Главная » 2 Распространение » Вывод формул индукции поля соленоида, созданного переменным током. Соленоид

Вывод формул индукции поля соленоида, созданного переменным током. Соленоид

Магнитное поле возникает вокруг любого проводника независимо от его формы при условии, что по проводнику проходит электрический ток.

В электротехнике мы имеем дело с различного рода катушками, состоящими из ряда витков. Для изучения интересующего нас магнитного поля катушки рассмотрим сначала, какую форму имеет магнитное поле одного витка.

Представим себе виток толстого провода, пронизывающий лист картона и присоединенный к источнику тока. Когда через виток проходит электрический ток, то вокруг каждой отдельной части витка образуется круговое магнитное поле. По правилу «буравчика» нетрудно определить, что магнитные силовые линии внутри витка имеют одинаковое направление (к нам или от нас, в зависимости от направления тока в витке), причем они выходят с одной стороны витка и входят в другую сторону. Ряд таких витков, имеющий форму спирали, представляет собой так называемый соленоид (катушку) .

Вокруг соленоида, при прохождении через него тока, образуется магнитное поле. Оно получается в результате сложения магнитных полей каждого витка и по форме напоминает магнитное поле прямолинейного магнита. Силовые линии магнитного поля соленоида, так же как и в прямолинейном магните, выходят из одного конца соленоида и возвращаются в другой. Внутри соленоида они имеют одинаковое направление. Таким образом, концы соленоида обладают полярностью. Тот конец, из которого выходят силовые линии, является северным полюсом соленоида, а конец, в который силовые линии входят, - его южным полюсом.

Полюса соленоида можно определить по правилу правой руки , но для этого надо знать направление тока в его витках. Если наложить на соленоид правую руку ладонью вниз, так чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс соленоида . Из этого правила следует, что полярность соленоида зависит от направления тока в нем. В этом нетрудно убедиться практически, поднеся к одному из полюсов соленоида магнитную стрелку и затем изменив направление тока в соленоиде. Стрелка моментально повернется на 180°, т. е. укажет на то, что полюсы соленоида изменились.



Соленоид обладает свойством втягивать в себя легкие железные предметы. Если внутрь соленоида поместить стальной брусок, то через некоторое время под действием магнитного поля соленоида брусок намагнитится. Этот способ применяют при изготовлении постоянных магнитов.

Электромагниты

Электромагнит представляет собой катушку (соленоид) с помещенным внутрь нее железнымсердечником. Формы и размеры электромагнитов разнообразны, однако общее устройство всех их одинаково.

Катушка электромагнита представляет собой каркас, изготовленный чаще всего из прессшпана или фибры и имеющий различные формы в зависимости от назначения электромагнита. На каркас намотана в несколько слоев медная изолированная проволока - обмотка электромагнита. Она имеет различночисло витков и изготовляется из проволоки различного диаметра, в зависимости от назначения электромагнита.

Для предохранения изоляции обмотки от механических повреждений обмотку покрывают одним или несколькими слоями бумаги или каким-либо другим изолирующим материалом. Начало и конец обмотки выводят наружу и присоединяют к выводным клеммам, укрепленным на каркасе, или к гибким проводникам с наконечниками на концах.

Катушка электромагнита насажена на сердечник из мягкого, отожженного железа или сплавов железа с кремнием, никелем и т. д. Такое железо обладает наименьшим остаточным магнетизмом. Сердечники чаще всего делают составными из тонких листов, изолированных друг от друга. Формы сердечников могут быть различными, в зависимости от назначения электромагнита.

Если по обмотке электромагнита пропустить электрический ток, то вокруг обмотки образуется магнитное поле, которое намагничивает сердечник. Так как сердечник сделан из мягкого железа; то он намагнитится мгновенно. Если затем выключить ток, то магнитные свойства сердечника также быстро исчезнут, и он перестанет быть магнитом. Полюсы электромагнита, как и соленоида, определяются по правилу правой руки. Если в обмотке электромагнита изменить направление тока, то в соответствии с этим изменится и полярность электромагнита.

Действие электромагнита подобно действию постоянного магнита. Однако между ними есть большая разница. Постоянный магнит всегда обладает магнитными свойствами, а электромагнит- только тогда, когда по его обмотке проходит электрический ток.

Кроме того, сила притяжения постоянного магнита неизменна, так как неизменен магнитный поток постоянного магнита. Сила же притяжения электромагнита не является величиной постоянной. Один и тот же электромагнитможет обладать различной силой притяжения. Сила притяжения всякого магнита зависит от величины его магнитного потока.

Сила притяжения электромагнита, а следовательно, и его магнитный поток зависят от величины тока, проходящего через обмотку этого электромагнита. Чем больше ток, тем больше сила притяжения электромагнита, и, наоборот, чем меньше ток в обмотке электромагнита, тем с меньшей силой он притягивает к себе магнитные тела.

Но для различных по своему устройству и размерам электромагнитов сила их притяжения зависит не только от величины тока в обмотке. Если, например, взять два электромагнита одинакового устройства и размеров, но один с небольшим числом витков обмотки, а другой - с гораздо большим, то нетрудно убедиться, что при одном и том же токе сила притяжения последнего будет гораздо больше. Действительно, чем больше число витков обмотки, тем большее при данном токе создается вокруг этой обмотки магнитное поле, так как оно слагается из магнитных полей каждого витка. Значит, магнитный поток электромагнита, а следовательно, и сила его притяжения будут тем больше, чем большее количество витков имеет обмотка.

Есть еще одна причина, влияющая на величину магнитного потока электромагнита. Это - качество его магнитной цепи. Магнитной цепью называется путь, по которому замыкается магнитный поток. Магнитная цепь обладает определенным магнитным сопротивлением . Магнитное сопротивление зависит от магнитной проницаемости среды, через которую проходит магнитный поток. Чем больше магнитная проницаемость этой среды, тем меньше ее магнитное сопротивление.

Так как магнитная проницаемость ферромагнитных тел (железа, стали) во много раз больше магнитной проницаемости воздуха, поэтому выгоднее делать электромагниты так, чтобы их магнитная цепь не содержала в себе воздушных участков. Произведение силы тока на число витков обмотки электромагнита называется магнитодвижущей силой . Магнитодвижущая сила измеряется числом ампер-витков.

Например, по обмотке электромагнита, имеющего 1200 витков, проходит ток силой 50 ма. Магнитодвижущая сила такого электромагнита равна 0,05 х 1200 = 60 ампер-витков.

Действие магнитодвижущей силы аналогично действию электродвижущей силы в электрической цепи. Подобно тому как ЭДС является причиной возникновения электрического тока, магнитодвижущая сила создает магнитный поток в электромагните. Точно так же, как в электрической цепи с увеличением ЭДС увеличивается ток в цени, так и в магнитной цепи с увеличением магнитодвижущей силы увеличивается магнитный поток.

Действие магнитного сопротивления аналогично действию электрического сопротивления цепи. Как с увеличением сопротивления электрической цепи уменьшается ток, так и в магнитной цепи увеличение магнитного сопротивления вызывает уменьшение магнитного потока.

Зависимость магнитного потока электромагнита от магнитодвижущей силы и его магнитного сопротивления можно выразить формулой, аналогичной формуле закона Ома: магнитодвижущая сила = (магнитный поток/ магнитное сопротивление)

Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток (рисунок 1, а ).

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по "правилу буравчика", то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке 1, б .

Рисунок 1. Соленоид (а ) и его магнитное поле (б )

Рисунок 2. Компьютерная модель соленоида

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n 0 витков, напряженность магнитного поля внутри соленоида определяется формулой:

H = I × n 0 .

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят - северный полюс.

Для определения полюсов соленоида пользуются "правилом буравчика", применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках катушки соленоида, то поступательное движение буравчика покажет направление магнитного поля (рисунок 3).

Видео про соленоид:

Электромагнит

Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом (рисунок 4 и 5). Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как и у соленоида, по "правилу буравчика".


Рисунок 5. Катушка электромагнита

Электромагниты широко применяются в технике. Они служат для создания магнитного поля в электрических генераторах и двигателях, в электроизмерительных приборах, электрических аппаратах и тому подобном.

В установках большой мощности для отключения поврежденного участка цепи вместо плавких предохранителей применяются автоматические, масляные и воздушные выключатели. Для приведения в действие отключающих катушек автоматических выключателей применяются различные реле. Реле называются приборы или автоматы, реагирующие на изменение тока, напряжения, мощности, частоты и прочих параметров.

Из большого числа реле, различных по своему назначению, принципу действия и конструкции, кратко рассмотрим устройство электромагнитных реле. На рисунке 6 представлены конструкции этих реле. Работа реле основана на взаимодействии магнитного поля, создаваемого неподвижной катушкой, по которой проходит ток, и стального подвижного якоря электромагнита. При изменении условий работы в цепи главного тока катушка реле возбуждается, магнитный поток сердечника подтягивает (поворачивает или втягивает) якорь, который замыкает контакты цепи, отключающей катушки привода масляных и воздушных выключателей или вспомогательных реле.


Рисунок 6. Электромагнитное реле

Реле нашли себе применение также в автоматике и телемеханике.

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков (числа ампер-витков).

Если, например, взять соленоид, по обмотке которого проходит ток 5 А и число витков которого равно 150, то число ампер-витков будет 5 × 150 = 750. Тот же магнитный поток получится если взять 1500 витков и пропустить по ним ток 0,5 А, так как 0,5 × 1500 = 750 ампер-витков.

Увеличить магнитный поток соленоида можно следующими путями: 1) вложить в соленоид стальной сердечник, превратив его в электромагнит; 2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока); 3) уменьшить воздушный зазор сердечника электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

Видео про электромагнит:

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи. Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида (рис. 4).

Нетрудно заметить сходство между магнитным полем соленоида (вне его) и магнитным полем постоянного стержневого магнита (рис. 5). Конец соленоида, из которого магнитные линии выходят, аналогичен северному полюсу магнита N , другой же конец соленоида, в который магнитные линии входят, аналогичен южному полюсу магнита S .

Полюсы соленоида с током на опыте легко определить с помощью магнитной стрелки. Зная же направление тока в витке, эти полюсы можно определить с помощью правила правого винта: вращаем головку правого винта по току в витке, тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса. Модуль магнитной индукции внутри однослойного соленоида вычисляется по формуле

B = μμ 0 NI l = μμ 0 nl,

где Ν — число витков в соленоиде, I — длина соленоида, n — число витков, приходящееся на единицу длины соленоида.

Намагничивание магнетика. Вектор намагниченности.
Если по проводнику течет ток, то вокруг проводника создаётся МП. Мы пока рассматривали провода, по которым текли токи, находящиеся в вакууме. Если провода, несущие ток, находятся в некоторой среде, то м.п. изменяется. Это объясняется тем, что под действием м.п. всякое вещество способно приобретать магнитный момент, или намагничиваться (вещество становится магнетиком ). Вещества, намагничивающиеся во внешнем м.п. против направления поля называются диамагнетиками . Вещества, слабо намагничивающиеся во внешнем м.п. по направлению поля называются парамагнетиками Намагниченное в-во создаёт м.п. - , это м.п. накладывается на м.п., обусловленное токами - . Тогда результирующее поле:
. (54.1)

Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. - усреднённое макроскопическое поле.


Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые микроскопические токи, обусловленные движением электронов в атомах и молекулах. Каждый такой ток обладает магнитным моментом и создаёт в окружающем пространстве м.п.

Если внешнее поле отсутствует, то молекулярные токи ориентированы беспорядочным образом, и обусловленное ими результирующее поле равно 0.

Намагниченностью называют векторную величину, равную магнитному моменту единицы объёма магнетика:

, (54.3)

где - физически бесконечно малый объём, взятый в окрестности рассматриваемой точки; - магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключённым в объёме (вспомним где, - поляризованность диэлектрика, - дипольный элемент ).

Намагниченность можно представить так:

Токи намагничивания I" . Намагничивание вещества связано с преимущественной ориентацией магнитных моментов отдельных молекул в одном направлении. Элементарные круговые токи, связанные с каждой молекулой, называются молекулярными. Молекулярные токи оказываются ориентированными, т.е. возникают токи намагничивания - .

Токи, текущие по проводам, вследствие движения в веществе носителей тока называют токами проводимости - .

Для электрона движущегося по круговой орбите по часовой стрелке; ток направлен против часовой стрелки и по правилу правого винта направлен вертикально вверх.

Циркуляция вектора намагниченности по произвольному замкнутому контуру равна алгебраической сумме токов намагничивания, охватываемых контуром Г.

Дифференциальная форма записи теоремы о циркуляции вектора .

Напряжённость магнитного поля (стандартное обозначение Н ) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M .

В СИ: где — магнитная постоянная .

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ 0 μ H в системе СИ (см. Магнитная проницаемость , также см. Магнитная восприимчивость ).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации , а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ 0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ , что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Виды магнетиков Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.

По мере усиления поля проявляется явление гистерезиса , когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость m н - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость m max - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения.

Остаточная индукция B ост - индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Н с - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

Магнитные моменты атомов

Магнитный момент Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной (), тогда электроны, протоны и нейтроны имеют спин равный ½ . В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину. Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле.

Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули , по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов. В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле.

Парамагнитные материалы состоят из атомов, магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля. Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия W м магнитного поля катушки с индуктивностью L, создаваемого током I, равна

W м = LI 2 / 2

Лабораторная работа № 9

Изучение магнитного поля соленоида

1.Цель работы

Изучение распределения магнитного поля конечного соленоида при помощи явления электромагнитной индукции.

2.Краткое теоретическое введение

Соленоид – это цилиндрическая катушка, обмотка которой состоит из большого числа витков проволоки, образующих винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов, имеющих общую ось. Индукция магнитного поля в любой точке соленоида равно векторной сумме индукций магнитных полей, создаваемых в данной точке всеми витками. Вектор магнитной индукций в точке, лежащей на оси соленоида конечных размеров, направлен вдоль оси, а его значение вычисляется по формуле:

, (1)

где L - длина соленоида, R –радиус его витков,

Х – расстояние от края соленоида до исследуемой точки,

I – сила тока, протекающего по виткам,

n - число витков на единицу длина соленоида,

Относительная магнитная проницаемость среды,

μ0 - магнитная постоянная.

Единицей измерения индукции магнитного поля в системе СИ является «Тесла»: [B] = Тл

Из выражения (1) следует, что индукция магнитного поля максимальна на оси соленоида в точке, соответсвующей его середине:

. (2)

Если длина соленоида намного превышает радиус его витков, то соленоид можно условно считать бесконечно длинным. Магнитное поле внутри бесконечно длинного соленоида является однородным, при этом его индукция равна:

. (3)

Распределение магнитного поля соленоида конечной длины является более сложным по сравнению с простейшим случаем бесконечно длинного соленоида. Для многих других конфигураций магнитного поля, теоретический расчет которых затруднителен, предпочтительней определять магнитную индукцию экспериментально.

Величину можно измерить, использую, например, явление электромагнитной индукции. Если в некоторую точку магнитного поля поместить не большой контур, то при изменениях магнитного потока, пронизывающего этот контур, в последнем возникнет э. д.с., индукции, электромагнитной индукции (закону Фарадея), имеем:

В настоящей работе в качестве контура используется измерительная катушка (ИК), состоящая из большого количества витков N. Возникающая в ней э. д.с. индукции складывается из э. д.с. отдельных витков, т.е.

, (5)

где S –площадь поперечного сечения ИК.

Если в обмотке соленоида протекает переменный ток, то магнитное поле, создаваемое этим током, также является переменным, т. е.

, (6)

где В0 - амплитудное значение магнитной индукции,

– циклическая частота переменного тока.

Из формул (5) и (6) следует, что э. д.с. индукции, наведения ИК, изменяется во времени по закону:

e = e0 sin(wt) (7)

где e0 - амплитудное значение э. д.с., равное

e0 = NSwB0 = kB0 , (8)

Коэффициент называется градуировочной постоянной измерительной установки. Ее можно определить экспериментально.

Вольтметр, используемый для измерения э. д.с. индукции e, показывает эффективное значение переменного напряжения U, связанное с амплитудным значением э. д.с. (e0) соотношением:

https://pandia.ru/text/80/314/images/image011_30.gif" width="92" height="26"> . (10)

Из формул (9) и (10) следует, что отношение эффективного напряжения в любой точке нахождения ИК к его максимальному эффективному значению в центре соленоида равно отношению магнитной индукции в этой точке к максимальной магнитной индукции в центре соленоида:

. (11)

Поэтому распределение индукции магнитного поля соленоида можно изучать, не вычисляя градуировочную постоянную измерительной установки k.

3.Описание экспериментальной установки.

Внутри исследуемого соленоида при помощи стрежня с указателем, скользящим вдоль шкалы, может перемещаться измерительная катушка. Ось катушки параллельна оси соленоида. ИК можно передвигать и в направлении, перпендикулярном оси соленоида. Установка собирается по электрической схеме, приведенной на рис.1. Обмотка соленоида питается переменным током, измеряемым амперметром и изменяемым при помщи реостата. Э. д.с. индукции, возникающая в ИК, измеряется вольтметром. Это эффективное значение э. д.с. индукции, связанное с амплитудным значением индукции магнитного поля соленоида в точке нахождения ИК по формуле (9).

Измерения сводятся к фиксации координаты расположения ИК относительно соленоида и значения э. д.с. индукции, соответствующего этому положения.

4.Рабочее задание

Задание 4.1. Распределение индукции магнитного поля конечного соленоида.

4.1.1. Соберите электрическую цепь по схеме на рис.1

4.1.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.1.3. Изменяя положение ИК относительно соленоида, измерьте э. д.с. индукции. ИК следует перемещать вдоль оси соленоида 2 см, записывая для каждой координаты показания вольтметра в таблицу 4.1.

4.1.4..gif" width="84" height="45">, пользуясь расчетными формулами (1),(2). Сравните экспериментальную и теоретическую зависимости. Оцените систематическую погрешность проведенных измерений.

Таблица 4.1.

Задание 4.2. Зависимость величины магнитной индукции от силы тока в соленоиде.

4.2.1. Установите ИК в середине соленоида, где магнитное поле максимально.

4.2.2. Для разных значений тока в соленоиде измерьте э. д.с. индукции, наведенной в ИК. Для этих же значений тока рассчитайте значения магнитной индукции в центре конечного соленоида, пользуясь формулой (2). Результаты измерений и вычислений занесите в таблицу 4.2.

4.2.3. Постройте, желательно используя метод наименьших квадратов, график зависимости 0 " style="border-collapse:collapse;border:none">

Ток соленоида, Ic, A

Э. д.с. индукции

Индукция магнитного поля

Предел измерения

Показание прибора

Значение тока

Вmax, 10-3 Тл

Рис 1.Электрическая схема экспериментальной установки

Задание 4.3. Радиальное распределение индукции магнитного поля конечного соленоида.

4.3.1. Установите ИК на краю соленоида.

4.3.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.3.3. Передвигая Ик в направлении, перпендикулярном оси соленоида, измерьте э. д.с. индукции. ИК следует перемещать на 0,5 см, записывая для каждой координаты показания вольтметра в таблицу 4.3.

4.3.4. Зная значение градуировочной постоянной измерительной установки, вычислите по формуле (9) для каждой координаты значение индукции магнитного поля.

4.3.5. Постройте график зависимости В = f(х).

4.3.6. Установите ИК в центре соленоида.

4.3.7. Выполните для этого положения ИК задания п. п. 4.3.4.-4.3.6.

4.3.8. Перепишите в тетрадь следующие постоянные величины: длину соленоида, его диаметр, число его витков, длину измерительной катушки, ее диаметр, число ее витков.

Таблица 4.3.

В приложении приведена программа для обработки результатов лабораторной работы на ЭВМ. При вводе экспериментальных данных не забудьте перевести их в систему единиц СИ.

5.Контрольные вопросы

5.1. Что такое индукция магнитного поля?

5.2. Какие методы измерения магнитной индукции Вы знаете?

5.3. В чем заключается явление электромагнитной индукции?

5.4. Можно ли в данной работе использовать источник постоянного тока?

5.5. Какова природа возникновения э. д.с. индукции в ИК?

5.6. Выведите формулу индукции магнитного поля бесконечно длинного соленоида.

5.7. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?

5.8. Каков источник систематической погрешности?

6.Литература

6.1. Калашников.-М.:Наука, 1977.

6.2. Сивухин курс физики.-М.: Наука, 1977.

6.3. Матвеев и магнетизм. -М.: Высшая школа, 1991.

6.4. , Малов общей физики: Электричество и магнетизм.-М.: Просвещение, 1980.

Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой.

Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида.

Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока и числу витков, приходящихся на единицу длины соленоида, т. е. величине , где – полное число витков соленоида, – его длина. Таким образом,

где – коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной , § 11). Числовое значение магнитной постоянной

Впоследствии (§ 157) выяснится, что единица, в которой выражена величина , может быть названа «генри на метр», где генри (Гн) – единица индуктивности. Следовательно, можно написать, что

Гн/м. (126.2)

В силу своей простоты поле соленоида используется в качестве эталонного поля.

Для характеристики магнитного поля, кроме магнитной индукции , используют также векторную величину , называемую напряженностью магнитного поля. В случае поля в вакууме величины и просто пропорциональны друг другу:

так что введение величины не вносит ничего нового. Однако в случае поля в веществе связь с имеет вид

где – безразмерная характеристика вещества, называемая относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. При рассмотрении магнитных полей в веществе, например в железе, величина оказывается полезной. Подробнее об этом идет речь в § 144.

Из формул (126.1) и (126.3) следует, что в случае, когда соленоид находится в вакууме, напряженность магнитного поля

т. е., как говорят, равна числу ампер-витков на метр.

С помощью измерений магнитной индукции поля, создаваемого током, текущим по очень длинному тонкому прямолинейному проводнику, было установлено, что

где – сила тока в проводнике, – расстояние от проводника.

Согласно формуле (126.3) напряженность поля, создаваемого прямолинейным проводником, находящимся в вакууме, равна

В соответствии с формулой (126.7) единица напряженности магнитного поля носит название ампер на метр (А/м). Один ампер на метр есть напряженность магнитного поля на расстоянии одного метра от тонкого прямолинейного бесконечно длинного проводника, по которому течет ток силой ампер.

126.1. Магнитная индукция поля внутри соленоида равна 0,03 Тл. Какой силы ток проходит в соленоиде, если длина его равна 30 см, а число витков равно 120?

126.2. Как изменится магнитная индукция поля внутри соленоида из предыдущей задачи, если соленоид растянуть до 40 см или сжать его до 10 см? Что произойдет, если сложить соленоид пополам так, чтобы витки одной его половины легли между витками второй половины?

126.3. По соленоиду длины 20 см, состоящему из 60 витков диаметра 15 см, идет ток. Что произойдет с магнитным полем внутри соленоида, если уменьшить диаметр его витков до 5 см, сохранив прежнюю длину соленоида и использовав тот же самый кусок провода? Каким способом можно получить прежнюю магнитную индукцию поля, сохранив неизменными длину и диаметр витков соленоида?

126.4. Внутри соленоида длины 8 см, состоящего из 40 витков, расположен другой соленоид с числом витков на 1 см длины соленоида, равным 10. Через оба соленоида проходит одинаковый ток 2 А. Какова магнитная индукция поля внутри обоих соленоидов, если северные концы их обращены: а) в одну сторону; б) в противоположные стороны?

126.5. Имеются три соленоида длины 30 см, 5 см и 24 см с числом витков 1500, 1000 и 600 соответственно. По первому соленоиду идет ток 1 А. Какие токи должны идти по второму и третьему соленоидам, чтобы магнитная индукция внутри всех трех соленоидов была одной и той же?

126.6. Вычислите магнитную индукцию поля в каждом из соленоидов задачи 126.5.

126.7. В соленоиде длины 10 см нужно получить магнитное поле с напряженностью, равной 5000 А/м. При этом ток в соленоиде должен быть равен 5 А. Из скольких витков должен состоять соленоид?

126.8. Какова магнитная индукция поля внутри соленоида, длина которого равна 20 см, а полное число витков равно 500, при токе 0,1 А? Как изменится магнитная индукция, если соленоид будет растянут до 50 см, а ток уменьшен до 10 мА?



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта