармонические или синусоидальные волны . Они характеризуются амплитудой A колебания частиц, частотой f идлиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Смещение y (x , t ) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX , вдоль которой распространяется волна, и от времени t по закону.

С волнами любого происхождения при определённых условиях можно наблюдать четыре ниже перечисленных явления, которые мы рассмотрим на примере звуковых волн в воздухе и волн на поверхности воды.

Отражение волн. Проделаем опыт с генератором тока звуковой частоты, к которому подключён громкоговоритель (динамик), как показано на рис. «а». Мы услышим свистящий звук. На другом конце стола поставим микрофон, соединённый с осциллографом. Поскольку на экране возникает синусоида с малой амплитудой, значит, микрофон воспринимает слабый звук.

Расположим теперь сверху над столом доску, как показано на рис.«б». Поскольку амплитуда на экране осциллографа возросла, значит, звук, доходящий до микрофона, стал громче. Этот и многие другие опыты позволяют утверждать, что механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред.

Преломление волн. Обратимся к рисунку, где изображены волны, набегающие на прибрежную мель (вид сверху). Серо-жёлтым цветом изображён песчаный берег, а голубым – глубокая часть моря. Между ними есть песчаная мель – мелководье.

Волны, бегущие по глубокой воде, распространяются в направлении красной стрелки. В месте набегания на мель волна преломляется, то есть изменяет направление распространения. Поэтому синяя стрелка, указывающая новое направление распространения волны, расположена иначе.

Это и многие другие наблюдения показывают, что механические волны любого происхождения могут преломляться при изменении условий распространения, например, на границе раздела двух сред.

Дифракция волн. В переводе с латинского «дифрактус» означает «разломанный». В физике дифракцией называется отклонение волн от прямолинейного распространения в одной и той же среде, приводящее к огибанию ими препятствий.

Взгляните теперь на другой рисунок волн на поверхности моря (вид с берега). Волны, бегущие к нам издалека, заслоняются большой скалой слева, но при этом частично огибают её. Скала меньших размеров справа и вовсе не является преградой для волн: они полностью её огибают, распространяясь в прежнем направлении.

Опыты показывают, что дифракция наиболее отчётливо проявляется, если длина набегающей волны больше размеров препятствия. Позади него волна распространяется так, как будто препятствия не было.

Интерференция волн. Мы рассмотрели явления, связанные с распространением одной волны: отражение, преломление и дифракцию. Рассмотрим теперь распространение с наложением друг на друга двух или более волн – явление интерференции (от лат. «интер» – взаимно и «ферио» – ударяю). Изучим это явление на опыте.

К генератору тока звуковой частоты присоединим два динамика, соединённые параллельно. Приёмником звука, как и в первом опыте, будет микрофон, подключённый к осциллографу.

Начнём двигать микрофон вправо. Осциллограф покажет, что звук становится то слабее, то сильнее, несмотря на то, что микрофон удаляется от динамиков. Вернём микрофон на среднюю линию между динамиками, а затем будем двигать его влево, снова удаляя от динамиков. Осциллограф вновь покажет нам то ослабление, то усиление звука.

Этот и многие другие опыты показывают, что в пространстве, где распространяются несколько волн, их интерференция может приводить к возникновению чередующихся областей с усилением и ослаблением колебаний.

Темы кодификатора ЕГЭ: механические волны, длина волны, звук.

Механические волны - это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны.

Волна называется продольной , если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис. 1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е. перпендикулярно слоям).

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества .

Наиболее просты для изучения гармонические волны . Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т. д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний ; наряду с временным периодом она является важнейшей характеристикой волнового процесса. В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1 ). В поперечной - расстоянию между соседними горбами или впадинами (рис. 2 ). Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

Частотой волны называется частота колебаний частиц:

Отсюда получаем связь скорости волны, длины волны и частоты:

. (1)

Звук.

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука , выше - область ультразвука.

К основным характеристикам звука относятся громкость и высота .
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ - тиканье часов, 50 дБ - обычный разговор, 80 дБ - крик, 130 дБ - верхняя граница слышимости (так называемый болевой порог ).

Тон - это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах - больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как "треть километра в секунду")*. В воде звук распространяется со скоростью около 1500 м/с, а в стали - около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука. Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.

Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.

По физической природе различают:

По ориентации возмущений различают:

Продольные волны -

Смещение частиц происходит вдоль направления распространения;

необходимо наличие в среде силы упругости при сжатии;

могут распространяться в любых средах.

Примеры: звуковые волны


Поперечные волны -

Смещение частиц происходит поперек направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сдвиге;

могут распространяться только в твердых средах (и на границе двух сред).

Примеры: упругие волны в струне, волны на воде

По характеру зависимости от времени различают:

Упругие волны - механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.

Бегущие волны - волны, переносящие энергию в пространстве.

По форме волновой поверхности : плоская, сферическая, цилиндрическая волна.

Волновой фронт - геометрическое место точек, до которых дошли колебания к данному моменту времени.

Волновая поверхность - геометрическое место точек, колеблющихся в одной фазе.

Характеристики волны

Длина волны λ - расстояние, на которое волна распространяется за время, равное периоду колебаний

Амплитуда волны А - амплитуда колебаний частиц в волне

Скорость волны v - скорость распространения возмущений в среде

Период волны Т - период колебаний

Частота волны ν - величина, обратная периоду

Уравнение бегущей волны

В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).

где v – скорость, φ 0 – начальная фаза, ω – циклическая частота, A – амплитуда

Свойства механических волн

1. Отражение волн механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.

2. Преломление волн при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.

3. Дифракция волн отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.

4. Интерференция волн сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний

Интерференция и дифракция механических волн.

Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.

При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.

Когерентными называют волны , имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.


Условия максимума и минимума

Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума


Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ , где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума :

А = 2x 0 .

Условие минимума


Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.

Условие минимума:

Амплитуда результирующего колебания А = 0 .

Если Δd не равно целому числу полуволн, то 0 < А < 2х 0 .

Дифракция волн.

Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.

Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d<<λ , где d – размер препятствия.

Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.

Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.

Примеры проявления дифракции . Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.

Стоячие волны

Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.

В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции ) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Колебания струны . В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны , причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает условие

Длинам волн соответствуют частоты

n = 1, 2, 3... Частоты v n называются собственными частотами струны.

Гармонические колебания с частотами v n называются собственными или нормальными колебаниями . Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.

Уравнение стоячей волны :

В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей :

В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны . Координаты узлов:

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).

Если рассматривать бегущую волну , то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет , т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

§ 1.7. Механические волны

Распространяющиеся в пространстве колебания вещества или поля называются волной. Колебания вещества порождают упругие волны (частный случай – звук).

Механическая волна – это распространение колебаний частиц среды с течением времени.

Волны в сплошной среде распространяются вследствие взаимодействия между частицами. Если какая-либо частица приходит в колебательное движение, то, вследствие упругой связи, это движение передается соседним частицам, и волна распространяется. При этом сами колеблющиеся частицы не перемещаются вместе с волной, а колеблются около своих положений равновесия .

Продольные волны – это такие волны, в которых направление колебаний частиц x совпадает с направлением распространения волны . Продольные волны распространяются в газах, жидкостях и твердых телах.

П
оперечные волны
– это такие волны, в которых направление колебаний частиц перпендикулярно направлению распространения волны . Поперечные волны распространяются только в твердых средах.

Волны обладают двоякой периодичностью – во времени и в пространстве . Периодичность во времени означает, что каждая частица среды колеблется около своего положения равновесия, и это движение повторяется с периодом колебаний T. Периодичность в пространстве означает, что колебательное движение частиц среды повторяется через определенные расстояния между ними.

Периодичность волнового процесса в пространстве характеризует величина, называемая длиной волны и обозначаемая .

Длина волны - это расстояние, на которое распространяется волна в среде за время одного периода колебаний частицы .

Отсюда
, где- период колебаний частиц,- частота колебаний,- скорость распространения волны, зависящая от свойств среды.

Как записать уравнение волны? Пусть кусочек шнура расположенный в точке О (источник волны) совершает колебания, происходящие по закону косинуса

Пусть точка некоторая В находится на расстоянии х от источника (точки О). для того чтобы волна, распространяющаяся со скоростью v, дошла до нее требуется время
. Это означает, что в точке В колебания начнутся позже на
. То есть. После подстановки в это уравнение выражения для
и ряда математических преобразований, получим

,
. Введем обозначение:
. Тогда. В силу произвольности выбора точки В это уравнение и будет искомым уравнением плоской волны
.

Выражение, стоящее под знаком косинуса называется фазой волны
.

Если две точки находятся на различных расстояниях от источника волны, то фазы их будут различны. Например, фазы точек В и С, находящихся на расстоянияхиот источника волны, будут соответственно равны

Разность фаз колебаний, происходящих в точке В и в точке С обозначим
и она будет равна

В таких случаях говорят, что между колебаниями, происходящими в точках В и С имеется сдвиг по фазе Δφ. Говорят, что колебания в точках В и С происходят в фазе, если
. Если
, то колебания в точках В и С происходят в противофазе. Во всех остальных случаях – просто имеется сдвиг по фазе.

Понятие «длина волны» можно определить и иначе:

Поэтому k называют волновым числом.

Мы ввели обозначение
и показали, что
. Тогда

.

Длина волны – это путь, проходимый волной за один период колебания.

Определим два важных в волновой теории понятия.

Волновая поверхность – это геометрическое место точек среды, колеблющихся в одинаковой фазе. Волновую поверхность можно провести через любую точку среды, следовательно, их бесконечно много.

Волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей (если источник волн – бесконечная плоскость), параллельных друг другу, или совокупность концентрических сфер (если источник волн точечный).

Фронт волны (волновой фронт) – геометрическое место точек, до которых доходят колебания к моменту времени . Фронт волны отделяет часть пространства, вовлеченную в волновой процесс, от области, где колебания еще не возникли. Следовательно, волновой фронт – это одна из волновых поверхностей. Он разделяет две области: 1 – до которой дошла волна к моменту времениt, 2 – не дошла.

Волновой фронт в каждый момент времени только один, и он все время перемещается, тогда как волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одинаковой фазе).

Плоская волна – это такая волна, у которой волновые поверхности (и фронт волны) являются параллельными плоскостями.

Сферическая волна – это такая волна, у которой волновые поверхности являются концентрическими сферами. Уравнение сферической волны:
.

Каждая точка среды, до которой дошли две или более волн, будет принимать участие в колебаниях, вызванных каждой волной в отдельности. А каким будет результирующее колебание? Это зависит от ряда факторов, в частности от свойств среды. Если свойства среды не изменяются из-за процесса распространения волн, то среда называется линейной. Опыт показывает, что в линейной среде волны распространяются независимо друг от друга. Мы будем рассматривать волны только в линейных средах. А каким будет колебание точки, до которой дошли две волны одновременно? Для ответа на этот вопрос необходимо понять как найти амплитуду и фазу колебания, вызванного этим двойным воздействием. Для определения амплитуды и фазы результирующего колебания необходимо найти смещения, вызванные каждой волной, а затем их сложить. Как? Геометрически!

Принцип суперпозиции (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Важным понятием волновой теории является понятие когерентность – согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов . Если разность фаз волн, приходящих в точку наблюдения не зависит от времени, то такие волны называются когерентными . Очевидно, что когерентными могут быть лишь волны, имеющие одинаковую частоту.

Рассмотрим, каким будет результат сложения двух когерентных волн, приходящих в некоторую точку пространства (точку наблюдения) В. Для того, чтобы упростить математические расчеты будем считать, что волны, которые излучаются источникамиS 1 и S 2 имеют одинаковую амплитуду и начальные фазы равные нулю. В точке наблюдения (в точке В) волны, приходящие от источников S 1 и S 2 будут вызывать колебания частиц среды:
и
. Результирующее колебание в точке В найдем как сумму.

Обычно амплитуду и фазу результирующего колебания, возникающего в точке наблюдения, находят с помощью метода векторных диаграмм, представляя каждое колебание в виде вектора, вращающегося с угловой скоростью ω. Длина вектора равна амплитуде колебания. Первоначально этот вектор образует с выбранным направлением угол равный начальной фазе колебаний. Тогда амплитуда результирующего колебания определяется по формуле.

Для нашего случая сложения двух колебаний с амплитудами
,
и фазами
,

.

Следовательно, амплитуда колебаний, возникающих в точке В, зависит от того, какова разность путей
, проходимых каждой волной в отдельности от источника до точки наблюдения (
– разность хода волн, приходящих в точку наблюдения). Интерференционные минимумы или максимумы могут наблюдаться в тех точках, для которых
. А это уравнение гиперболы с фокусами в точкахS 1 и S 2 .

В тех точках пространства, для которых
, амплитуда возникающих колебаний будет максимальна и равна
. Так как
, то амплитуда колебаний будет максимальна в тех точках, для которых.

в тех точках пространства, для которых
, амплитуда возникающих колебаний будет минимальна и равна
.амплитуда колебаний будет минимальна в тех точках, для которых .

Явление перераспределения энергии, возникающее в результате сложения конечного числа когерентных волн, называется интерференцией.

Явление огибания волнами препятствий называется дифракцией.

Иногда дифракцией называют любое отклонение распространения волн вблизи препятствий от законов геометрической оптики (если размеры препятствий соизмеримы с длиной волны).

Б
лагодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т.д. Как объяснить попадание волн в область геометрической тени? Объяснить явление дифракции можно с помощью принципа Гюйгенса: каждая точка, до которой доходит волна, является источником вторичных волн (в однородной среде сферических), а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Вставка из интерференции света посмотреть что может пригодиться

Волной называется процесс распространения колебаний в пространстве.

Волновая поверхность - это геометрическое место точек, в которых колебания совершаются в одинаковой фазе.

Фронтом волны называется геометрическое место точек, до которых волна доходит к определенному моменту времени t . Фронт волны отделяет часть пространства, вовлеченную в волновой процесс, от той области, где колебания еще не возникли.

Для точечного источника фронт волны представляет собой сферическую поверхность с центром в точке расположения источника S. 1, 2, 3 - волновые поверхности; 1 - фронт волны. Уравнение сферической волны, распространяющейся вдоль луча, исходящего от источника: . Здесь - скорость распространения волны,- длина волны;А - амплитуда колебаний; - круговая (циклическая) частота колебаний;- смещение от положения равновесия точки, находящейся на расстоянииr от точечного источника, в момент времени t.

Плоская волна - это волна с плоским волновым фронтом. Уравнение плоской волны, распространяющейся вдоль положительного направления оси y :
, где x - смещение от положения равновесия точки, находящейся на расстоянии y от источника, в момент времени t.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта