Главная » 3 Как собирать » Цифровой ряд золотого сечения. Пояснение о рекурсии

Цифровой ряд золотого сечения. Пояснение о рекурсии

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Число ФИ или латинскими буквами PHI – это число, которое обозначает все красивое во Вселенной. Что же это за необычное число, и какие другие названия у него существуют?

Почему это число называют золотым сечением?

В древней Греции был один скульптор Фидий, который обладал удивительным талантом. Все восхищались его скульптурами и пытались разгадать, как этому творцу удается каждый раз делать настоящее произведение искусства. Позже стало известно, что в каждой своей скульптуре Фидий придерживается определенного числа в пропорциях.

Затем оказалось, что не только этот творец использовал в своем искусстве это необыкновенное число. Оно было обнаружено в произведениях искусства художника Рафаэля, русского художника Шишкина, число гнездилось в музыкальных произведениях Бетховена, Шопена и Чайковского. Знаменитая «Джаконда» Леонардо Да Винчи тоже содержит в себе это число. Его еще называют золотым сечением.

ЧИСЛА ФИБОНАЧЧИ УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ [Число ФИ и Золотое сечение]

Тайна числа 1.618034 - самое ВАЖНОЕ число в мире

ЗОЛОТОЕ СЕЧЕНИЕ

По математическим меркам число ФИ равно 1.618, его получил исследователь Фибоначчи. Этот ученый в результате своих исследований пришел к тому, что все числа имеют четкую последовательность. Каждый следующий член, начиная с третьего числа, несет в себе сумму двух прошлых членов. А частное двух соседних чисел представляет собой максимально приближено к числу 1.618, то есть к тому самому числу ФИ.

Золотое сечение и пропорции человеческого тела

Наверное, все видели знаменитую картину Леонардо Да Винчи, где расчерчено человеческое тело. Именно при помощи этой знаменитой схеме Леонардо доказал, что человеческое тело сотворено по принципу золотого сечения. Пропорции тела человека всегда дают то самое число красоты ФИ.

При желании такую теорию можно легко проверить на практике. Нужно измерить при помощи сантиметра длину от плеча до кончика самого длинного пальца, а потом поделить его на длину от локтя до кончика того же самого пальчика. Удивительно, но в результате вы получите как раз 1.618! То самое число красоты. Это не единственный пример. Измерьте расстояние от верхней части бедра, поделите его на длину от колена до пола, вы получите такое же значение. Таким образом, легко доказать, человек полностью состоит из божественной пропорции.

Кроме того на теле человека легко можно обнаружить признак того самого золотого сечения. Это наш пупок. Интересно отметить, что замеры тела мужчин чуть больше приближены к заветному числу. Это примерно 1.625. Женские же пропорции больше подходят под значение 1.6.

Секреты пирамид

На протяжении многих лет люди пытались открыть загадку Пирамиды в Гизе. Но на этот раз пирамида интересовала человечество не в качестве склепа, а как уникальная комбинация числовых значений. Эту пирамиду возвел мастер, который обладает удивительной изобретательностью, он не пожалел труда и времени для этого произведения. На ее сотворение были пущены лучшие архитекторы, которых удалось найти. Долго современные ученые недоумевали как древним египтянам, у которых не было письменности, удалось придумать такой сложный геометро-математический ключ. После длительных просчетов оказалось, что и в этом случае не обошлось без золотого сечения и числа ФИ. Как раз на этом принципе и основана эта пирамида. Некоторые современные ученые считают, что посредством этого произведения древние египтяне пытались передать своим современникам секрет природной красоты и гармонии.

Не исключительно в Гизе существуют пирамиды, которые выстроены, пирамиды, которые расположены в Мексике, тоже выстроены таким образом. Именно поэтому современные исследователи приходят к выводу, что пирамиды на этих территориях были построены народом, который имеет общие корни.

Число ФИ в космосе

Астроном из Германии Тициус в XVIII столетии заметил, что ряд числовых значений Фибоначчи присутствует и в расстоянии между планетами всей солнечной системы. В этом не было бы ничего удивительного, если бы такая закономерность не шла в противостоянии с одним законом. Дело в том, что между Марсом и Юпитером планеты нет, так раньше думали астрономы. Однако после выведения этой закономерности, они тщательно исследовали эту область галактики и обнаружили там ряд астероидов. К сожалению, такое важное открытие произошло, когда тот самый Тициус уже ушел из жизни.

Теперь в астрономии при помощи числовых соотношений Фибоначчи представляют строение Галактик. Такой факт свидетельствует о независимости данных числовых соотношений от условий проявления, тем самым доказывается их универсальность.

Примеры числа ФИ из природы

Вот интересные примеры числа ФИ из самой природы:

  • Если взять пчелиный улий, пересчитать в нем количество пчел-мальчиков и пчел-девочек, потом мальчиков поделить на девочек, то каждый раз вы получить 1,618.
  • Семечки в подсолнухе расположены по принципу спирали, против направления часовой стрелки. Диаметр каждой спирали в подсолнухе равен следующей спирали тоже 1.618.
  • Тот же принцип со спиралями действует на панцире улитки.
  • Если провести анализ, как вытягивается к небу каждое растение, то можно заметить, что маленький росточек делает большой рывок вверх, затем следует остановка и выпускание одного листочка, который будет несколько короче первого росточка. Потом снова следует бросок вверх, но уже с меньшей силой. Если все это перевести в математическое значение, то первый бросок будет равен 100, второй 62, третий 38 единицам, четвертый 24 и так дальше. Это значит, что рывки в росте уменьшаются по тому же принципу золотого сечения.
  • Живородящая ящерица. В таком удивительном существе, как ящерица можно даже невооруженным взглядом заметить божественные пропорции. Соотношение длины хвоста этого животного равно длине всего остального тела этого существа, как 62 относится к 38.

Исходя из всех этих примеров, их на самом деле гораздо больше ученые делают вывод, что в мире растений и мире животных присутствует симметрия в отношении роста и движения. Золотое сечение проявлено здесь перпендикулярно к направлению роста.

Золотое сечение и теория Хаоса

Одни ученые заметили, что все в мире происходит хаотично. А другие подвели итог, что даже в хаосе, которому подвержен весь мир, можно найти свои конкретные закономерности. Эти самые закономерности тоже выражены в числовых значениях Фибоначчи. В каждом природном явлении присутствует свое золотое соотношение чисел. В этом смысле природа не может соревноваться с сухой и скучной геометрией.

Геометрия при всей своей точности и конструктивности не способна описать форму облака, дерева или горы. Облако не может быть представлено сферой, гора конусом, берег моря не может найти свое выражение в геометрической окружности. Кора дерева не может быть выражена этой наукой, потому что она не гладкая, а молния никогда не будет двигаться по прямой. Природные явления представляют собой не только более высокую степень, а совершенно новый уровень сложности. В природе представлены наборы масштабов, разные длины объектов, поэтому они способны закрывать неисчислимое количество потребностей. Такой набор масштабов и измерений несет название фрактал. Именно при помощи фракталов ученые не оставляют попытки сделать описание объектов, которые не доступны линейной геометрии. Это фрактальная геометрия. Каждый человек тоже представляет собой фрактал.

А еще интересно то, что число ФИ имеет бесконечную природу, это означает, что мы бесконечно можем делать новые открытия во Вселенной и в себе самом.

Окружающий мир, начиная с мельчайших невидимых частиц, и заканчивая далекими галактиками бескрайнего космоса, таит в себе много неразгаданных тайн. Однако над некоторыми из них уже приподнята завеса таинственности благодаря пытливым умам ряда ученых.

Одним из таких примеров является «золотое сечение» и числа Фибоначчи , составляющие его основу. Данная закономерность получила отображение в математическом виде и часто встречается в окружающей человека природе, еще раз исключая вероятность того, что она возникла в результате случая.

Числа Фибоначчи и их последовательность

Последовательностью чисел Фибоначчи называется ряд чисел, каждое из которых является суммой двух предыдущих:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Особенностью этой последовательности являются числовые значения, которые получаются вследствие деления чисел этого ряда друг на друга.

Ряд чисел Фибоначчи имеет свои интересные закономерности:

  • В ряду чисел Фибоначчи, каждое число разделенное на следующее будет показывать значение, стремящееся к 0,618 . Чем дальше числа от начала ряда, тем точнее будет соотношение. К примеру, цифры взятые в начале ряда 5 и 8 будут показывать 0,625 (5/8=0,625 ). Если же взять числа 144 и 233 , то они покажут соотношение 0.618 .
  • В свою очередь, если в ряду чисел Фибоначчи разделить число на предыдущее, то результат деления будет стремится к 1,618 . Для примера использованы те же цифры, что оговаривались выше: 8/5=1,6 и 233/144=1,618 .
  • Число поделенное на следующее за ним через одно, будет показывать значение, приближающееся к 0,382 . И чем дальше от начала ряда взяты цифры, тем точнее значение соотношения: 5/13=0,385 и 144/377=0,382 . Деление цифр в обратном порядке будет давать результат 2,618 : 13/5=2,6 и 377/144=2,618 .

Используя вышеописанные методы расчета и увеличивая промежутки между цифрами можно вывести следующий ряд значений: 4.235, 2.618, 1.618, 0.618, 0.382, 0.236, который широко применяется в инструментах Фибоначчи на рынке форекс.

Золотое сечение или Божественная пропорция

Очень наглядно представляет «золотое сечение» и числа Фибоначчи аналогия с отрезком. Если отрезок АВ разделить точкой С в таком соотношении, чтобы соблюдалось условие:

АС/ВС=ВС/АВ, тогда это будет «золотое сечение»

ЧИТАЙТЕ ТАКЖЕ СЛЕДУЮЩИЕ СТАТЬИ:

Удивительно, но именно это соотношение прослеживается в ряду чисел Фибоначчи. Взяв несколько цифр из ряда, можно расчетом проверить, что это так. Например, такая последовательность чисел Фибоначчи …55, 89, 144 … Пусть число 144 является целым отрезком АВ, о котором упоминалось выше. Поскольку 144 является суммой двух предыдущих чисел, то 55+89=АС+ВС=144.

Деление отрезков покажет следующие результаты:

АС/ВС=55/89=0,618

ВС/АВ=89/144=0,618

Если принять отрезок АВ за целое, или за единицу, то АС=55 будет составлять 0,382 от этого целого, а ВС=89 будет равным 0,618.

Где встречаются числа Фибоначчи

Закономерную последовательность чисел Фибоначчи знали греки и египтяне еще задолго до самого Леонардо Фибоначчи. Такое название этот числовой ряд приобрел после того, как знаменитый математик обеспечил широкое распространение этого математического феномена в ученых рядах.

Важно отметить, что золотые числа Фибоначчи являются не просто наукой, а математическим отображением окружающего мира. Множество природных явлений, представителей растительного и животного мира имеет в своих пропорциях «золотое сечение». Это и спиралевидные завитки раковины, и расположение семян подсолнуха, кактусы, ананасы.

Спираль, пропорции ответвлений которой подчинены закономерностям «золотого сечения», лежит в основе образования урагана, плетения паутины пауком, формы многих галактик, переплетения молекул ДНК и множества других явлений.

Длина хвоста ящерицы к ее туловищу имеет соотношение 62 к 38. Отросток цикория, перед тем как выпустить листок, делает выброс. После того, как первый лист выпущен, происходит второй выброс перед выпуском второго листа, по силе равный 0,62 от условно принятой единицы силы первого выброса. Третий выброс равен 0,38, а четвертый - 0,24.

Для трейдера также большое значение имеет тот факт, что движение цены на рынке форекс часто подчинено закономерности золотых чисел Фибоначчи. На основе этой последовательность создан целый ряд инструментов, которые трейдер может использовать в своем арсенале

Часто используемый трейдерами инструмент « » может с высокой точностью показывать цели движения цены, а также уровни ее коррекции.

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Однако, это не все, что можно сделать с золотым сечением. Если единицу разделить на 0,618 то получается 1,618, если возведем в квадрат, то у нас получится 2,618, если возведем в куб, то получим число 4,236. Это коэффициенты расширения Фибоначчи. Тут не хватает только числа 3,236, которое было предложено Джоном Мёрфи.


Что думают о последовательности специалисты

Кто-то скажет, что эти числа уже знакомы, потому что они используются в программах технического анализа, для определения величины коррекции и расширения. Кроме того эти же ряды играют важную роль в волновой теории Элиота. Они являются его числовой основой.

Наш эксперт Николай Проверенный портфельный менеджер инвестиционной компании Восток.

  • — Николай, как вы думаете, случайно ли появление чисел Фибоначчи и его производных на графиках различных инструментов? И можно ли сказать: «Ряд Фибоначчи практическое применение» имеет место?
  • — К мистике отношусь плохо. А на графиках биржи тем более. У всего есть свои причины. в книге «Уровни Фибоначчи» красиво рассказывал, где появляется золотое сечение, что не стал удивляться тому, что оно появилось на графиках котировок биржи. А зря! Во многих примерах, которые он привел, часто появляется число Пи. Но его почему-то нет в ценовых соотношениях.
  • — То есть вы не верите в действенность волнового принципа Элиота?
  • — Да нет же, не в этом дело. Волновой принцип – это одно. Численное соотношение – это другое. А причины их появления на ценовых графиках – третье
  • — Каковы на ваш взгляд причины появления золотого сечения на биржевых графиках?
  • — Правильный ответ на этот вопрос может быть в силах заслужить Нобелевскую премию по экономике. Пока мы можем догадываться об истинных причинах. Они явно не в гармонии природы. Моделей биржевого ценообразования много. Они не объясняют обозначенный феномен. Но не понимание природы явления не должно отрицать явление как таковое.
  • — А если когда – либо этот закон будет открыт, то сможет ли это разрушить биржевой процесс?
  • — Как показывает та же теория волн закон изменения биржевых цен – это чистая психология. Мне кажется, знание данного закона ничего не изменит и не сможет разрушить биржу.

Материал предоставлен блогом веб-мастера Максима.

Совпадения основ принципов математики в самых разных теориях кажется невероятным. Может быть это фантастика или подгонка под конечный результат. Поживем — увидим. Многое из того, что раньше считалось необычным или было не возможно: освоение космоса, например, стало привычным и никого не удивляет. Также и волновая теория, может быть непонятная, со временем станет доступней и понятней. То, что раньше было не нужным, в руках аналитика с опытом станет мощным инструментом прогнозирования дальнейшего поведения .

Числа Фибоначчи в природе.

Смотреть

А теперь, давайте поговорим о том, как можно опровергнуть то, что цифровой ряд Фибоначчи причастен к каким-либо закономерностям в природе.

Возьмем любые другие два числа и выстроим последовательность с той же логикой, что и числа Фибоначчи. То есть, следующий член последовательности равен сумме двух предыдущих. Для примера возьмем два числа: 6 и 51. Теперь выстроим последовательность, которую завершим двумя числами 1860 и 3009. Заметим, что при делении этих чисел, мы получаем число близкое золотому сечению.

При этом числа, которые получались при делении других пар уменьшались от первых к последним, что позволяет утверждать, что если этот ряд продолжать бесконечно, то мы получим число равное золотому сечению.

Таким образом, числа Фибоначчи ни чем сами по себе не выделяются. Существует другие последовательности чисел, которых бесконечное множество, что дают в результате тех же операций золотое число фи.

Фибоначчи не был эзотериком. Он не хотел вложить никой мистики в числа, он просто решал обыкновенную задачу о кроликах. И написал последовательность чисел, которые вытекали из его задачи, в первый, второй и другие месяца, сколько будет кроликов после размножения. В течение года он получил ту самую последовательность. И не делал отношений. Никакой золотой пропорции, Божественном отношении речи не шло. Все это было придумано после него в эпоху Возрождения.

Перед математикой достоинства Фибоначчи огромны. Он от арабов перенял систему чисел и доказал её справедливость. Была тяжелая и долгая борьба. От римской системы счисления: тяжелой и неудобной для счета. Она исчезла после французской революции. Никакого отношения именно к золотому сечению Фибоначчи не имеет.

Спиралей бесконечно много, наиболее популярны: спираль натурального логарифма, спираль Архимеда, гиперболическая спираль.

А теперь давайте взглянем на спираль Фибоначчи. Данный кусочно-составной агрегат складывается из нескольких четвертей окружностей. И не является спиралью, как таковой.

Вывод

Как бы долго мы не искали подтверждение или опровержение применимости ряда Фибоначчи на бирже, такая практика существует.

Огромные массы людей действуют согласно линейке Фибоначчи, которая находится во многих пользовательских терминалах. Поэтому хотим мы или нет: числа Фибоначчи оказывают влияние на , а мы можем воспользоваться этим влиянием.

В обязательном порядке читаем статью — .



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта