Главная » 2 Распространение » Закон всемирного тяготения кто. Закон и сила всемирного тяготения

Закон всемирного тяготения кто. Закон и сила всемирного тяготения

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) - закон, описывающий гравитационное взаимодействие в рамках классической механики . Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила F {\displaystyle F} гравитационного притяжения между двумя материальными точками массы m 1 {\displaystyle m_{1}} и m 2 {\displaystyle m_{2}} , разделёнными расстоянием R {\displaystyle R} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

F = G ⋅ m 1 ⋅ m 2 R 2 {\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over R^{2}}}

Здесь G {\displaystyle G} - гравитационная постоянная , равная 6,67408(31)·10 −11 м³/(кг·с²) :.

Энциклопедичный YouTube

    1 / 5

    ✪ Введение в закон всемирного тяготения Ньютона

    ✪ Закон Всемирного тяготения

    ✪ физика ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ 9 класс

    ✪ Про Исаака Ньютона (Краткая история)

    ✪ Урок 60. Закон всемирного тяготения. Гравитационная постоянная

    Субтитры

    Теперь немного узнаем о тяготении, или гравитации. Как вы знаете, тяготение, особенно в начальном или даже в довольно углубленном курсе физики - это такое понятие, которое можно вычислить и узнать основные параметры, которыми оно обусловлено, но на самом деле тяготение не вполне поддается пониманию. Пусть даже вы знакомы с общей теорией относительности - если вас спросят, что такое тяготение, вы можете ответить: это искривление пространства-времени и тому подобное. Однако все равно трудно получить интуитивное представление, по какой причине два объекта, только лишь потому, что у них есть так называемая масса, притягиваются друг к другу. По крайней мере, для меня это мистика. Отметив это, приступим к рассмотрению понятия о тяготении. Будем делать это, изучая закон всемирного тяготения Ньютона, справедливый для большинства ситуаций. Этот закон гласит: сила взаимного гравитационного притяжения F между двумя материальными точками, обладающими массами m₁ и m₂, равна произведению гравитационной постоянной G на массу первого объекта m₁ и второго объекта m₂, деленному на квадрат расстояния d между ними. Это довольно несложная формула. Попробуем преобразовать ее и посмотрим, нельзя ли получить какие-то хорошо знакомые нам результаты. Используем эту формулу для расчета ускорения свободного падения вблизи поверхности Земли. Давайте нарисуем сперва Землю. Просто чтобы понимать, о чем мы с вами говорим. Это наша Земля. Допустим, нам надо вычислить гравитационное ускорение, действующее на Сэла, то есть на меня. Вот он я. Попытаемся применить это уравнение для расчета величины ускорения моего падения к центру Земли, или к центру масс Земли. Величина, обозначенная заглавной буквой G - это универсальная гравитационная постоянная. Еще раз: G - это универсальная гравитационная постоянная. Хотя, насколько я знаю, хоть я и не эксперт в этом вопросе, мне кажется, ее значение может меняться, то есть это не настоящая постоянная, и я предполагаю, что при разных измерениях ее величина различается. Но для наших потребностей, а также в большинстве курсов физики, это постоянная, константа, равная 6,67 * 10^(−11) кубических метров, деленных на килограмм на секунду в квадрате. Да, ее размерность выглядит странно, но вам достаточно понять, что это - условные единицы, необходимые, чтобы в результате умножения на массы объектов и деления на квадрат расстояния получить размерность силы - ньютон, или килограмм на метр, деленный на секунду в квадрате. Так что об этих единицах измерения не стоит беспокоиться: просто знайте, что нам придется работать с метрами, секундами и килограммами. Подставим это число в формулу для силы: 6,67 * 10^(−11). Поскольку нам нужно знать ускорение, действующее на Сэла, то m₁ равна массе Сэла, то есть меня. Не хотелось бы разоблачать в этом сюжете, сколько я вешу, так что оставим эту массу переменной, обозначив ms. Вторая масса в уравнении - это масса Земли. Выпишем ее значение, заглянув в Википедию. Итак, масса Земли равна 5,97 * 10^24 килограммов. Да, Земля помассивнее Сэла. Кстати, вес и масса - разные понятия. Итак, сила F равна произведению гравитационной постоянной G на массу ms, затем на массу Земли, и все это делим на квадрат расстояния. Вы можете возразить: какое же расстояние между Землей и тем, что на ней стоит? Ведь если предметы соприкасаются, расстояние равно нулю. Здесь важно понять: расстояние между двумя объектами в данной формуле - это расстояние между их центрами масс. В большинстве случаев центр масс человека расположен примерно в трех футах над поверхностью Земли, если человек не слишком высокий. Как бы там ни было, мой центр масс может находиться на высоте три фута над землей. А где центр масс Земли? Очевидно, в центре Земли. А радиус Земли у нас равен чему? 6371 километр, или примерно 6 миллионов метров. Поскольку высота моего центра масс составляет около одной миллионной расстояния до центра масс Земли, то в данном случае ею можно пренебречь. Тогда расстояние будет равно 6 и так далее, как и все остальные величины, нужно записать его в стандартном виде - 6,371 * 10^6, поскольку 6000 км - это 6 миллионов метров, а миллион - это 10^6. Пишем, округляя все дроби до второго знака после запятой, расстояние равно 6,37 * 10^6 метров. В формуле стоит квадрат расстояния, поэтому возведем все в квадрат. Попробуем теперь упростить. Вначале перемножим величины в числителе и вынесем вперед переменную ms. Тогда сила F равна массе Сэла на всю верхнюю часть, вычислим ее отдельно. Итак, 6,67 умножить на 5,97 равно 39,82. 39,82. Это произведение значащих частей, которое теперь следует умножить на 10 в нужной степени. 10^(−11) и 10^24 имеют одинаковое основание, поэтому для их перемножения достаточно сложить показатели степени. Сложив 24 и −11, получим 13, в итоге имеем 10^13. Найдем знаменатель. Он равен 6,37 в квадрате, умноженное на 10^6 также в квадрате. Как вы помните, если число, записанное в виде степени, возводится в другую степень, то показатели степеней перемножаются, а значит, 10^6 в квадрате равно 10 в степени 6, умноженной на 2, или 10^12. Далее вычислим квадрат числа 6,37 с помощью калькулятора и получим… Возводим 6,37 в квадрат. И это 40,58. 40,58. Осталось разделить 39,82 на 40,58. Делим 39,82 на 40,58, что равняется 0,981. Потом делим 10^13 на 10^12, что равно 10^1, или просто 10. А 0,981, умноженное на 10, это 9,81. После упрощения и несложных расчетов получили, что сила тяготения вблизи поверхности Земли, действующая на Сэла, равна массе Сэла, умноженной на 9,81. Что нам это дает? Можно ли теперь вычислить гравитационное ускорение? Известно, что сила равна произведению массы на ускорение, поэтому и сила тяготения просто равна произведению массы Сэла на гравитационное ускорение, которое принято обозначать строчной буквой g. Итак, с одной стороны, сила притяжения равна числу 9,81, умноженному на массу Сэла. С другой, она же равна массе Сэла на гравитационное ускорение. Разделив обе части равенства на массу Сэла, получим, что коэффициент 9,81 и есть гравитационное ускорение. И если бы мы включили в расчеты полную запись единиц размерности, то, сократив килограммы, увидели бы, что гравитационное ускорение измеряется в метрах, деленных на секунду в квадрате, как и любое ускорение. Также можно заметить, что полученное значение очень близко к тому, которое мы использовали при решении задач о движении брошенного тела: 9,8 метров в секунду в квадрате. Это впечатляет. Решим еще одну короткую задачу на тяготение, потому что у нас осталось пара минут. Предположим, у нас есть другая планета под названием Земля Малышка. Пусть радиус Малышки rS вдвое меньше радиуса Земли rE, и ее масса mS также равна половине массы Земли mE. Чему будет равна сила тяжести, действующая здесь на какой-либо объект, и насколько она меньше силы земного тяготения? Хотя, давайте оставим задачу на следующий раз, потом ее решу. До встречи. Subtitles by the Amara.org community

Свойства ньютоновского тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем . Это поле потенциально , и функция гравитационного потенциала для материальной точки с массой M {\displaystyle M} определяется формулой:

φ (r) = − G M r . {\displaystyle \varphi (r)=-G{\frac {M}{r}}.}

В общем случае, когда плотность вещества ρ {\displaystyle \rho } распределена произвольно, удовлетворяет уравнению Пуассона :

Δ φ = − 4 π G ρ (r) . {\displaystyle \Delta \varphi =-4\pi G\rho (r).}

Решение этого уравнения записывается в виде:

φ = − G ∫ ρ (r) d V r + C , {\displaystyle \varphi =-G\int {\frac {\rho (r)dV}{r}}+C,}

где r {\displaystyle r} - расстояние между элементом объёма d V {\displaystyle dV} и точкой, в которой определяется потенциал φ {\displaystyle \varphi } , C {\displaystyle C} - произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m {\displaystyle m} , связана с потенциалом формулой:

F (r) = − m ∇ φ (r) . {\displaystyle F(r)=-m\nabla \varphi (r).}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Точность закона всемирного тяготения Ньютона

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности . Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали , что приращение δ {\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r − (1 + δ) {\displaystyle r^{-(1+\delta)}} на расстояниях нескольких метров находится в пределах (2 , 1 ± 6 , 2) ∗ 10 − 3 {\displaystyle (2,1\pm 6,2)*10^{-3}} . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения .

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено .

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3 ⋅ 10 − 11 {\displaystyle 3\cdot 10^{-11}} .

Связь с геометрией евклидова пространства

Факт равенства с очень высокой точностью 10 − 9 {\displaystyle 10^{-9}} показателя степени расстояния в знаменателе выражения для силы тяготения числу 2 {\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса

Исторический очерк

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Роберваль , Гюйгенс и другие . Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире . Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда , Рена и Гука . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической . Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнано, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы . Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества . После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие : сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс . В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия , оказалась приближением более общей теории, применимым при выполнении двух условий:

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

Δ Φ = − 4 π G ρ {\displaystyle \Delta \Phi =-4\pi G\rho } .

Известно (Гравитационный потенциал), что в этом случае гравитационный потенциал имеет вид:

Φ = − 1 2 c 2 (g 44 + 1) {\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)} .

Найдем компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:

R i k = − ϰ (T i k − 1 2 g i k T) {\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)} ,

где R i k {\displaystyle R_{ik}} - тензор кривизны . Для мы можем ввести кинетический тензор энергии-импульса ρ u i u k {\displaystyle \rho u_{i}u_{k}} . Пренебрегая величинами порядка u / c {\displaystyle u/c} , можно положить все компоненты T i k {\displaystyle T_{ik}} , кроме T 44 {\displaystyle T_{44}} , равными нулю. Компонента T 44 {\displaystyle T_{44}} равна T 44 = ρ c 2 {\displaystyle T_{44}=\rho c^{2}} и, следовательно T = g i k T i k = g 44 T 44 = − ρ c 2 {\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}} . Таким образом, уравнения гравитационного поля принимают вид R 44 = − 1 2 ϰ ρ c 2 {\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}} . Вследствие формулы

R i k = ∂ Γ i α α ∂ x k − ∂ Γ i k α ∂ x α + Γ i α β Γ k β α − Γ i k α Γ α β β {\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R 44 {\displaystyle R_{44}} можно взять равным R 44 = − ∂ Γ 44 α ∂ x α {\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ 44 α ≈ − 1 2 ∂ g 44 ∂ x α {\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}} , R 44 = 1 2 ∑ α ∂ 2 g 44 ∂ x α 2 = 1 2 Δ g 44 = − Δ Φ c 2 {\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}} . Таким образом, приходим к уравнению Пуассона:

Δ Φ = 1 2 ϰ c 4 ρ {\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho } , где ϰ = − 8 π G c 4 {\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского , около 1,6⋅10 −35 ). Построение непротиворечивой квантовой теории гравитации - одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности , энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса

В 1665-1666 годах в Лондоне свирепствовала чума, и Ньютон много времени проводил на ферме в Вулсторпе. Ему было всего 24 года, но историки считают, что именно в это время Ньютон задумался о причинах тяжести, а следовательно, и о движениях планет и их спутников. Мысли эти привели его к созданию великого закона всемирного тяготения...

Закон всемирного тяготения сегодня известен каждому школьнику. Знают все и анекдот об упавшем яблоке, которое якобы явилось причиной открытия великого закона.

Но как связать падение яблока со всемирным тяготением?..

Рассказ о яблоке имеет некоторую степень достоверности. Современник Ньютона Стекелей писал в конце жизни: «После обеда погода была жаркая; мы перешли в сад и пили чай под тенью нескольких яблонь; были только мы вдвоем. Между прочим, сэр Исаак сказал мне, что точно в такой же обстановке он находился, когда впервые ему пришла в голову мысль о тяготении. Она была вызвана падением яблока, когда он сидел, погрузившись в думы. Почему яблоко всегда падает отвесно, подумал он про себя, почему не в сторону, а всегда к центру Земли? Должна существовать притягательная сила в материи, сосредоточенная в центре Земли. Если материя та тянет другую материю, то должна существовать пропорциональность ее количеству. Должна, следовательно, существовать сила, подобная той, которую мы называем тяжестью, простирающаяся по всей Вселенной...»

«Этот рассказ мало кому был известен, - пишет академик Вавилов, - но зато весь мир узнал похожий на анекдот пересказ Вольтера, слыхавшего об этом случае от племянницы Ньютона». Вольтеровский анекдот имел успех. А вскоре после смерти Ньютона предприимчивые наследники стали показывать и яблоню, явившуюся, так сказать, первопричиной открытия великого закона.

А теперь, прежде чем мы попытаемся одним глазком заглянуть в творческую лабораторию великого ученого, давайте вспомним современную формулировку закона всемирного тяготения: «Всякие два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними». На языке математики то же самое можно записать значительно короче F ~ M 1 M 2 /r ², где F - сила притяжения, M 1 и M 2 - массы притягивающихся тел, r ² - квадрат расстояния между тяготеющими массами. Если ввести коэффициент пропорциональности k , то формула получит совсем привычный вид: F = k (M 1 M 2 /r ²). Такой мы ее много раз видели в учебниках. Кажется все так просто, правда? Но это только тогда, когда закон уже открыт, когда к нему все привыкли, если и в голове ни у кого не умещается мысль, что было время, когда люди не знали такого простого и замечательного правила. Впрочем, ни одна теория не строится на пустом месте. После этой фразы мы и оказываемся прямо на пороге творческой лаборатории. О чем же знал Ньютон, размышляя над взаимной связью небесных тел? И что в этом направлении было сделано до него?

Помните «законодателя небес» Иоганна Кеплера? Три его закона произвели переворот во взглядах на Вселенную, заставили отказаться от привычного представления о планетных орбитах как правильных окружностях, разрушили представление о планетных сферах. Законы Кеплера просто и точно описывали движения небесных тел, но... в этих законах автор ни словом не обмолвился о причинах такого движения. Между тем мысли ученых людей XVII века все чаще и чаще обращались к такому вопросу: какая же это сила действует на планеты, заставляет их сворачивать со свободного прямолинейного пути и двигаться по эллипсам вокруг Солнца? В чем кроется причина этой силы? Какова природа ее?..

Сам Кеплер искал первопричину в Солнце. Силы, исходящие из могучего светила, должны были, по его мнению, подталкивать планеты. О природе этой «солнечной силы» астроном не задумывался. Со времен древних философов небо считалось чуждым Земле миром, и его законы не имели ничего общего с земными. А потому нечего было и думать об их природе. В небе властвовал бог! Лишь после того, как Галилей открыл закон инерции, объединивший движение тел в мировом пространстве и на земной поверхности, древняя точка зрения оказалась несостоятельной. Люди увидели, что земные и небесные явления подчиняются единым правилам. А не означало ли это, что и природа их была одной и той же? Из этого предположения напрашивается вывод еще более смелый: так ли уж отличается мир неба от мира Земли? А это уже очень походило на косвенное посягательство на авторитет бога.

Чтобы поддержать идею о единстве мира, надо было придумать механизм действия небесных сил, схожий с каким-то явлением на Земле. И вот французский естествоиспытатель и философ Рене Декарт (1596-1650) выдвигает гипотезу о существовании вихрей в мировом эфире. Подобно тому как знакомые всем вихри на Земле увлекают в своем движении пыль и сухие листья, могучие вихри эфира вовлекают в свое движение небесные тела. Гипотеза Декарта давала очень наглядную картину и пользовалась в свое время большой популярностью. Но и в ней ни слова не говорилось о том, какая это сила, - вихри, и все. Правда, многие догадывались о том, что главную роль здесь должны играть силы притяжения. Существовала очень любопытная гипотеза итальянского натуралиста Джованни Борелли (1608-1679). Одно время он изучал движение спутников Юпитера и пришел к выводу, что движение небесных тел объясняется взаимодействием двух сил: одной - направленной к центру вращения, и другой - от центра. Предположим, рассуждал Борелли, что планета находится на таком расстоянии от Солнца и движется с такой скоростью, что стремление от центра (сегодня мы называем его «центробежной силой») меньше силы притяжения. Тогда планета начнет приближаться к светилу по спирали, пока обе силы не уравновесятся. Но вот по инерции, открытой Галилеем, планета проскочила нейтральную орбиту и подошла к Солнцу ближе положенного. Тогда сохранившаяся скорость движения заставит центробежную силу преодолеть притяжение. И планета снова начнет удаляться от светила по спирали...

В гипотезе Борелли нет ни строчки математических доказательств. Он просто предполагает существование силы притяжения и из нее логически выводит криволинейное движение планеты.

Ньютон знал об этой гипотезе. Но отсутствие математики, отсутствие количественного анализа его не удовлетворяло. «Гипотез не изобретаю», - любил повторять английский ученый. Он только кратко формулировал результаты наблюдаемого действия. И эти формулировки, выведенные с помощью логики и математических расчетов, становились законами.

Работая над вопросами тяготения, Ньютон много внимания уделял теории движения Луны. Это очень сложная математическая задача, решить которую сначала нужно было принципиально. «Что удерживает Луну от падения на Землю и какая сила движет ею по орбите?» Ученый думал упорно и в конце концов понял, что никакой силы для движения тела в пустоте прилагать не нужно. Ведь именно это следует из первого закона движения Галилея. Если на тело не действует никакая сила, то оно продолжает двигаться по прямой с постоянной скоростью. Правда, в законе речь идет о прямолинейном движении. А Луна и планеты движутся криволинейно. Значит, сила нужна не для того, чтобы планеты двигались вообще, а лишь для того, чтобы искривить траекторию их движения! Что же это за сила? Откуда она взялась и чему равна? Не попробовать ли применить к полету по орбите второй закон движения: сила пропорциональна произведению массы на ускорение? Орбита Луны и других планет - почти окружность. Ускорение же равномерного движения по окружности всегда направлено к центру по радиусу и равно квадрату скорости, разделенному на этот радиус (v ²/R ). Тогда и сила должна иметь направление по радиусу к центру орбиты. То есть Луна в своем движении вокруг Земли должна постоянно испытывать ускорение в сторону нашей планеты. Иначе говоря, двигаясь свободно, прямолинейно в пространстве, Луна все время под действием какой-то силы падает на Землю. Падает, но никак не может упасть. Потому что в каждый последующий момент она, падая с прямолинейного пути, пролетает такое расстояние, что снова и снова оказывается на орбите. Так, как это показано на рисунке. А откуда берется эта сила? Вот тут-то и пришла очередь яблока.

Если Земля притягивает яблоко, заставляя его падать на поверхность планеты, то чем Луна хуже яблока? И Ньютон предположил, что именно тяжесть или - более привычно - вес Луны удерживает ее на орбите, не дает улететь в пространство. Дальше ход его рассуждений шел примерно в таком направлении: если бы Луна находилась, как яблоко, совсем близко к поверхности Земли, ускорение свободного падения у нее было бы такое же, как у яблока. То есть примерно 9,81 м/сек ². Но Луна - дальше. Какое же ускорение должна она иметь на своей орбите?.. Тут нужно было посчитать! Но для точных расчетов требовались и точные сведения об орбите Луны, о периоде ее обращения... Ньютон же наблюдениями не занимался. Приходилось обращаться с просьбами к королевскому астроному Флемстиду, который как раз в это время скрупулезно наблюдал движение нашего спутника. Однако упрямый и желчный королевский астроном вовсе не был намерен потакать «причудам мистера Ньютона», как он неоднократно выражался. Это приводило к осложнениям и неприятным спорам. Ньютон споров не любил. И тем не менее буквально ни один его самостоятельный научный шаг не обходился без дискуссии.

Вопросы связи силы тяжести с законами Кеплера стояли в центре внимания всего ученого общества того времени и вызывали к себе весьма ревнивое отношение со стороны многих джентльменов.

Однажды астроном Галлей встретился в лондонской кофейне с архитектором Реном - строителем знаменитого собора святого Павла в Лондоне - и Робертом Гуком, физиком, математиком, экспериментатором и теоретиком, которого вечно обуревали тысячи идей и ни одну из них он не доводил до конца. Разговор зашел о науке, о научных проблемах. Оказалось, что все трое отдали немало времени и сил одной и той же задаче - доказательству, что под действием силы тяжести, убывающей обратно пропорционально квадрату расстояний, движение небесных тел должно совершаться по эллиптическим орбитам. Но никто успехом похвастаться не мог. Тогда Рен, самый богатый из всех троих, чисто в английском вкусе, предложил на пари выплатить премию тому, кто решит проблему.

Как-то, зайдя к Ньютону, Галлей рассказал тому о споре и о пари, заключенном в кофейне. А когда через некоторое время случай снова привел молодого астронома в Кембридж, Ньютон сообщил ему, что решение задачи у него в руках. И ровно через месяц Галлей получил от Ньютона рукопись краткого мемуара с объяснением решения. По просьбе Ньютона мемуар этот не был напечатан в журнале Королевского общества, но его зарегистрировали на случай споров о приоритете.

Естественно, мы не можем восстановить все детали сложного логического пути, которым Ньютон пришел к закону всемирного тяготения. Но если вы любите математику, то можете попробовать самостоятельно разобраться в ходе конечных рассуждений великого физика. Для этого подведем краткий итог того, что было известно.

1. Ньютон знал примерное расстояние от Земли до Луны - шестьдесят земных радиусов.

2. Известно ему было и ускорение свободного падения тела у поверхности Земли - 9,81 м/сек ².

3. Знал он и замечательные законы Кеплера и Галилея.

4. Наконец, идея того, что тяготение между двумя небесными телами должно быть обратно пропорционально квадрату расстояния между ними, витала в воздухе.

Вряд ли можно проследить точно тот путь, по которому мысль гения стремится к поставленной перед собой цели. Но попробуем вывести закон всемирного тяготения, используя только те данные, которые были известны Ньютону.

Итак, прежде всего некоторое допущение, для упрощения расчетов. Вы помните, что Кеплер доказал: орбиты планет - эллипсы. Но эллипсы с очень незначительными эксцентриситетами. Поэтому, ради простоты, примем их за окружности с Солнцем, расположенным точно в центре. И рассмотрим движение какой-то планеты, делающей один оборот по круговой орбите.

Прежде всего вспомним несколько формул из курса физики: скорость движения V прямо пропорциональна пути и обратно пропорциональна времени движения: V = S /T . Здесь путь планеты S (ее орбита) равен длине окружности S = 2πR . А время движения T есть время одного оборота (или период обращения). R - радиус-расстояние от планеты до Солнца. Подставив введенные обозначения, мы получим скорость движения планеты по орбите в виде формулы: V = 2πR /T .

Теперь найдем ускорение, которое испытывает наша планета, двигаясь по круговой орбите: a = 2πV /T .

Объединив два последних уравнения, получим формулу для ускорения в виде: a = 4π²R /T ².

Вот когда можно переходить к главной задаче - искать выражение для силы F , создающей найденное нами ускорение a .

Согласно закону, выведенному самим Ньютоном, сила равна произведению ускорения тела на его массу m 1 ; F = a ·m 1 . Подставив в эту формулу выражение для полученного нами ускорения, мы получим: F = (4π²R /T ²) ·m 1 . Чтобы исключить из уравнения период и выразить силу только через массу и расстояние, Ньютон использовал третий закон Кеплера, гласящий, что квадраты времен обращения планет вокруг Солнца относятся, как кубы их средних расстояний от Солнца. Что на языке математики имеет вид: R 1 3 /R 2 3 = T 1 2 /T 2 2 . Из этого закона легко понять, что отношение куба расстояния к квадрату периода обращения - величина постоянная. Обозначим ее k , тогда: R 1 3 /T 1 2 = k , или T ² = R 1 3 /k . Выражение T ² подставим в уравнение для силы притяжения: F = 4π²k (m 1 /R 1 2)). Мы получили математическое выражение закона обратных квадратов. Но это еще не закон всемирного тяготения. Еще нужно решить, что представляет собой множитель k .

Из третьего закона Кеплера видно, что величина этого множителя одна и та же для любой планеты, обращающейся вокруг Солнца. Значит, и зависеть этот коэффициент может только от Солнца как центрального тела системы. Тогда силу притяжения между Солнцем и нашей планетой с массой m 1 можно выразить тем же уравнением, но с солнечным коэффициентом k⊙:F = (4π²k ⊙/R 1 2)·m 1 .

Ньютон первым предположил, что величина 4π²k ⊙ пропорциональна массе Солнца, скажем, так: 4π²k ⊙ = Gm ⊙, где m ⊙ - масса Солнца, а G - коэффициент пропорциональности.

Таким образом, уравнение взаимного притяжения между Солнцем и выбранной нами планетой будет иметь вид: F 1 = G ((m ⊙·m 1)/R 1 2). Точно так же для Солнца и Земли: F 2 = G ((m ⊙·m ⊕)/R ⊕ 2).

Но чем отличается, например, система Солнце - Земля от системы Земля - Луна? В принципе ничем. То же центральное тело, вокруг которого обращается другое небесное тело. Значит, для системы Земля - Луна тоже должно быть справедливо уравнение, выведенное раньше.

Только массы и расстояния нужно подставить в него другие...

Наконец наступила пора перейти к закону всемирного тяготения и написать его в общем виде для любых двух тел во Вселенной: F = G ((m 1 ·m 2)/R 2).

Вот какой примерно путь нужно было проделать только формально, чтобы, имея под рукой готовые формулы и точно зная направление, сформулировать величайший фундаментальный закон природы.

Зная расстояние от Земли до Луны и ускорение силы тяжести на поверхности нашей планеты, Ньютон нашел ускорение Луны. Сравнив его с точными наблюдениями Флемстида, он убедился, что его результат весьма близок к истине.

Год спустя после появления мемуара «О движении», в большой степени благодаря убеждениям и уговорам Галлея, появилась сначала рукопись, а затем и первая книга манускрипта, названного Ньютоном «Математические начала натуральной философии».

Сэр Исаак разработал руду, которую я откопал, - ядовито, хотя и не без горечи заметил Флемстид.

Если он откопал руду, то я смастерил из нее золотое кольцо, - отпарировал Ньютон, который, несмотря на нелюбовь к спорам, еще меньше любил, когда о его работе отзывались без должного уважения и последнее слово в дискуссии оставалось за противником.

Ньютоновские «Начала» были удивительной книгой. «По убедительности аргументации, подкрепленной физическими доказательствами, книга эта не имеет себе равных во всей истории науки, - пишет Джон Бернал. - В математическом отношении ее можно сравнить только с «Элементами» Евклида, а по глубине физического анализа и влиянию на идеи того времени - только с «Происхождением видов» Дарвина».

Решающий вывод о том, что сила, заставляющая тела падать на Землю, и сила, заставляющая Луну обращаться вокруг нашей планеты, одна и та же, имел большое философское значение.

Три основных закона механики и закон всемирного тяготения оказались универсальными для Земли и для неба. Это еще раз подчеркивало единство мира, который некогда делился философами на две несовместимые части - земную и небесную.

Принципы Ньютона без дополнительных условий, гипотез и допущений объясняли движения тел в космосе и на Земле. И все-таки теория всемирного тяготения не сразу завоевала всеобщее признание. Во Франции, да и в самой Англии, еще долгое время пользовались учебниками, построенными на взглядах Декарта.

В заключение можно сказать, что скорее Луна, а не знаменитое яблоко, подтолкнула мысль Ньютона к созданию теории тяготения. Но только «подтолкнула», потому что одна лишь теория движения Луны дать закон ВСЕМИРНОГО тяготения не могла. Она была бы недостаточно убедительной. Следовало распространить выведенный закон и на остальные небесные тела. Но для этого надо было доказать, что планеты удерживает на орбитах та же сила. Исходя из гипотезы о всемирном притяжении Ньютон математически строго вывел законы Кеплера и подтвердил стройную кеплеровскую картину мироздания. Отныне одним и тем же законам подчинялись и планеты, и их спутники, даже редкие гости - «вестники ужаса» - кометы. Отныне все небесные тела двигались по единой рациональной схеме.

Согласитесь, дорогой читатель, что большего требовать от человека, даже такого, как Ньютон, невозможно.

Исследуя движение Луны, он пришел к выводу, что на нее действует не только земное притяжение. Многие силы отклоняли ее с пути равномерного кругового движения. Так, при новолунии наш спутник на расстояние диаметра орбиты ближе к Солнцу, чем при полнолунии. Значит, сила солнечного притяжения меняется, и это ведет к замедлению и ускорению движения Луны в течение месяца. Кроме того, зимой Земля ближе к Солнцу, чем летом. Это тоже влияет на скорость движения Луны, но уже с годичным периодом.

Изменение солнечного притяжения меняет эллиптичность лунной орбиты, отклоняет ее плоскость, заставляя ее медленно вращаться.

Разработать теорию движения Луны полностью, во всех деталях, то есть рассчитать траекторию нашего спутника с учетом притяжения не только Земли, но и Солнца, чрезвычайно трудно. Это знаменитая в истории астрономии «проблема трех тел»... Задача, сыгравшая огромную роль в развитии и становлении теоретической «астрономии тяготения», превратившейся в широкую отрасль науки, называемую «небесной механикой».

Открыть свои замечательные законы движения планет удалось Кеплеру лишь потому, что масса Солнца во много раз больше массы всех планет (примерно в 750 раз). Поэтому влияние планет друг на друга несравнимо меньше, чем влияние центрального светила. Фактически, в первом приближении, рассматривать движение каждой планеты можно вообще не обращая внимания на существование остальных членов солнечного семейства. Только планета и Солнце, и тогда это - «задача двух тел», решение которой относительно несложно.

Слово «относительно» здесь не случайно, потому что вы, наверное, помните, что Кеплер, решив задачу практически, так и не смог объяснить, почему небесные тела движутся по эллиптическим орбитам. Ньютон заново четко сформулировал условия «задачи двух тел» и очень изящно решил ее. Он доказал, что «под действием силы взаимного тяготения, изменяющейся обратно пропорционально квадрату расстояния, одно тело будет описывать вокруг другого конические сечения - эллипс, параболу или гиперболу, в зависимости от начальной скорости».

Решение Ньютона приближенное. Стоит добавить в условия влияние третьего тела, как задача неимоверно усложнится. Ньютон первым понял это, и именно ему принадлежит честь формулировки «задачи трех тел». Однако решить ее не смог даже он.

Немало людей бралось за нее в дальнейшем, но лишь в 1912 году финскому математику Сундману удалось получить впервые решение «задачи трех тел» в виде так называемых бесконечных рядов. К сожалению, это сложное теоретическое решение почти ничего не дает практике. Между тем сегодня, в век развития космонавтики, «задача трех тел» приобретает особое значение. И, судя по успехам полетов советских автоматических межпланетных станций, вы понимаете, что она решается, и решается неплохо. Но достигается это большим трудом и только с помощью таких замечательных помощников человека, как электронные счетные машины.

Решил Ньютон и другую, чрезвычайно интересную задачу. Он сравнил силу притяжения одних тел другими с силой притяжения Луны Землей и узнал, например, во сколько раз Солнце или Юпитер тяжелее Земли. Он оценил массы Солнца и всех известных ему планет и их спутников в единицах массы нашей планеты! Это было замечательным достижением гениального ученого.

Не все идеи Ньютона получали безоговорочное признание. Интересен спор, который возник между английскими и французскими астрономами по поводу формы Земли. Начался он с того, что в 1671 году французская астрономическая экспедиция отправилась к экватору, чтобы в условиях темного безоблачного неба наблюдать звезды. Но славу экспедиции принесло другое, совершенно случайное открытие. Для измерений времени при наблюдениях астроном Рише - один из членов экспедиции - захватил с собой из Франции маятниковые часы. Прибыв в Кайенну, Рише заметил, что часы стали отставать в сутки на две минуты. Пришлось укоротить маятник. Однако по возвращении в Париж часы «побежали», опережая истинное время опять на две минуты. Рише задумался и пришел к выводу, что на экваторе центробежная сила уменьшает тяготение.

Ньютон не мог согласиться с таким утверждением. Зная радиус Земли и скорость ее вращения, центробежную силу трудно вычислить. Она получалась значительно меньшей, чем нужно для объяснения опыта с маятником.

Обдумывая этот вопрос, Ньютон произвел мысленный эксперимент. «Предположим, - говорил он себе, - что у нас есть две шахты. Одна - от полюса к центру Земли, другая - от экватора к центру. Заполним обе шахты водой. Однако, поскольку Земля вращается, на экваторе действует еще и центростремительная сила. Значит, вес воды в экваториальной шахте должен быть больше, чем в полярной. А это значит, что и воды там должно быть больше. Но если обе шахты - от поверхности до центра, следовательно, радиус Земли по экватору должен быть больше радиуса полярного». Ньютон подсчитал разницу и получил примерно 24 километра . Это навело его на мысль, что некогда, на заре возникновения, Земля была пластичной. В результате вращения ее тело сплюснулось...


Примерно в то же время французские астрономы предприняли измерение дуги меридиана. Экспедиции вели работы на разных широтах и в результате пришли к выводу, что Земля не сплюснута у полюсов, а, наоборот, вытянута. Французы вообще довольно долго не признавали взглядов Ньютона, отдавая предпочтение философии своего соотечественника Декарта. В конце концов, разногласия точек зрения зашли так далеко, что вызвали насмешку остроумного Вольтера. Вот что писал он в 1730 году в своих «Письмах из Лондона об английском»:

«Француз, который попадет в Лондон, обнаруживает, что все совершенно изменилось в философии - точно так же, как и во всем другом. Там он оставил заполненный мир, здесь - нашел его пустым. В Париже вы видели Вселенную, наполненную круговыми вихрями из тончайшей материи, в Лондоне вы ничего этого не видите. У французов давление Луны вызывает приливы на море, у англичан море притягивается к Луне...

Кроме того, вы можете заметить, что Солнце, которое во Франции в это дело не вмешивается, здесь вносит в него свою четвертую часть. У картезианцев все происходит благодаря давлению, которое, правда, само непонятно. У месье Ньютона все происходит благодаря притяжению, причина которого известна ничуть не лучше. В Париже Земле придают форму дыни, в Лондоне она сплюснута у полюсов».

Впрочем, этот сарказм не помешал Вольтеру в специальном сочинении «Элементы философии Ньютона» блестяще рассказать о сути ньютоновской теории и стать горячим пропагандистом идей Ньютона у себя на родине.

Для разрешения споров о форме нашей планеты понадобились новые тщательные исследования и измерения Земли. Французская академия снарядила две новые экспедиции. Одну - в Перу, другую - в Лапландию. Результаты их работ подтвердили правоту Ньютона.

С помощью таких же рассуждений доказал Ньютон и сплюснутость Юпитера. Более того, поскольку гигантская планета вращается быстрее Земли, то и сжата она у полюсов должна быть сильнее.

Прошло всего четыре года после выхода «Начал» - и это утверждение Ньютона было подтверждено путем наблюдений...

Ньютон занимался и вопросом о «маленьких лунах».


Проделаем еще один мысленный эксперимент. На вершине горы установим пушку и начнем из нее стрелять, посылая снаряды параллельно земной поверхности. Если заряд мал, снаряд летит медленно и падает, как нам кажется, на поверхность по параболе, фокус которой находится близко к вершине горы. На самом же деле траектория падения снаряда - эллипс, второй фокус которого в центре Земли. Различить параболу и эллипс на малом участке траектории очень трудно.

Если увеличить заряд и придать снаряду большую скорость, он полетит вокруг Земли по круговой орбите, наподобие Луны, став спутником нашей планеты. Если начальную скорость полета еще и еще увеличивать, траектория снаряда будет представлять собой последовательно сначала эллипс, с ближайшим фокусом в центре Земли, потом гигантскую параболу и наконец гиперболу. В последнем случае снаряд навсегда покинет Землю и уйдет в космическое пространство. Скорость «убегания» нетрудно рассчитать. И вы, конечно, сами понимаете, насколько такие расчеты важны в наше время.

Примечания

По современным данным разница между экваториальным и полярным радиусами Земли составляет чуть больше 21 километра.

Свои труды Декарт подписывал на латинский манер именем Картезий, потому и называли сторонников его учения - картезианцами.

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

В курсе физики 7 класса вы изучали явление всемирного тяготения. Оно заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании сил всемирного тяготения (их называют также гравитационными) пришёл Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца.

Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, т. е. формулу для расчёта гравитационной силы между двумя телами.

Закон всемирного тяготения гласит:

  • два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними

где F - модуль вектора силы гравитационного притяжения между телами массами m 1 и m 2 , г - расстояние между телами (их центрами); G - коэффициент, который называется гравитационной постоянной .

Если m 1 = m 2 = 1 кг и г = 1 м, то, как видно из формулы, гравитационная постоянная G численно равна силе F. Другими словами, гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга. Измерения показывают, что

G = 6,67 10 -11 Нм 2 /кг 2 .

Формула даёт точный результат при расчёте силы всемирного тяготения в трёх случаях: 1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (рис. 32, а); 2) если оба тела однородны и имеют шарообразную форму (рис. 32, б); 3) если одно из взаимодействующих тел - шар, размеры и масса которого значительно больше, чем у второго тела (любой формы), находящегося на поверхности этого шара или вблизи неё (рис. 32, в).

Рис. 32. Условия, определяющие границы применимости закона всемирного тяготения

Третий из рассмотренных случаев является основанием для того, чтобы рассчитывать по приведённой формуле силу притяжения к Земле любого из находящихся на ней тел. При этом в качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на ее поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.

По третьему закону Ньютона яблоко, висящее на ветке или падающее с неё с ускорением свободного падения, притягивает к себе Землю с такой же по модулю силой, с какой его притягивает Земля. Но ускорение Земли, вызванное силой её притяжения к яблоку, близко к нулю, поскольку масса Земли несоизмеримо больше массы яблока.

Вопросы

  1. Что было названо всемирным тяготением?
  2. Как иначе называются силы всемирного тяготения?
  3. Кто и в каком веке открыл закон всемирного тяготения?
  4. Сформулируйте закон всемирного тяготения. Запишите формулу, выражающую этот закон.
  5. В каких случаях следует применять закон всемирного тяготения для расчёта гравитационных сил?
  6. Притягивается ли Земля к висящему на ветке яблоку?

Упражнение 15

  1. Приведите примеры проявления силы тяготения.
  2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле; к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Если силы различны, то какая больше и во сколько раз? Все ответы обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны.)
  3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.
  4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз - увеличивалась.
  5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее - к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта