Главная » Условно-съедобные грибы » Методы решения параметров егэ. Решение задачи с параметрами

Методы решения параметров егэ. Решение задачи с параметрами

Задание 1 #6329

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система \[\begin{cases} (x-2a-2)^2+(y-a)^2=1\\ y^2=x^2\end{cases}\]

имеет ровно четыре решения.

(ЕГЭ 2018, основная волна)

Второе уравнение системы можно переписать в виде \(y=\pm x\) . Следовательно, рассмотрим два случая: когда \(y=x\) и когда \(y=-x\) . Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

1) \(y=x\) . Подставим в первое уравнение и получим: \ (заметим, что в случае \(y=-x\) мы поступим так же и тоже получим квадратное уравнение)
Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
Квадратное уравнение имеет два корня, когда его \(D>0\) . Найдем дискриминант уравнения (1):
\(D=-4(a^2+4a+2)\) .
Дискриминант больше нуля: \(a^2+4a+2<0\) , откуда \(a\in (-2-\sqrt2; -2+\sqrt2)\) .

2) \(y=-x\) . Получаем квадратное уравнение: \ Дискриминант больше нуля: \(D=-4(9a^2+12a+2)>0\) , откуда \(a\in \left(\frac{-2-\sqrt2}3; \frac{-2+\sqrt2}3\right)\) .

Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

Пусть \(x_0\) – общее решение уравнений (1) и (2), тогда \ Отсюда получаем, что либо \(x_0=0\) , либо \(a=0\) .
Если \(a=0\) , то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
Если \(x_0=0\) – их общий корень, то тогда \(2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0\) , откуда \((2a+2)^2+a^2-1=0\) , откуда \(a=-1\) или \(a=-0,6\) . Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

Учитывая все это, в ответ пойдут:

Ответ:

\(a\in\left(\frac{-2-\sqrt2}3; -1\right)\cup\left(-1; -0,6\right)\cup\left(-0,6; -2+\sqrt2\right)\)

Задание 2 #4032

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых система \[\begin{cases} (a-1)x^2+2ax+a+4\leqslant 0\\ ax^2+2(a+1)x+a+1\geqslant 0 \end{cases}\]

имеет единственное решение.

Перепишем систему в виде: \[\begin{cases} ax^2+2ax+a\leqslant x^2-4\\ ax^2+2ax+a\geqslant -2x-1 \end{cases}\] Рассмотрим три функции: \(y=ax^2+2ax+a=a(x+1)^2\) , \(g=x^2-4\) , \(h=-2x-1\) . Из системы следует, что \(y\leqslant g\) , но \(y\geqslant h\) . Следовательно, чтобы система имела решения, график \(y\) должен находиться в области, которая задается условиями: “выше” графика \(h\) , но “ниже” графика \(g\) :

(будем называть “левую” область областью I, “правую” область – областью II)
Заметим, что при каждом фиксированном \(a\ne 0\) графиком \(y\) является парабола, вершина которой находится в точке \((-1;0)\) , а ветви обращены либо вверх, либо вниз. Если \(a=0\) , то уравнение выглядит как \(y=0\) и графиком является прямая, совпадающая с осью абсцисс.
Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график \(y\) имел ровно одну общую точку с областью I или с областью II (это значит, что график \(y\) должен иметь единственную общую точку с границей одной из этих областей).

Рассмотрим по отдельности несколько случаев.

1) \(a>0\) . Тогда ветви параболы \(y\) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) касалась границы области I или границы области II, то есть касалась параболы \(g\) , причем абсцисса точки касания должна быть \(\leqslant -3\) или \(\geqslant 2\) (то есть парабола \(y\) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола \(y\) лежит выше оси абсцисс).

\(y"=2a(x+1)\) , \(g"=2x\) . Условия касания графиков \(y\) и \(g\) в точке с абсциссой \(x_0\leqslant -3\) или \(x_0\geqslant 2\) : \[\begin{cases} 2a(x_0+1)=2x_0\\ a(x_0+1)^2=x_0^2-4 \\ \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right. \end{cases} \quad\Leftrightarrow\quad \begin{cases} \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right.\\ a=\dfrac{x_0}{x_0+1}\\ x_0^2+5x_0+4=0 \end{cases}\] Из данной системы \(x_0=-4\) , \(a=\frac43\) .
Получили первое значение параметра \(a\) .

2) \(a=0\) . Тогда \(y=0\) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.


3) \(a<0\) . Тогда ветви параболы \(y\) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку \(B\) , причем, если парабола \(y\) будет иметь еще одну общую точку с прямой \(h\) , то эта общая точка должна быть “выше” точки \(B\) (то есть абсцисса второй точки должна быть \(<1\) ).

Найдем \(a\) , при которых парабола \(y\) проходит через точку \(B\) : \[-3=a(1+1)^2\quad\Rightarrow\quad a=-\dfrac34\] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы \(y=-\frac34(x+1)^2\) с прямой \(h=-2x-1\) – это точка с координатами \(\left(-\frac13; -\frac13\right)\) .
Таким образом, получили еще одно значение параметра.

Так как мы рассмотрели все возможные случаи для \(a\) , то итоговый ответ: \

Ответ:

\(\left\{-\frac34; \frac43\right\}\)

Задание 3 #4013

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система уравнений \[\begin{cases} 2x^2+2y^2=5xy\\ (x-a)^2+(y-a)^2=5a^4 \end{cases}\]

имеет ровно два решения.

1) Рассмотрим первое уравнение системы как квадратное относительно \(x\) : \ Дискриминант равен \(D=9y^2\) , следовательно, \ Тогда уравнение можно переписать в виде \[(x-2y)\cdot (2x-y)=0\] Следовательно, всю систему можно переписать в виде \[\begin{cases} \left[\begin{gathered}\begin{aligned} &y=2x\\ &y=0,5x\end{aligned}\end{gathered}\right.\\ (x-a)^2+(y-a)^2=5a^4\end{cases}\] Совокупность задает две прямые, второе уравнение системы задает окружность с центром в \((a;a)\) и радиусом \(R=\sqrt5a^2\) . Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, \(a=1\) :


Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой \(y=x\) .

2) Так как у прямой \(y=kx\) тангенс угла наклона этой прямой к положительному направлению оси \(Ox\) равен \(k\) , то тангенс угла наклона прямой \(y=0,5x\) равен \(0,5\) (назовем его \(\mathrm{tg}\,\alpha\) ), прямой \(y=2x\) – равен \(2\) (назовем его \(\mathrm{tg}\,\beta\) ). Заметим, что \(\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta=1\) , следовательно, \(\mathrm{tg}\,\alpha=\mathrm{ctg}\,\beta=\mathrm{tg}\,(90^\circ-\beta)\) . Следовательно, \(\alpha=90^\circ-\beta\) , откуда \(\alpha+\beta=90^\circ\) . Это значит, что угол между \(y=2x\) и положительным направлением \(Oy\) равен углу между \(y=0,5x\) и положительным направлением \(Ox\) :


А так как прямая \(y=x\) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями \(Ox\) и \(Oy\) равны по \(45^\circ\) ), то углы между \(y=x\) и прямыми \(y=2x\) и \(y=0,5x\) равны.
Все это нам нужно было для того, чтобы сказать, что прямые \(y=2x\) и \(y=0,5x\) симметричны друг другу относительно \(y=x\) , следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
Заметим, что если \(a=0\) , то окружность вырождается в точку \((0;0)\) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:


Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти \(a>0\) , а в третьей \(a<0\) (но такие же по модулю).
Поэтому рассмотрим только первую четверть.


Заметим, что \(OQ=\sqrt{(a-0)^2+(a-0)^2}=\sqrt2a\) , \(QK=R=\sqrt5a^2\) . Тогда \ Тогда \[\mathrm{tg}\,\angle QOK=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}}\] Но, с другой стороны, \[\mathrm{tg}\,\angle QOK=\mathrm{tg}\,(45^\circ-\alpha)=\dfrac{\mathrm{tg}\, 45^\circ-\mathrm{tg}\,\alpha}{1+\mathrm{tg}\,45^\circ\cdot \mathrm{tg}\,\alpha}\] следовательно, \[\dfrac{1-0,5}{1+1\cdot 0,5}=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}} \quad\Leftrightarrow\quad a=\pm \dfrac15\] Таким образом, мы уже сразу получили и положительное, и отрицательное значение для \(a\) . Следовательно, ответ: \

Ответ:

\(\{-0,2;0,2\}\)

Задание 4 #3278

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , для каждого из которых уравнение \

имеет единственное решение.

(ЕГЭ 2017, официальный пробный 21.04.2017)

Сделаем замену \(t=5^x, t>0\) и перенесем все слагаемые в одну часть: \ Получили квадратное уравнение, корнями которого по теореме Виета являются \(t_1=a+6\) и \(t_2=5+3|a|\) . Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с \(t\) тоже имело один (положительный!) корень.
Заметим сразу, что \(t_2\) при всех \(a\) будет положительным. Таким образом, получаем два случая:

1) \(t_1=t_2\) : \ &a=-\dfrac14 \end{aligned} \end{gathered} \right.\]

2) Так как \(t_2\) всегда положителен, то \(t_1\) должен быть \(\leqslant 0\) : \

Ответ:

\((-\infty;-6]\cup\left\{-\frac14;\frac12\right\}\)

Задание 5 #3252

Уровень задания: Равен ЕГЭ

\[\sqrt{x^2-a^2}=\sqrt{3x^2-(3a+1)x+a}\]

имеет ровно один корень на отрезке \(\) .

(ЕГЭ 2017, резервный день)

Уравнение можно переписать в виде: \[\sqrt{(x-a)(x+a)}=\sqrt{(3x-1)(x-a)}\] Таким образом, заметим, что \(x=a\) является корнем уравнения при любых \(a\) , так как уравнение принимает вид \(0=0\) . Для того, чтобы этот корень принадлежат отрезку \(\) , нужно, чтобы \(0\leqslant a\leqslant 1\) .
Второй корень уравнения находится из \(x+a=3x-1\) , то есть \(x=\frac{a+1}2\) . Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: \[\left(\dfrac{a+1}2-a\right)\cdot \left(\dfrac{a+1}2+a\right)\geqslant 0\quad\Rightarrow\quad -\dfrac13\leqslant a\leqslant 1\] Для того, чтобы этот корень принадлежал отрезку \(\) , нужно, чтобы \ Таким образом, чтобы корень \(x=\frac{a+1}2\) существовал и принадлежал отрезку \(\) , нужно, чтобы \(-\frac13\leqslant a\leqslant 1\) .
Заметим, что тогда при \(0\leqslant a\leqslant 1\) оба корня \(x=a\) и \(x=\frac{a+1}2\) принадлежат отрезку \(\) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: \ Таким образом, нам подходят \(a\in \left[-\frac13; 0\right)\) и \(a=1\) .

Ответ:

\(a\in \left[-\frac13;0\right)\cup\{1\}\)

Задание 6 #3238

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственный корень на отрезке \(.\)

(ЕГЭ 2017, резервный день)

Уравнение равносильно: \ ОДЗ уравнения: \[\begin{cases} x\geqslant 0\\ x-a\geqslant 0\\3a(1-x) \geqslant 0\end{cases}\] На ОДЗ уравнение перепишется в виде: \

1) Пусть \(a<0\) . Тогда ОДЗ уравнения: \(x\geqslant 1\) . Следовательно, для того, чтобы уравнение имело единственный корень на отрезке \(\) , этот корень должен быть равен \(1\) . Проверим: \ Не подходит под \(a<0\) . Следовательно, эти значения \(a\) не подходят.

2) Пусть \(a=0\) . Тогда ОДЗ уравнения: \(x\geqslant 0\) . Уравнение перепишется в виде: \ Полученный корень подходит под ОДЗ и входит в отрезок \(\) . Следовательно, \(a=0\) – подходит.

3) Пусть \(a>0\) . Тогда ОДЗ: \(x\geqslant a\) и \(x\leqslant 1\) . Следовательно, если \(a>1\) , то ОДЗ – пустое множество. Таким образом, \(0 Рассмотрим функцию \(y=x^3-a(x^2-3x+3)\) . Исследуем ее.
Производная равна \(y"=3x^2-2ax+3a\) . Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения \(3x^2-2ax+3a=0\) : \(D=4a(a-9)\) . Следовательно, при \(a\in (0;1]\) дискриминант \(D<0\) . Значит, выражение \(3x^2-2ax+3a\) положительно при всех \(x\) . Следовательно, при \(a\in (0;1]\) производная \(y">0\) . Следовательно, \(y\) возрастает. Таким образом, по свойству возрастающей функции уравнение \(y(x)=0\) может иметь не более одного корня.

Следовательно, для того, чтобы корень уравнения (точка пересечения графика \(y\) с осью абсцисс) находился на отрезке \(\) , нужно, чтобы \[\begin{cases} y(1)\geqslant 0\\ y(a)\leqslant 0 \end{cases}\quad\Rightarrow\quad a\in \] Учитывая, что изначально в рассматриваемом случае \(a\in (0;1]\) , то ответ \(a\in (0;1]\) . Заметим, что корень \(x_1\) удовлетворяет \((1)\) , корни \(x_2\) и \(x_3\) удовлетворяют \((2)\) . Также заметим, что корень \(x_1\) принадлежит отрезку \(\) .
Рассмотрим три случая:

1) \(a>0\) . Тогда \(x_2>3\) , \(x_3<3\) , следовательно, \(x_2\notin .\) Тогда уравнение будет иметь один корень на \(\) в одном из двух случаях:
- \(x_1\) удовлетворяет \((2)\) , \(x_3\) не удовлетворяет \((1)\) , или совпадает с \(x_1\) , или удовлетворяет \((1)\) , но не входит в отрезок \(\) (то есть меньше \(0\) );
- \(x_1\) не удовлетворяет \((2)\) , \(x_3\) удовлетворяет \((1)\) и не равен \(x_1\) .
Заметим, что \(x_3\) не может быть одновременно меньше нуля и удовлетворять \((1)\) (то есть быть больше \(\frac35\) ). Учитывая это замечание, случаи записываются в следующую совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3-a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3-a> Решая данную совокупность и учитывая, что \(a>0\) , получим: \

2) \(a=0\) . Тогда \(x_2=x_3=3\in .\) Заметим, что в этом случае \(x_1\) удовлетворяет \((2)\) и \(x_2=3\) удовлетворяет \((1)\) , то есть уравнение имеет два корня на \(\) . Это значение \(a\) нам не подходит.

3) \(a<0\) . Тогда \(x_2<3\) , \(x_3>3\) и \(x_3\notin \) . Рассуждая аналогично пункту 1), нужно решить совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3+a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3+a> \dfrac35\end{cases} \end{aligned}\end{gathered}\right.\] Решая данную совокупность и учитывая, что \(a<0\) , получим: \\]

Ответ:

\(\left(-\frac{13}5;-\frac{12}5\right] \cup\left[\frac{12}5;\frac{13}5\right)\)

основной период 2016 года

Многие ребята в основной период ЕГЭ по математике 2016 года писали, что задания по математике профильного уровня были чрезмерно сложными, и даже создали петицию на сайте OnlinePetition.ru

Ребята, прикол в том, что они были проще многих из тех образцов, по которым вы готовились. Просто непривычнее. Дело в том, что в последнее время на ЕГЭ давались задачи на параметры, которые лучше было решать графическим методом. А 6 июня 2016 года были задачи, в которых достаточно было проанализировать ОДЗ (Область Допустимых Значений) уравнения и его Дискриминант, так как после преобразований уравнение оказывалось квадратным (!).

Давайте рассмотрим решения двух примеров.

Задача 1

Найдите все значения параметра a , при каждом из которых уравнение

√15x 2 + 6ax + 9____________ = x 2 + ax + 3

Имеет ровно три различных решения.

Решение.

Не забываем начать решение уравнения с анализа его области определения.
Область определения уравнения (системы уравнений, неравенства, функции) совпадает с Областью Допустимых Значений выражения, если условием задачи никаких специальных ограничений не накладывается. Здесь просто ОДЗ:
1) 15x 2 + 6ax + 9 ≥ 0 ;
2) x 2 + ax + 3 ≥ 0 .
Оба неравенства должны выполняться одновременно, т.е. фактически это система неравенств.
Первое условие означает, что подкоренное выражение для корней чётной степени обязано быть неотрицательным.
Второе условие связано с определением арифметического корня. Согласно этому определению результат вычисления квадратного корня есть неотрицательное число, поэтому правая часть равенства также должна быть неотрицательной.
Оба неравенства являются квадратными, но решать мы их будем позже. А пока, заручившись неотрицательностью обеих частей равенства, смело возводим обе части уравнения в квадрат, чтобы избавиться от знака радикала.

15x 2 + 6ax + 9 = (x 2 + ax + 3) 2

Сумма трёх членов возводится в квадрат по правилу - все три квадрата и все три удвоенных произведения, т.е.
(a + b + c ) 2 = a 2 + b 2 + c 2 + 2a b + 2b c + 2a c .
Но если вы этого не знаете, не страшно. Скобки-то умеете и ставить, и раскрывать.
(a + (b + c )) 2 = a 2 + 2a (b + c ) + (b + c ) 2 и далее.

Любым способом после возведения в квадрат получим

15x 2 + 6ax + 9 = x 4 + (ax ) 2 + 9 + 2x 2 ·ax + 2ax ·3 + 6x 2

Преобразуем: переносим все слагаемые в правую часть, приводим подобные члены, общий множитель выносим за скобки. Имеем:

x 2 ·(x 2 + 2a x + a 2 − 9) = 0

Очевидно, что x = 0 будет корнем этого уравнения при любом значении параметра a . Проверим ОДЗ при x = 0.

1) 15·0 2 + 6a ·0 + 9 ≥ 0; 9 ≥ 0 ;
2) 0 2 + a ·0 + 3 ≥ 0; 3 ≥ 0.

Оба неравенства выполняются также при любом значении параметра a . Значит один корень уже есть и теперь нам осталось найти все значения параметра a , при каждом из которых квадратное уравнение

x 2 + 2a x + a 2 − 9 = 0

Имеет ровно два различных решения, не совпадающих с x = 0 и удовлетворяющих неравенствам 1) и 2), т.е. первоначальному ОДЗ.
Исследуем дискриминант:

D = (2a ) 2 − 4·1·(a 2 − 9) = 36 > 0.

Таким образом, последнее уравнение при любом a имеет два разных корня, которые мы можем найти

x 1 = (−2a − 6)/2 = −a − 3;
x 2 = (−2a + 6)/2 = −a + 3.

Совпадение с первым (нулевым корнем) может быть при a + 3 = 0; a = 3 и при a − 3 = 0; a = −3 .

Замечание . Это уравнение проще и быстрее решать не через дискриминант, а выделением полного квадрата.
x 2 + 2a x + a 2 − 9 = 0; (x + a ) 2 = 9; x + a = ±3.
Но на таком ответственном мероприятии, как выпускной экзамен, я советую решать двумя способами сразу - для взаимной проверки ответов.

Осталось сверить эти корни с Областью Допустимых Значений исходного уравнения.
Проверяем, подставляя поочередно оба корня в оба неравенства.

Итак, первому неравенству всегда удовлетворяют оба корня. Чтобы оба корня удовлетворяли второму неравенству, нужно чтобы параметр a удовлетворял системе условий , т.е. принадлежал промежутку [−4; 4].

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Задача 2

Найдите все значения а , при каждом из которых уравнение

x − 2a _____ x + 2 + x − 1 ____ x a = 1

Имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и x a .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
- Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
- Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
- Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: "дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю".

После раскрытия скобок и приведения подобных членов получим

x 2 − 2ax + 2a 2 − x − 2 = −2a .

Окончательно приведём к виду, характерному для квадратного уравнения:

x 2 − (2a + 1)·x + (2a 2 + 2a − 2) = 0.

Дискриминант этого уравнения

D = (2a + 1) 2 − 4·(2a 2 + 2a − 2) = −4a 2 − 4a + 9.

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10__ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a , ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a x = а .

a 2 − (2a + 1)·a + (2a 2 + 2a − 2) = 0.
a 2 + a − 2 = 0.
a = 1 и a = −2.

Определим те значения a , при которых корнем квадратного уравнения является x = −2.

(−2) 2 − (2a + 1)·(−2) + (2a 2 + 2a − 2) = 0.
a 2 + 3a + 2 = 0.
a = −1 и a = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

a = −1

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

a = −2

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Ответ: a ∈{(−1 − √10__ )/2; −2; −1; 1; (−1 + √10__ )/2.}

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a , при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2, то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

D = a 2 – 4(2a – 1)(2a – 3) = -15a 2 + 32a – 12;

Чтобы записать окончательный ответ, необходимо понять,

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики в координатной плоскости (x;y ) или в плоскости (x;a ).

Пример 2. Для каждого значения параметра a определите количество решений уравнения .

Заметим, что количество решений уравнения равно количеству точек пересечения графиков функций и y = a.

График функции показан на рис.1.

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a < 0 – решений нет; при a = 0 и a = 25/4 – четыре решения; при 0 < a < 6 – восемь решений; при a = 6 – семь решений; при

6 < a < 25/4 – шесть решений; при a > 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение = -ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть = t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а , при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

. Линейные уравнения.

Задача № 1. При каких значениях параметра b уравнение не имеет корней?

. Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a , при которых множество решений неравенства:

содержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

Преобразуем обе части неравенства.

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия:

Рис.4

При a > 6 множество решений неравенства: .

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a ).

. Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции взяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции является гипербола. По условию x > 0. При неограниченном возрастании х дробь монотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

2) По определению степени область определения D(y) состоит из решений неравенства . При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 < a < 1 показательная функция с основанием а убывает и неравенство равносильно неравенству . Так как x > 0 , то z (x ) > z (0) = 1 . Значит, каждое положительное значение х является решением неравенства . Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство равносильно неравенству . Если a ≥ 5, то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 < a < 5, то множество положительных решений – это интервал (0;x 0) , где a = z (x 0) .

5) Целые числа расположены в этом интервале подряд, начиная с 1. Вычислим суммы последовательно идущих натуральных чисел, начиная с 1: 1; 1+2 = 3; 1+2+3 = 6; 1+2+3+4 = 10;… Поэтому указанная сумма будет больше 5 и меньше 10, только если число 3 лежит в интервале (0;x 0), а число 4 не лежит в этом интервале. Значит, 3 < x 0 ≤ 4 . Так как возрастает на , то z (3) < z (x 0) ≤ z (4) .

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О }

Предыдущая статья: Следующая статья:


© 2015 .
О сайте | Контакты
| Карта сайта