Главная » Условно-съедобные грибы » G гравитационная постоянная. Что значит "гравитационная постоянная"

G гравитационная постоянная. Что значит "гравитационная постоянная"

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r 2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: γ или f (реже k 2 ). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц (См. СГС система единиц)

G = (6,673 ± 0,003)․10 -8 дн см 2 г -2

или см 3 г --1 сек -2 , в Международной системе единиц (См. Международная система единиц)

G = (6,673 ± 0,003)․10 -11 ․н м 2 кг --2

или м 3 кг -1 сек -2 . Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов (См. Крутильные весы).

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003)․10 14 ․м 3 сек -2 .

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. - произведение Г. п. на массу Солнца:

GS s = 1,32718․10 20 ․ м 3 сек -2 .

Эти значения GE и GS s соответствуют системе фундаментальных астрономических постоянных (См. Фундаментальные астрономические постоянные), принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

  • - , физ. величина, характеризующая св-ва тела как источника тяготения; равна инертной массе. ...

    Физическая энциклопедия

  • - нарастание со временем отклонений от ср. значения плотности и скорости движения в-ва в косм. пр-ве под действием сил тяготения...

    Физическая энциклопедия

  • - нарастание возмущений плотности и скорости вещества в первоначально почти однородной среде под действием гравитационных сил. В результате гравитационной неустойчивости образуются сгустки вещества...

    Астрономический словарь

  • - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды...

    Мир Лема - словарь и путеводитель

  • - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести...

    Словарь геологических терминов

  • - вода свободная. Она передвигается под влиянием силы тяжести, в ней действует гидродинамическое давление...

    Словарь по гидрогеологии и инженерной геологии

  • - Влага свободная, передвигающаяся или способная к передвижению в п. или грунте под влиянием силы тяжести...

    Толковый словарь по почвоведению

  • - тяготения постоянная, - универс. физ. постоянная G, входящая в ф-лу, выражающую ньютоновский закон тяготения: G = *10-11Н*м2/кг2...

    Большой энциклопедический политехнический словарь

  • - местная ликвация по высоте слитка, связанная с различием в плотности твердой и жидкой фаз, а также не смешивающихся при кристаллизации жидких фаз...
  • - шахтная печь, в которой нагреваемый материал движется сверху вниз под действием силы тяжести, а газообразный теплоноситель - встречно...

    Энциклопедический словарь по металлургии

  • - син. термина аномалия силы тяжести...

    Геологическая энциклопедия

  • - см. в ст. Свободная вода....

    Геологическая энциклопедия

  • - масса, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...
  • - то же, что Отвесная линия...

    Большая Советская энциклопедия

  • - тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...

    Большая Советская энциклопедия

  • - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами...

    Большая Советская энциклопедия

"Гравитационная постоянная" в книгах

автора Еськов Кирилл Юрьевич

автора

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Постоянная забота

Из книги Листы дневника. Том 1 автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

6.10. Гравитационная редукция вектора состояния

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

6.10. Гравитационная редукция вектора состояния Есть веские причины подозревать, что модификация квантовой теории - необходимая, если мы намерены выдать ту или иную форму R за реальный физический процесс, - должна самым серьезным образом задействовать эффекты

Аналогия с вулканом: гравитационная и центробежная энергии

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Аналогия с вулканом: гравитационная и центробежная энергии Чтобы объяснить, как этот вулкан связан с законами физики, придется слегка углубиться в технические детали.Для простоты будем считать, что «Эндюранс» движется в экваториальной плоскости Гаргантюа.

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова)

Из книги 100 великих тайн Второй мировой автора Непомнящий Николай Николаевич

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова) В начале 1920-х годов в Германии была опубликована статья доцента Кёнигсбергского университета Т. Калуцы о «теории великого объединения», в которой он сумел опередить Эйнштейна, работавшего в то время

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Гравитационная

БСЭ

Гравитационная вертикаль

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная плотина

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная постоянная

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Способности кристаллов. Гравитационная подпитка

Из книги Энергия камня исцеляет. Кристаллотерапия. С чего начать? автора Бриль Мария

Способности кристаллов. Гравитационная подпитка Природные элементы, на протяжении миллионов лет выкристаллизовывавшиеся в глубинах земных недр, обладают особыми свойствами, позволяющими им максимально реализовать свои способности. А способности эти не так уж и малы.

Правило «Гравитационная горка»

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

Правило «Гравитационная горка» Мы уже договорились: все есть мысль; мысль есть Сила; движение Силы – волна. Поэтому боевое взаимодействие по сути не отличается от стирки белья. В обоих случаях имеет место волновой процесс.Вам надо усвоить, что волновой процесс жизни

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

  • Дарвин (космический проект)
  • Коэффициент размножения на быстрых нейтронах

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    гравитационная постоянная - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Гравитационная постоянная - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

Для объяснения наблюдаемой эволюции Вселенной в рамках существующих теорий, приходится допустить, что одни фундаментальные постоянные более постоянны, чем другие

В ряду фундаментальных физических констант - скорость света, постоянная Планка, заряд и масса электрона - гравитационная постоянная стоит как-то особняком. Даже история её измерения изложена в знаменитых энциклопедиях Britannica и Larousse , не говоря уж о «Физической энциклопедии» , с ошибками. Из соответствующих статей в них читатель узнает, что её численное значение впервые определил в прецизионных экспериментах 1797–1798 годов знаменитый английский физик и химик Генри Кавендиш (Henry Cavendish , 1731–1810), герцог Девонширский. В действительности Кавендиш измерял среднюю плотность Земли (его данные, кстати, всего лишь на полпроцента отличаются от результатов современных исследований). Располагая же информацией о плотности Земли, мы легко можем вычислить её массу, а зная массу, определить гравитационную постоянную.

Интрига состоит в том, что во времена Кавендиша понятия гравитационной постоянной ещё не существовало, и закон всемирного тяготения не принято было записывать в привычном для нас виде. Напомним, что сила тяготения пропорциональна произведению масс тяготеющих тел и обратно пропорциональна квадрату расстояния между этими телами, коэффициентом же пропорциональности как раз и является гравитационная постоянная. Такая форма записи ньютоновского закона появляется только в XIX столетии. А первые опыты, в которых измерялась именно гравитационная постоянная, были выполнены уже в конце столетия - в 1884 году.

Как отмечает российский историк науки Константин Томилин , гравитационная постоянная отличается от других фундаментальных постоянных ещё и тем, что с ней не связан естественный масштаб какой-либо физической величины. В то же время скорость света определяет предельное значение скорости, а постоянная Планка - минимальное изменение действия.

И только в отношении гравитационной постоянной была высказана гипотеза о том, что её численное значение, возможно, меняется со временем. Впервые эту идею сформулировал в 1933 году английский астрофизик Эдвард Милн (Edward Arthur Milne , 1896–1950), а в 1937 году знаменитый английский физик-теоретик Поль Дирак (Paul Dirac , 1902–1984), в рамках так называемой «гипотезы больших чисел», предположил, что гравитационная постоянная уменьшается с течением космологического времени. Гипотеза Дирака занимает важное место в истории теоретической физики ХХ века, однако никаких более или менее надежных экспериментальных подтверждений её не известно.

С гравитационной постоянной непосредственно связана так называемая «космологическая постоянная», впервые появившаяся в уравнениях общей теории относительности Альберта Эйнштейна . Обнаружив, что эти уравнения описывают либо расширяющуюся, либо сжимающуюся вселенную, Эйнштейн искусственно добавил в уравнения «космологический член», обеспечивавший существование стационарных решений. Его физический смысл сводился к существованию силы, компенсирующей силы всемирного тяготения и проявляющейся лишь на очень больших масштабах. Несостоятельность модели стационарной Вселенной стала для Эйнштейна очевидной после выхода в свет работ американского астронома Эдвина Хаббла (Edwin Powell Hubble , 1889–1953) и советского математика Александра Фридмана , доказавших справедливость иной модели, согласно которой Вселенная расширяется во времени . В 1931 году Эйнштейн отказался от космологической постоянной, назвав её в частной беседе «величайшей ошибкой своей жизни».

История, однако, на этом не закончилась. После того как было установлено, что последние пять миллиардов лет расширение Вселенной происходит с ускорением , вопрос о существовании антигравитации вновь стал актуальным; вместе с ним в космологию вернулась и космологическая постоянная. При этом современные космологи связывают антигравитацию с присутствием во Вселенной так называемой «темной энергии» .

И гравитационная постоянная, и космологическая постоянная, и «темная энергия» были предметом активных дискуссий на недавней конференции в Имперском Колледже Лондона (London Imperial College), посвященной нерешенным проблемам в стандартной модели космологии. Одна из наиболее радикальных гипотез была сформулирована в докладе Филиппа Мангейма (Philip Mannheim) - специалиста по физике элементарных частиц из университета Коннектикута в Шторсе (University of Connecticut in Storrs). Фактически Мангейм предложил лишить гравитационную постоянную статуса универсальной постоянной. Согласно его гипотезе, «табличное значение» гравитационной постоянной определено в лаборатории, находящейся на Земле, и им можно пользоваться только в пределах Солнечной системы . В космологических же масштабах гравитационная постоянная имеет другое, существенно меньшее численное значение, которое можно рассчитать методами физики элементарных частиц.

Представляя свою гипотезу коллегам, Мангейм прежде всего стремился приблизить решение весьма актуальной для космологии «проблемы космологической постоянной». Суть этой проблемы в следующем. По современным представлениям, космологическая постоянная характеризует скорость расширения Вселенной. Её численное значение, найденное теоретически методами квантовой теории поля, в 10 120 раз превышает полученное из наблюдений. Теоретическое значение космологической постоянной столь велико, что при соответствующей скорости расширения Вселенной звезды и галактики просто не успели бы сформироваться.

Свою гипотезу о существовании двух разных гравитационных постоянных - для солнечной системы и для межгалактических масштабов - Мангейм обосновывает следующим образом. По его словам, в наблюдениях на самом деле определяется не сама космологическая постоянная, а некоторая величина, пропорциональная произведению космологической постоянной на гравитационную постоянную. Предположим, что в межгалактических масштабах гравитационная постоянная очень мала, а значение космологической постоянной соответствует расчетному и очень велико. В этом случае произведение двух постоянных вполне может быть малой величиной, что не противоречит наблюдениям. «Возможно, пришло время отказаться считать космологическую постоянную малой величиной, - говорит Мангейм, - просто принять, что она велика, и исходить из этого». В этом случае «проблема космологической постоянной» оказывается решенной.

Предлагаемое Мангеймом решение выглядит простым, но цена, которую придется заплатить за него, очень велика. Как отмечает Зейя Мерали (Zeeya Merali) в статье «Two constants are better than one», опубликованной журналом New scientist 28 апреля 2007 года, вводя два разных численных значения гравитационной постоянной, Мангейм неизбежно должен отказаться от уравнений общей теории относительности Эйнштейна. Кроме того, гипотеза Мангейма делает излишним принятое большинством космологов представление о «темной энергии», поскольку малое значение гравитационной постоянной на космологических масштабах уже само по себе эквивалентно предположению о существовании антигравитации.

Кейт Хорн (Keith Horne) из британского университета св. Андрея (University of St Andrew) приветствует гипотезу Мангейма, поскольку в ней использованы фундаментальные принципы физики элементарных частиц: «Она очень элегантна, и было бы просто замечательно, если бы она оказалась правильной». По словам Хорн, в этом случае нам удалось бы объединить физику элементарных частиц и теорию гравитации в одну весьма привлекательную теорию.

Но с ней согласны далеко не все. New Scientist приводит и мнение космолога Тома Шэнкса (Tom Shanks), что некоторые явления, очень хорошо укладывающиеся в стандартную модель, - например, недавние измерения реликтового излучения , и движения двойных пульсаров, - вряд ли окажутся так же легко объяснимы в теории Мангейма.

Сам Мангейм не отрицает проблем, с которыми сталкивается его гипотеза, замечая при этом, что считает их намного менее значимыми в сравнении с трудностями стандартной космологической модели: «Её разрабатывают сотни космологов, и тем не менее она неудовлетворительна на 120 порядков».

Надо отметить, что Мангейм нашел некоторое количество сторонников, поддержавших его, дабы исключить худшее. К худшему они отнесли выдвинутую в 2006 году гипотезу Пола Штейнхарда (Paul Steinhardt) из Принстонского университета (Princeton University) и Нила Тьюрока (Neil Turok) из Кембриджа (Cambridge University), согласно которой Вселенная периодически рождается и исчезает, причем в каждом из циклов (длящемся триллион лет) происходит свой Большой Взрыв , и при этом в каждом цикле численное значение космологической постоянной оказывается меньше, нежели в предыдущем. Крайне незначительная величина космологической постоянной, зафиксированная в наблюдениях, означает тогда, что наша Вселенная - очень дальнее звено в очень длинной цепи рождающихся и исчезающих миров…

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта