Главная » 3 Как собирать » Построение изображений в сферических зеркалах. A

Построение изображений в сферических зеркалах. A

Отражение света - это явление, при котором падение света на границу раздела двух сред MN часть падающего светового потока, изменив направление своего распространения, остается в той же самой среде. Падающий луч AO – луч, показывающий направление распространения света. Отраженный луч OB - луч, показывающий направление распространения отраженной части светового потока.

Угол падения – угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения - угол между отраженным лучом и перпендикуляром, восставленным к границе раздела сред в точке падения луча.

Закон отражения света: 1) падающий и отраженный лучи лежат в одной плоскости с перпендикуляром, восставленным в точке падения луча к границе раздела двух сред; 2) угол отражения равен углу падения.

Зеркало, поверхность которого представляет собой плоскость, называется плоским зеркалом. Зеркальное отражение – это направленное отражение света.

Если граница раздела сред представляет собой поверхность, размеры неровности которой больше длины волны падающего на неё света, то взаимно параллельные световые лучи, падающие на такую поверхность, после отражения не сохраняют свою параллельность, а рассеиваются по всевозможным направлениям. Такое отражение света называют рассеянным или диффузным.

Действительное изображение – это изображение, которое получается при пересечении лучей.

Мнимое изображение – это изображение, которое получается при продолжении лучей.

Построение изображений в сферических зеркалах.

Сферическим зеркалом MK называют поверхность шарового сегмента, зеркально отражающую свет. Если свет отражается от внутренней поверхности сегмента, то зеркало называют вогнутым, а если от внешней поверхности сегмента – выпуклым . Вогнутое зеркало является собирающим, а выпуклое – рассеивающим.

Центр сферы C , из которой вырезан шаровой сегмент, образующий зеркало, называют оптическим центром зеркала , а вершину шарового сегмента O – его полюсом ; R – радиус кривизны сферического зеркала.

Любую прямую, проходящую через оптический центр зеркала, называют его оптической осью(KC ; MC ). Оптическую ось, проходящую через полюс зеркала, называют главной оптической осью (OC ). Лучи, идущие вблизи главной оптической оси, называют параксиальными .

Точку F , в которой пересекаются после отражения приосевые лучи, падающие на сферическое зеркало параллельно главной оптической оси, называют главным фокусом.

Расстояние от полюса до главного фокуса сферического зеркала называют фокусным OF .

Любой луч, падающий по одной из его оптических осей, отражается от зеркала по той же оси.

Формула вогнутого сферического зеркала :
, гдеd –расстояние от предмета до зеркала (м),f –расстояние от зеркала до изображения (м).

Формула фокусного расстояния сферического зеркала :
или

Величину D, обратную фокусному расстоянию F сферического зеркала, называют его оптической силой.


/диоптрия/.

Оптическая сила вогнутого зеркала положительна, а у выпуклого – отрицательна.

Линейным увеличением Г сферического зеркала называют отношение размера создаваемого им изображения Н к размеру изображаемого предмета h, т.е.
.

Зеркало, поверхность которого представляет собой плоскость, называют плоским зеркалом. У сферических и параболических зеркал форма поверхности иная. Кривые зеркала мы изучать не будем. В обиходе чаще всего используют плоские зеркала, поэтому именно на них мы и остановимся.

Когда предмет находится перед зеркалом, то кажется, что за зеркалом находится такой же предмет. То, что мы видим за зеркалом, называется изображением предмета.

Почему мы видим предмет там, где его на самом деле нет?

Для ответа на этот вопрос выясним, как возникает изображение в плоском зеркале. Пусть перед зеркалом находится какая-либо светящаяся точка S (рис. 79). Из всех лучей, падающих из этой точки на зеркало, выделим для простоты три луча: SO, SO 1 и SO 2 . Каждый из этих лучей отражается от зеркала по закону отражения света, т. е. под таким же углом, под каким падает на зеркало. После отражения эти лучи расходящимся пучком попадают в глаз наблюдателя. Если продолжить отраженные лучи назад, за зеркало, то они сойдутся в некоторой точке S 1 . Эта точка и является изображением точки S. Именно здесь будет видеть наблюдатель источник света.

Изображение S 1 называется мнимым, так как получается оно в результате пересечения не реальных лучей света, которых за зеркалом нет, а их воображаемых продолжений. (Если бы это изображение было получено как точка пересечения реальных световых лучей, то оно называлось бы действительным.)

Итак, изображение в плоском зеркале всегда является мнимым. Поэтому когда вы смотритесь в зеркало, то видите перед собой не действительное, а мнимое изображение. Пользуясь признаками равенства треугольников (см. рис. 79), можно доказать, что S1O = OS. Это означает, что изображение в плоском зеркале находится на таком же расстоянии от него, на каком перед ним находится источник света.

Обратимся к опыту. Поместим на столе кусок плоского стекла. Часть света стекло отражает, и поэтому стекло можно использовать как зеркало. Но так как стекло прозрачно, мы сможем одновременно видеть и то, что находится за ним. Поставим перед стеклом зажженную свечу (рис. 80). За стеклом появится ее мнимое изображение (если поместить в изображение пламени кусочек бумаги, то он, конечно, не загорится).

Поставим по другую сторону стекла (где мы видим изображение) такую же, но незажженную свечу и начнем передвигать ее до тех пор, пока она не совместится с полученным ранее изображением (при этом она покажется зажженной). Теперь измерим расстояния от зажженной свечи до стекла и от стекла до ее изображения. Эти расстояния окажутся одинаковыми.
Опыт также показывает, что высота изображения свечи равна высоте самой свечи.

Подводя итоги, можно сказать, что изображение предмета в плоском зеркале всегда является: 1) мнимым; 2) прямым, т. е. неперевернутым; 3) равным по размеру самому предмету; 4) находящимся на таком же расстоянии за зеркалом, на каком предмет расположен перед ним. Иными словами, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала.

На рисунке 81 показано построение изображения в плоском зеркале. Пусть предмет имеет вид стрелки AB. Для построения его изображения следует:

1) опустить из точки A на зеркало перпендикуляр и, продлив его за зеркалом точно на такое же расстояние, обозначить точку A 1 ;

2) опустить из точки B на зеркало перпендикуляр и, продлив его за зеркалом точно на такое же расстояние, обозначить точку B 1 ;

3) соединить точки A 1 и B 1 .

Полученный при этом отрезок A 1 B 1 будет мнимым изображением стрелки AB.

На первый взгляд у предмета и его изображения в плоском зеркале нет никаких различий. Однако это не так. Посмотрите на изображение своей правой руки в зеркале. Вы увидите, что пальцы на этом изображении расположены так, как будто эта рука левая. Это не случайность: зеркальное отражение всегда меняет правое на левое и наоборот.

Не всем нравится различие правого и левого. Некоторые любители симметрии даже свои литературные произведения стараются написать так, чтобы они читались одинаково как слева направо, так и справа налево (такие фразы-перевертыши называют палиндромами), например: «Кинь лед зебре, бобер, бездельник».

Интересно, что животные по-разному реагируют на свое изображение в зеркале: некоторые его не замечают, у других оно вызывает явное любопытство. Наибольший интерес оно вызывает у обезьян. Когда на стене в одном из открытых вольеров для обезьян повесили большое зеркало, около него собрались все его обитатели. Обезьяны не отходили от зеркала, разглядывая свои изображения, в течение всего дня. И лишь когда им принесли их любимое лакомство, проголодавшиеся животные пошли на зов работницы. Но, как рассказал потом один из наблюдателей зоопарка, сделав несколько шагов от зеркала, они вдруг заметили, как их новые товарищи из «зазеркалья» тоже уходят! Страх больше не увидеть их оказался столь высоким, что обезьяны, отказавшись от пищи, вернулись к зеркалу. В конце концов зеркало пришлось убрать.

В жизни человека зеркала играют не последнюю роль, их используют как в быту, так и в технике.

Получение изображения с помощью плоского зеркала может быть использовано, например, в перископе (от греч. «перископео» - смотрю вокруг, осматриваю) - оптическом приборе, служащем для наблюдений из танков, подводных лодок и различных укрытий (рис. 82).

Параллельный пучок лучей, падающих на плоское зеркало, остается параллельным и после отражения (рис. 83, а). Именно такое отражение и называют зеркальным. Но помимо зеркального существует еще и другой вид отражения, когда параллельный пучок лучей, падающих на какую-либо поверхность, после отражения рассеивается ее микронеровностями по всевозможным направлениям (рис. 83, б). Такое отражение называют диффузным", его создают негладкие, шероховатые и матовые поверхности тел. Именно благодаря диффузному отражению света становятся видимыми окружающие нас предметы.


1. Чем отличаются плоские зеркала от сферических? 2. В каком случае изображение называют мнимым? действительным? 3. Охарактеризуйте изображение в плоском зеркале. 4. Чем отличается зеркальное отражение от диффузного? 5. Что мы увидели бы вокруг, если бы все предметы вдруг стали отражать свет не диффузно, а зеркально? 6. Что такое перископ? Как он устроен? 7. Используя рисунок 79, докажите, что изображение точки в плоском зеркале находится на таком же расстоянии от зеркала, на каком находится перед ним данная точка.

Экспериментальное задание. Встаньте дома перед зеркалом. Совпадает ли характер видимого вами изображения с тем, что описано в учебнике? С какой стороны у вашего зеркального двойника находится сердце? Отступите от зеркала на один-два шага. Что при этом произошло с изображением? Как изменилось его расстояние от зеркала? Изменилась ли при этом высота изображения?

Видеоурок 2: Плоское зеркало - Физика в опытах и экспериментах

Лекция:


Плоское зеркало

Плоское зеркало - это глянцевая поверхность. Если на такую поверхность падают параллельные пучки света, то и отражаются они параллельно друг другу. При рассмотрении данной темы мы сможем узнать, по каким причинам мы видим себя, когда смотрим в зеркало.

Итак, давайте для начала вспомним законы отражения, и способы их доказательства. Взгляните на рисунок.

Предположим, что S - некоторая точка, которая светится или отражает свет. Рассмотрим два произвольных луча, которые падают на некоторую глянцевую поверхность. Перенесем данную точку симметрично, относительно разделу сред. После того, как два данных луча отражаются от поверхности, они попадают к нам в глаз. Наш мозг устроен таким образом, что любое отражение он воспринимает в качестве изображения, которое находится за пределами границы разделения сред. Самое важное в данном объяснении является то, что это нам действительно кажется из-за собственного восприятия.


Изображение, которое мы видим в зеркале, называется мнимым , то есть не существует на самом деле.


Увидеть мы можем даже то изображение, которое не находится непосредственно над зеркалом, или же если их размеры не соизмеримы. Самое важное - лучи от данного предмета должны поступать к нам в глаз. Именно поэтому мы можем видеть лицо водителя в автобусе и он наше, не смотря на то, что он не находится напротив зеркала.


Построение изображений в плоском зеркале

Строим изображение предмета в зеркале.

Построение изображений в зеркалах и их характеристика.

Изображение какой-либо точки A предмета в сферическом зеркале можно построить с помощью любой пары стандартных лучей: Для построения изображения какой – либо точки А предмета необходимо найти точку пересечения двух любых отраженных лучей или их продолжений, наиболее удобны лучи, идущие, как показано на рисунках 2.6 – 2.9

2) луч, проходящий через фокус, после отражения пойдет параллельно оптической оси, на которой лежит этот фокус;

4) луч, падающий в полюс зеркала, после отражения от зеркала идет симметрично главной оптической оси (АВ=ВМ)

Рассмотрим несколько примеров на построение изображений в вогнутых зеркалах:

2) Предмет расположен на расстоянии, которое равно радиусу кривизны зеркала. Изображение – действительное, равно по величине размерам предмета, перевернутое, располагается строго под предметом (рис.2.11).

Рис. 2.12

3) Предмет расположен между фокусом и полюсом зеркала. Изображение – мнимое, увеличенное, прямое (рис.2.12)

Формула зеркала

Найдем связь между оптической характеристикой и расстояниями, определяющими положение предмета и его изображения.

Пусть предметом служит некоторая точка А, располагающаяся на оптической оси. Используя законы отражения света, построим изображение этой точки (рис. 2.13).

Обозначим расстояние от предмета до полюса зеркала (АО), а от полюса до изображения (ОА¢).

Рассмотрим треугольник АРС, получаем, что

Из треугольника АРА¢, получаем, что . Исключим из этих выражений угол , так как единственный который не опирается на ОР.

, или

(2.3)

Углы b, q, g опираются на ОР. Пусть рассматриваемые пучки параксиальны, тогда эти углы малы и, следовательно, их значения в радианной мере равно тангенсу этих углов:

; ; , где R=OC, является радиусом кривизны зеркала.

Подставим полученные выражения в уравнение (2.3)

Так как мы ранее выяснили, что фокусное расстояние связано с радиусом кривизны зеркала, то

(2.4)

Выражение (2.4) называется формулой зеркала, которая используется лишь с правилом знаков:

Расстояния , , считаются положительными, если они отсчитываются по ходу луча, и отрицательными – в противном случае.

Выпуклое зеркало .

Рассмотрим несколько примеров на построение изображений в выпуклых зеркалах.

2) Предмет расположен на расстоянии равном радиусу кривизны. Изображение мнимое, уменьшенное, прямое (рис.2.15)

Фокус выпуклого зеркала мнимый. Формула выпуклого зеркала

.

Правило знаков для d и f остается таким же, как и для вогнутого зеркала.

Линейное увеличение предмета определяется отношением высоты изображения к высоте самого предмета

. (2.5)

Таким образом, независимо от расположения предмета относительно выпуклого зеркала изображение оказывается всегда мнимым, прямым, уменьшенным и расположенным за зеркалом. В то время как изображения в вогнутом зеркале более разнообразны, зависят от расположения предмета относительно зеркала. Поэтому вогнутые зеркала применяются чаще.

Рассмотрев принципы построения изображений в различных зеркалах, мы подошли к пониманию действия столь различных приборов, как астрономические телескопы и увеличивающие зеркала в косметических приборах и медицинской практике, мы способны сами спроектировать некоторые приборы.

Цели урока:

– учащиеся должны знать понятие зеркало;
– учащиеся должны знать свойства изображения в плоском зеркале;
– учащиеся должны уметь строить изображение в плоском зеркале;
– продолжить работу по формированию методологических знаний и умений, знаний о методах естественнонаучного познания и уметь применять их;
– продолжить работу по формированию экспериментальных исследовательских умений при работе с физическими приборами;
– продолжить работу по развитию логического мышления учащихся, по формированию умения строить индуктивные выводы.

Организационные формы и методы обучения: беседа, тест, индивидуальный опрос, исследовательский метод, экспериментальная работа в парах.

Средства обучения: Зеркало, линейка, ластик, перископ, мультимедийный проектор, компьютер, презентация (См. приложение 1 ).

План урока:

  1. Проверка д/з (тест).
  2. Актуализация знаний. Постановка темы, целей, задач урока вместе с учащимися.
  3. Изучение нового материала в процессе работы учащихся с оборудованием.
  4. Обобщение результатов эксперимента и формулирование свойств.
  5. Отработка практических навыков построения изображения в плоском зеркале.
  6. Подведение итогов урока.

Ход урока

1. Проверка д/з (тест).

(Учитель раздает карточки с тестом.)

Тест: Закон отражения

  1. Угол падения луча света на зеркальную поверхность равен 15 0 . Чему равен угол отражения?
    А 30 0
    Б 40 0
    В 15 0
  2. Угол между падающим и отраженными лучами равен 20 0 . Каким будет угол отражения, если угол падения увеличится на 5 0 ?
    А 40 0
    Б 15 0
    В 30 0

Ответы для теста.

Учитель: Обменяйтесь своими работами и проверьте правильность выполнения, сверив ответы с эталоном. Поставьте оценки, учитывая критерии оценок (ответы записаны на обратной стороне доски).

Критерии оценок за тест:

на оценку “5” – все;
на оценку “4” – задача № 2;
на оценку “3” – задача № 1.

Учитель: Вам была на дом задача № 4 Упр.30 (учеб. Перышкин А. В.) исследовательского характера. Кто справился с этим заданием? (Ученик работает у доски, предложив свою версию. )

Текст задачи: Высота Солнца такова, что его лучи составляют с горизонтом угол 40 0 . сделайте чертеж (рис.131) и покажите на нем, как нужно расположить зеркало АВ, чтобы “зайчик” попал на дно колодца.

2. Актуализация знаний. Постановка темы, целей, задач урока вместе с учащимися.

Учитель: Сейчас вспомним основные понятия, изученные на предыдущих уроках, и определимся с темой сегодняшнего урока.

Поскольку ключевое слово зашифровано в кроссворде.

Учитель: Какое ключевое слово получили? ЗЕРКАЛО.

Как вы думаете, какая тема сегодняшнего урока?

Да, тема урока: Зеркало. Построение изображения в плоском зеркале.

Откройте тетради, запишите число и тему урока.

Приложение. Слайд 1.

Учитель: На какие вопросы вы бы сегодня хотели получить ответы, учитывая тему урока?

(Дети задают вопросы. Учитель подводит итог, ставя, таким образом, цели урока.)

Учитель:

  1. Изучить понятие “зеркало”. Выявить виды зеркал.
  2. Узнать, какими свойствами оно обладает.
  3. Научиться строить изображение в зеркале.

3. Изучение нового материала в процессе работы учащихся с оборудованием.

Деятельность учащихся: слушают и запоминают материал.

Учитель: приступаем к изучению нового материала, следует сказать, что зеркала бывают следующие:

Учитель: Сегодня мы более подробно изучим плоское зеркало.

Учитель: Плоским зеркалом (или просто зеркало ) называют плоскую поверхность, зеркально отражающую свет

Учитель: Запишите в тетрадь схему и определение зеркала.

Деятельность учащихся: выполняют записи в тетраде.

Учитель: Рассмотрим изображение предмета в плоском зеркале.

Вы все хорошо знаете, что изображение предмета в зеркале образуется за зеркалом, там, где его на самом деле нет.

Как это получается? (Учитель излагает теорию, учащиеся принимают активное участие. )

Слайд 5. (Экспериментальнаядеятельность учащихся.)

Опыт 1. У вас на столе имеется маленькое зеркало. Установите его в вертикальном положении. Перед зеркалом на небольшом расстоянии расположите ластик в вертикальном положении. А теперь возьмите линейку, и положите ее так, чтобы ноль был у зеркала.

Задание. Прочтите вопросы на слайде и ответьте на них. (Вопросы части А.)

Учащиеся формулируют вывод: мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, как и предмет перед зеркалом

Слайд 6. (Экспериментальнаядеятельность учащихся. )

Опыт 2. А теперь возьмите линейку, и расположите ее вертикально вдоль ластика.

Задание. Прочтите вопросы на слайде и ответьте на них. (вопросы части Б)

Учащиеся формулируют вывод: размеры изображения предмета в плоском зеркале равны размерам предмета.

Задания к опытам.

Слайд 7. (Экспериментальнаядеятельность учащихся.)

Опыт 3. На ластике справа поставьте черту и разместите его снова перед зеркалом. Линейку можно убрать.

Задание. Что вы увидели?

Учащиеся формулируют вывод: предмет и его изображения являются фигурами симметричными, но не тождественными

4. Обобщение результатов эксперимента и формулирование свойств.

Учитель: ИТАК, эти выводы можно назвать свойствами плоских зеркал , перечислим их еще раз и запишем в тетрадь.

Слайд 8. (Учащиеся записывают свойства зеркал в тетрадь.)

  • Мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, как и предмет перед зеркалом.
  • Размеры изображения предмета в плоском зеркале равны размерам предмета.
  • Предмет и его изображения являются фигурами симметричными, но не тождественными.

Учитель: Внимание на слайд. Решаем следующие задачи (учитель спрашивает ответ у несколько ребят, а затем один учащийся излагает ход своих рассуждений, опираясь на свойства зеркал).

Деятельность учащихся: активное участие в обсуждении анализа задач.

1) Человек стоит на расстоянии 2м от плоского зеркала. На каком расстоянии от зеркала он видит свое изображение?
А 2м
Б 1м
В 4м

2) Человек стоит на расстоянии 1,5м от плоского зеркала. На каком расстоянии от себя он видит свое изображение?
А 1,5м
Б 3м
В 1м

5. Отработка практических навыков построения изображения в плоском зеркале.

Учитель: Итак, что такое зеркало мы узнали, установили его свойства, а теперь должны научиться строить изображение в зеркале, с учетом выше указанных свойств. Работаем вместе со мной в своих тетрадях. (Учитель работает на доске, учащиеся в тетради. )

Правила построения изображения Пример
  1. К зеркалу прикладываем линейку так, чтобы одна сторона прямого угла лежала вдоль зеркала.
  2. Двигаем линейку так, чтобы точка, которую хотим построить лежала на другой стороне прямого угла
  3. Проводим линию от точки А до зеркала и продляем ее за зеркало на такое же расстояние и получаем точку А 1 .
  4. Аналогично все проделываем для точки В и получаем точку В 1
  5. Соединяем точку А 1 и точку В 1 , получили изображение А 1 В 1 предмета АВ.

Итак, изображение должно быть таким же по размерам, как и предмет, находиться за зеркалом на таком же расстоянии, как и предмет перед зеркалом.

6. Подведение итогов урока.

Учитель: Применение зеркала:

  • в быту (по нескольку раз в день мы проверяем, хороши мы выглядим);
  • в автомобилях (зеркала заднего вида);
  • в аттракционах (комната смеха);
  • в медицине (в частности в стоматологии) и во многих других сферах, особый интерес представляет перископ;
  • перископ (применяют для наблюдения с подводной лодки или из окопов), демонстрация прибора, в том числе и самодельного.

Учитель: Вспомним, что мы сегодня изучили на уроке?

Что такое зеркало?

Какими свойствами оно обладает?

Как построить изображение предмета в зеркале?

Какие свойства учитываем при построении изображения предмета в зеркале?

Что такое перископ?

Деятельность учащихся: отвечают на поставленные вопросы.

Домашнее задание: §64 (учеб. Перышкин А. В. 8 класс), записи в тетради изготовить перископ по желанию № 1543, 1549, 1551,1554 (задачник Лукашик В. И.).

Учитель: Продолжите фразу …

Рефлексия:
Сегодня на уроке я научился …
Сегодня на уроке мне понравилось …
Сегодня на уроке мне не понравилось …

Выставление оценок за урок (выставляют учащиеся, объясняя при этом, почему ставят именно такую оценку).

Используемая литература:

  1. Громов С. В. Физика: Учеб. для общеобразоват. учеб. учреждений/ С. В. Громову, Н. А. Родина. – М.: Просвещение, 2003.
  2. Зубов В. Г., Шальнов В. П. Задачи по физике: Пособие для самообразования: Учебное руководство.– М.: Наука. Главная редакция физико-математической литературы, 1985 г.
  3. Каменецкий С. Е., Орехов В. П. Методика решения задач по физике в средней школе: Кн. для учителя. – М.: Просвещение, 1987.
  4. Колтун М. Мир физики. Издательство “Детская литература”, 1984.
  5. Марон А. Е. Физика. 8 класс: Учебно-методическое пособие / А. Е. Марон, Е. А. Марон. М.: Дрофа, 2004.
  6. Методика преподавания физики в 6–7 классах средней школы. Под ред. В. П. Орехова и А. В. Усовой. М. , “Просвещение”, 1976.
  7. Перышкин А. В. Физика. 8 кл.: Учеб. для общеобразоват. учеб. заведений.– М.: Дрофа, 2007.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта