Главная » Условно-съедобные грибы » Значение радиации. Виды радиационного излучения

Значение радиации. Виды радиационного излучения

В последние годы мы все чаще можем услышать про радиоактивную угрозу для всего человечества. К сожалению, это действительно так, и, как показал опыт аварии на ЧАЭС и ядерная бомба в японских городах, радиация может из верного помощника превратиться в яростнейшего врага. И чтобы знать, что собой представляет радиация, и как защититься от ее негативного воздействия, попробуем проанализировать всю доступную информацию.

Воздействие радиоактивных элементов на здоровье человека

Каждый человек хотя бы раз в жизни сталкивался с понятием "радиация". Но что такое радиация и насколько она опасна, знают немногие. Чтобы разобраться в этом вопросе более подробно, необходимо тщательно изучить все виды радиационного воздействия на человека и природу. Радиация - это процесс излучения потока элементарных частиц электромагнитного поля. Влияние радиации на жизнедеятельность и здоровье человека принято называть облучением. В процессе данного явления радиация размножается в клетках организма и тем самым разрушает его. Особенно опасно радиационное облучение для маленьких детей, организм которых достаточно не сформировался и не окреп. Поражение человека подобным явлением может вызвать самые тяжелые заболевания: бесплодие, катаракту, инфекционные заболевания и опухоли (как злокачественные, так и доброкачественные). В любом случае радиация не приносит пользу в жизнь человека, а лишь разрушает ее. Но не стоит забывать, что можно обезопасить себя и приобрести дозиметр радиации, при помощи которого вы всегда будете знать о радиоактивном уровне окружающей среды.

На самом деле, организм реагирует на радиацию, а не на ее источник. Радиоактивные вещества попадают в организм человека через воздух (при дыхательном процессе), а также при употреблении пищи и воды, которые изначально были облучены потоком радиационных лучей. Самое опасное облучение, пожалуй, внутреннее. Его проводят с целью лечения некоторых заболеваний при использовании в медицинской диагностике радиоизотопов.

Виды радиации

Чтобы максимально четко ответить на вопрос, что такое радиация, следует рассмотреть ее разновидности. По характеру и воздействию на человека различают несколько видов радиации:

  1. Альфа-частицы - это тяжелые частицы, которые имеют положительный заряд и выступают в форме ядра гелия. Воздействие их на организм человека носит порой необратимый характер.
  2. Бета-частицы - обыкновенные электроны.
  3. Гамма-излучение - имеет высокий уровень проникновения.
  4. Нейтроны - это электрически заряженные нейтральные частицы, которые существуют только в тех местах, где есть рядом атомный реактор. Обычному человеку не ощутить данный вид радиации на своем организме, поскольку доступ к реактору весьма ограничен.
  5. Рентгеновские лучи - это, пожалуй, наиболее безопасный вид радиации. По своему существу схож с гамма-излучением. Однако наиболее ярким примером рентгеновского облучения можно назвать Солнце, которое освещает нашу планету. Благодаря атмосфере люди защищены от высокого радиационного фона.

Предельно опасными принято считать Альфа-, Бета- и Гамма-излучающие частицы. Именно они могут стать причиной генетических заболеваний, злокачественных опухолей и даже смерти. Кстати, радиация АЭС, излучаемая в окружающую среду, по уверениям экспертов, не носит опасный характер, хотя и сочетает в себе практически все разновидности радиоактивного загрязнения. Иногда предметы старины, антиквариат обрабатывают при помощи радиационного излучения, чтобы избежать быстрой порчи культурного наследия. Однако радиация быстро вступает в реакцию с живыми клетками, а в последствии - разрушает их. Поэтому стоит с опаской относиться к предметам древности. Элементарной защитой от проникновения внешней радиации служит одежда. Не стоит рассчитывать на полную защиту от радиации в солнечный жаркий день. Кроме того, источники радиации могут долго не выдавать себя и проявить активность в тот момент, когда вы будете рядом.

Чем измерять уровень радиационного излучения

Уровень радиации можно измерять при помощи дозиметра как в промышленных, так и в бытовых домашних условиях. Для тех, кто проживает неподалеку от атомных электростанций, или людей, которые просто обеспокоены своей безопасностью, данный прибор будет просто незаменим. Основное предназначение такого приспособления, как дозиметр радиации, заключается в том, чтобы измерять мощность дозы радиации. Этот показатель можно проверить не только относительно человека и помещения. Иногда приходится обращать внимание и на некоторые предметы, которые могут нести опасность для человека. Детские игрушки, продукты питания и строительные материалы - каждый из предметов может быть наделен определенной дозой излучения. Для тех жителей, которые проживают неподалеку от Чернобыльской АЭС, где произошла страшная катастрофа в 1986 году, купить дозиметр просто необходимо, чтобы всегда быть начеку и знать, какая доза радиации в конкретный момент присутствует в окружающей среде. Любителям экстремальных развлечений, походов в отдаленные от цивилизации места следует заранее обеспечить себя предметами для собственной безопасности. Очистить землю, строительные материалы или продукты питания от радиации невозможно. Поэтому лучше избегать неблагоприятного влияния на свой организм.

Компьютер - источник радиации

Пожалуй, многие именно так и считают. Однако это не совсем так. Определенный уровень радиации исходит только от монитора, да и то, только от электролучевого. В нынешнее время производители не выпускают подобную технику, которую превосходно заменили жидкокристаллические и плазменные экраны. Но во многих домах все еще функционируют старые электролучевые телевизоры, мониторы. Они являются достаточно слабым источником рентгеновского вида излучения. Благодаря толщине стекла, эта самая радиация остается именно на нем и не вредит человеческому здоровью. Поэтому не стоит излишне волноваться.

Доза радиации относительно местности

Предельно точно можно сказать, что естественное излучение - параметр очень непостоянный. В зависимости от географического месторасположения и определенного временного периода данный показатель может меняться в пределах широкого диапазона. К примеру, показатель радиации на московских улицах колеблется от 8 до 12 микрорентген в час. А вот на горных вершинах он будет выше в 5 раз, поскольку там защитные возможности атмосферы гораздо ниже, нежели в населенных пунктах, которые ближе к уровню мирового океана. Стоит отметить, что в местах скопления пыли и песка, насыщенного высоким содержанием урана либо тория, уровень радиационного фона будет значительно увеличен. Чтобы определить в домашних условиях показатель радиационного фона, следует приобрести дозиметр-радиометр и выполнить соответствующие замеры в помещении или на улице.

Радиационная защита и ее виды

В последнее время все чаще можно услышать дискуссии на тему, что такое радиация и как с ней бороться. И в процессе обсуждений всплывает такой термин, как радиационная защита. Под радиационной защитой принято понимать комплекс определенных мероприятий относительно защиты живых организмов от воздействия ионизирующего излучения, а также поиски способов снижения поражающего действия ионизирующих радиационных излучений.

Существует несколько видов защиты от излучения:

  1. Химическая . Это ослабление негативного влияния радиации на организм при помощи введения в него некоторых химических препаратов под названием радиопротекторы.
  2. Физическая . Это применение различных материалов, которые ослабляют радиационный фон. К примеру, если слой земли, который был подвержен излучению, составляет 10 см, то насыпь толщиной в 1 метр уменьшит количество радиации в 10 раз.
  3. Биологическая защита от радиации. Представляет собой комплекс защитных репарирующих энзимов.

Для защиты от разных видов радиации можно использовать некоторые предметы обихода:

  • От Альфа-излучения - респиратор, бумага, резиновые перчатки.
  • От Бета-излучения - противогаз, стекло, небольшой слой алюминия, плексиглас.
  • От Гамма-излучения - только тяжелые металлы (свинец, чугун, сталь, вольфрам).
  • От нейтронов - различные полимеры, а также вода и полиэтилен.

Элементарные способы защиты от радиационного облучения

Для человека, который оказался в радиусе зоны радиационного загрязнения, самым важным вопросом на этот момент будет собственная защита. Поэтому каждому, кто стал невольным пленником распространения уровня радиации, стоит непременно покинуть свое месторасположение и уехать как можно дальше. Чем быстрее человек это сделает, тем меньше вероятность получения определенной и нежелательной дозы радиоактивных веществ. Если же покинуть свой дом нет возможности, то стоит прибегнуть к другим мерам безопасности:

  • первые несколько дней не выходить из дома;
  • делать влажную уборку по 2-3 раза на день;
  • максимально часто принимать душ и стирать одежду;
  • чтобы обеспечить защиту организма от вредного радиоактивного йода-131, следует помазать небольшой участок тела раствором медицинского йода (если верить врачам, то эта процедура действенна в течении месяца);
  • при острой необходимости покинуть помещение стоит надеть на голову бейсболку и капюшон одновременно, а также влажную одежду светлых тонов из хлопкового материала.

Опасно пить радиоактивную воду, поскольку ее суммарная радиация достаточно высока и может оказать негативное воздействие на человеческий организм. Самый простой способ очистки - это пропустить ее через угольный фильтр. Конечно же, срок годности кассеты такого фильтра резко уменьшается. Поэтому нужно менять кассету как можно чаще. Еще один непроверенный способ - кипячение. Гарантия очистки от радона не будет 100% ни в одном из случаев.

Правильный рацион питания в случае опасности радиационного облучения

Общеизвестно, что в процессе обсуждений на тему, что такое радиация, возникает вопрос, как от нее защититься, что следует кушать и какие витамины употреблять. Существует некоторый перечень продуктов, которые максимально опасны для употребления. Наибольшее количество радионуклидов накапливается именно в рыбе, грибах и мясе. Поэтому стоит ограничить себя в употреблении этих продуктов питания. Овощи нужно тщательно мыть, проваривать и срезать верхнюю кожуру. Лучшими продуктами для употребления в период радиоактивного излучения можно считать семечки подсолнуха, субпродукты - почки, сердце, а также яйца. Нужно есть как можно больше йодсодержащей продукции. Поэтому каждый человек должен покупать соль йодированную и морепродукты.

Некоторые люди считают, что красное вино защитит от радионуклидов. Доля правды в этом есть. При употреблении 200 мл в сутки этого напитка организм становится менее уязвим для радиации. Но накопленные радионуклиды вином не выведешь, поэтому суммарная радиация все же остается. Однако некоторые вещества, содержащиеся в винном напитке, позволяют блокировать вредоносное воздействие радиационных элементов. Тем не менее, во избежание проблем, необходимо вывести вредные вещества из организма при помощи медикаментов.

Медикаментозная защита от радиации

Некую долю радионуклидов, поступивших в организм, можно попробовать вывести с помощью препаратов-сорбентов. К простейшим средствам, способным ослабить воздействие радиации, относят активированный уголь, который нужно употреблять по 2 таблетки перед едой. Подобным свойством наделены и такие медикаментозные препараты, как "Энтеросгель" и "Атоксил". Они блокируют вредные элементы, обволакивая их, и выводят их из организма при помощи мочевой системы. При этом вредоносные радиоактивные элементы, даже оставаясь в организме в незначительном количестве, не смогут оказать существенного влияния на здоровье человека.

Использование растительных препаратов против радиации

В борьбе с выведением радионуклидов могут помочь не только медицинские препараты, приобретенные в аптеке, но и некоторые виды трав, которые обойдутся в разы дешевле. К примеру, к радиопротекционным растениям можно отнести медуницу, заманиху и корень женьшеня. Кроме того, для снижения уровня концентрации радионуклидов рекомендуется воспользоваться экстрактом элеутерококка в количестве половины чайной ложки после завтрака, запивая эту настойку теплым чаем.

Может ли человек быть источником радиации

При воздействии на человеческий организм радиация не создает в нем радиоактивные вещества. Из этого следует, что человек сам по себе не может быть источником радиационного излучения. Однако вещи, которых коснулась опасная доза радиации, небезопасны для состояния здоровья. Есть мнение, что и рентгеновские снимки лучше не хранить дома. Но на самом деле они не причинят никому вреда. Единственное, что следует помнить - рентген нельзя делать слишком часто, иначе это может привести к проблемам со здоровьем, поскольку доза радиоактивного облучения там все же есть.

Радиация – это невидимое человеческому глазу излучение, которое тем не менее оказывает мощнейшее влияние на организм. К сожалению, последствия облучения для человека исключительно негативные.

Изначально излучение влияет на организм извне. Оно исходит от естественных радиоактивных элементов, которые находятся в земле, а также попадает на планету из космоса. Также внешнее облучение исходит в микродозах от стройматериалов, медицинских рентгеновских аппаратов. Большие дозы облучения можно обнаружить на ядерных электростанциях, специальных физических лабораториях и урановых рудниках. Также крайне опасны полигоны испытания ядерного оружия и места захоронения радиационных отходов.

В определенной степени наша кожа, одежда и даже дома защищают от вышеперечисленных источников излучения. Но главная опасность радиации заключается в том, что облучение может быть не только внешним, но и внутренним.

Радиоактивные элементы могут проникать с воздухом и водой, через порезы в коже и даже сквозь ткани организма. В этом случае источник облучения действует намного дольше – пока он не будет выведен из тела человека. От него не защититься свинцовой плитой и невозможно уехать подальше, что делает ситуацию еще опаснее.

Дозировка облучения

Для того чтобы определить мощность облучения и степень воздействия радиации на живые организмы было придумано несколько шкал измерения. В первую очередь измеряется мощность источника излучения в Греях и Радах. Здесь все достаточно просто. 1 Гр=100Р. Именно так определяется уровень облучения с помощью счетчика Гейгера. Также используется шкала Рентген.

Но не стоит считать, что данные показания достоверно указывают на степень опасности для здоровья. Недостаточно знать мощность излучения. Влияние радиации на организм человека меняется также в зависимости от типа излучения. Всего их 3:

  1. Альфа. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи. Но при наличии ран или взвеси частиц в воздухе,
  2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.
  3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

Радиационное воздействие происходит на молекулярном уровне. Облучение приводит к образованию в клетках тела свободных радикалов, которые начинают разрушать окружающие вещества. Но, учитывая уникальность каждого организма и неравномерную чувствительность органов к действию радиации на человека, ученым пришлось ввести понятие эквивалентной дозы.

Для определения, чем опасна радиация в той или иной дозе, мощность излучения в Радах, Рентгенах и Греях умножается на коэффициент качества.

Для Альфа-излучения он равен 20, а для Бета и Гамма – 1. Рентгеновские лучи также имеют коэффициент 1. Полученный результат измеряется в Бэрах и Зивертах. При коэффициенте равном единице, 1 Бэр равен одному Раду или Рентгену, а 1 Зиверт равен одному Грею или 100 Бэрам.

Чтобы определить степень воздействия эквивалентной дозы на организм человека пришлось ввести еще один коэффициент риска. Для каждого органа он отличается, в зависимости от того как влияет радиация на отдельные ткани тела. Для организма в целом он равен единице. Благодаря этому получилось составить шкалу опасности радиации и ее влияния на человека при однократном воздействии:

  • 100 Зиверт. Это быстрая смерть. Через несколько часов, а в лучшем случае дней нервная система организма прекращает свою деятельность.
  • 10-50 – это смертельная доза, в результате которой человек умрет от многочисленных внутренних кровоизлияний спустя несколько недель мучений.
  • 4-5 Зиверт – -смертность составляет около 50%. Из-за поражения костного мозга и нарушения процесса кроветворения организм погибает спустя пару месяцев или меньше.
  • 1 Зиверт. Именно с этой дозы начинается лучевая болезнь.
  • 0,75 Зиверта. Кратковременные изменения в составе крови.
  • 0,5 – эта доза считается достаточной, чтобы стать причиной развития онкозаболеваний. Но других симптомов обычно не бывает.
  • 0,3 Зиверта. Это мощность аппарата при получении рентгеновского снимка желудка.
  • 0,2 Зиверта. Это безопасный уровень излучения, допустимого при работе с радиоактивными материалами.
  • 0,1 – при данном радиационном фоне добывается уран.
  • 0,05 Зиверта. Норма фонового облучения медицинской аппаратурой.
  • 0,005 Зиверта. Допустимый уровень радиации возле АЭС. Также это годовая норма облучения для гражданского населения.

Последствия радиационного облучения

Опасное влияние радиации на организм человека обуславливается воздействием свободных радикалов. Они образуются на химическом уровне из-за воздействия облучения и поражают в первую очередь быстро делящиеся клетки. Соответственно в большей мере от радиации страдают органы кроветворения и половая система.

Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.

Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.

Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.

Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.

Мутации

Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.

Из-за нарушений в цепочке молекулы ДНК, вызванных свободными радикалами, у плода могут развиваться различные отклонения, связанные с проблемами внутренних органов, внешними уродствами или нарушениями психики. При этом данное нарушение может распространяться и на будущие поколения.

Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.

Лейкоз и другие виды рака

Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:

  1. Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
  2. Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
  3. Воспаляются лимфатические узлы.
  4. Увеличиваются печень и селезенка.
  5. Затрудняется дыхание.
  6. На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
  7. Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.

До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.

Затем радиационные эффекты облучения людей чаще всего приводят к:

  1. Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
  2. Рак щитовидной железы. Им также страдает 1% облученных.
  3. Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.

К счастью, современная медицина вполне может справиться с онкологическими заболеваниями на ранних стадиях, если влияние радиации на здоровье человека было кратковременным и достаточно слабым.

Что влияет на последствия облучения

Влияние радиации на живые организмы сильно различается от мощности и типа излучения: альфа, бета или Гамма. В зависимости от этого одна и та же доза радиации может оказаться практически безопасной или привести к скоропостижной смерти.

Также важно понимать, что воздействие радиации на организм человека редко бывает одновременным. Получить дозу в 0.5 Зиверта за один раз – это опасно, а 5-6 – смертельно. Но сделав несколько рентгеновских снимков по 0,3 Зиверта в течение определенного времени, человек дает возможность организму очиститься. Поэтому негативные последствия радиационного облучения просто не проявляются, так как при суммарной дозе в несколько Зиверт, единовременно на тело будет действовать лишь малая часть облучения.

Кроме того, различные последствия действия радиации на человека сильно зависят от индивидуальных особенностей организма. Здоровое тело дольше сопротивляется разрушительному действию облучения. Но лучше всего для обеспечения безопасности радиации для человека, как можно меньше контактировать с излучением для минимизации ущерба.

Что такое радиация?
Термин «радиация» происходит от лат. radius — луч, и в самом широком смысле охватывает все виды излучений вообще. Видимый свет и радиоволны – тоже, строго говоря, радиация, но принято подразумевать под радиацией только ионизирующие излучения, то есть те, взаимодействие которых с веществом приводит к образованию в нем ионов.
Различают несколько видов ионизирующих излучений:
— альфа-излучение – представляет собой поток ядер гелия
— бета-излучение – поток электронов или позитронов
— гамма-излучение – электромагнитное излучение с частотой порядка 10^20 Гц.
— рентгеновское излучение – также электромагнитное излучение с частотой порядка 10^18 Гц.
— нейтронное излучение – поток нейтронов.

Что такое альфа-излучение?
Это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Что такое бета-излучение?
Электроны либо позитроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Если вещество, испускающие бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Что такое нейтронное излучение?
Поток нейтронов, нейтрально заряженных частиц. Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

Что такое гамма-излучение?
Электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани.

А какой вид излучения используется при рентгеноскопии?
Рентгеновское излучение — электромагнитное излучение с частотой порядка 10^18 Гц.
Возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения.
В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое». Это относительная характеристика его энергии и связанной с ней проникающей способности излучения: «жёсткое» — большие энергия и проникающая способность, «мягкое» -меньшие. Рентгеновское излучение — мягкое, гамма-излучение — жесткое.

Существует ли место без радиации вообще?
Практически нет. Радиация — древний фактор окружающей среды. Существует множество естественных источников излучения: это природные радионуклиды, содержащиеся в земной коре, строительных материалах, воздухе, пище и воде, а также космические лучи. В среднем они определяют более чем 80% годовой эффективной дозы, получаемой населением, в основном вследствие внутреннего облучения.

Что такое радиоактивность?
Радиоактивность – свойство атомов какого-либо элемента самопроизвольно превращаться в атомы других элементов. Этот процесс сопровождается ионизирующим излучением, т.е. радиацией.

В чем измеряется радиация?
С учетом того, что «радиация» сама по себе измеримой величиной не является, существуют различные единицы для измерения различных видов излучений, а также загрязнения.
Отдельно используются понятия поглощенной, экспозиционной, эквивалентной и эффективной дозы, а также понятие мощности эквивалентной дозы и фона.
Кроме того, для каждого радионуклида (радиоактивного изотопа элемента) измеряется активность радионуклида, удельная активность радионуклида и период полураспада.

Что такое поглощенная доза и в чем она измеряется?
Доза, поглощённая доза (от греческого — доля, порция) – определяет величину энергии ионизирующего излучения, поглощённую облучаемым веществом. Характеризует физический эффект облучения в любой среде, включая биологическую ткань, и часто рассчитывается на единицу массы этого вещества.
Измеряется в единицах энергии, которая выделяется в веществе (поглощается веществом) при прохождении через него ионизирующего излучения.
Единицы измерения рад, грэй.
Рад (rad – сокращение от radiation absorbed dose) — внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм
1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр = 2,388 x 10-6 кал/г
При экспозиционной дозе в 1 рентген поглощённая доза в воздухе будет 0,85 рад (85 эрг/г).
Грэй (Гр.) — единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.
1 Гр. = 1 Дж/кг = 104 эрг/г = 100 рад.

Что такое экспозиционная доза и в чем она измеряется?
Экспозиционная доза определяется по ионизации воздуха, то есть по суммарному заряду ионов, образовавшихся в воздухе при прохождении через него ионизирующего излучения.
Единицы измерения рентген, кулон на килограмм.
Рентген (Р) — внесистемная единица экспозиционной дозы. Это такое количество гамма- или рентгеновского излучения, которое в 1 см3 сухого воздуха (имеющего при нормальных условиях вес 0,001293 г) образует 2,082 х 109 пар ионов. При пересчёте на 1 г воздуха это составит 1,610 х 1012 пар ионов или 85 эрг/г сухого воздуха. Таким образом физический энергетический эквивалент рентгена равен 85 эрг/г для воздуха.
1 Кл/кг — единица экспозиционной дозы в системе СИ. Это такое количество гамма- или рентгеновского излучения, которое в 1 кг сухого воздуха образует 6,24 х 1018 пар ионов, которые несут заряд в 1 кулон каждого знака. Физический эквивалент 1 Кл/кг равен 33 Дж/кг (для воздуха).
Соотношения между рентгеном и Кл/кг следующие:
1 Р = 2,58 х 10-4 Кл/кг — точно.
1 Кл/кг = 3,88 х 103 Р — приблизительно.

Что такое эквивалентная доза и в чем она измеряется?
Эквивалентная доза равна поглощенной дозе, рассчитанной для человека с учётом коэффициентов, учитывающих различную способность разных видов излучения повреждать ткани организма.
Например, для рентгеновского, гамма, бета-излучения, этот коэффициент (его называют коэффициент качества излучения) равен 1, а для альфа-излучения – 20. То есть при одной и той же поглощенной дозе альфа-излучение нанесет организму в 20 раз больший вред, чем, например гамма-излучение.
Единицы измерения бэр и зиверт.
Бэр — биологический эквивалент рада (ранее — рентгена). Внесистемная единица измерения эквивалентной дозы. В общем случае:
1 бэр = 1 рад * К = 100 эрг/г * К = 0,01 Гр * К = 0,01 Дж/кг * К = 0,01 Зиверт,
где К – коэффициент качества излучения, см. определение эквивалентной дозы
Для рентгеновского, гамма-, бета-излучений, электронов и позитронов, 1 бэр соответствует поглощённой дозе в 1 рад.
1 бэр = 1 рад = 100 эрг/г = 0,01 Гр = 0,01 Дж/кг = 0,01 Зиверт
Учитывая, что при экспозиционной дозе в 1 рентген воздух поглощает примерно 85 эрг/г (физический эквивалент рентгена), а биологическая ткань примерно 94 эрг/г (биологический эквивалент рентгена), можно считать с минимальной погрешностью, что экспозиционная доза в 1 рентген для биологической ткани соответствует поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (для рентгеновского, гамма-, бета-излучений, электронов и позитронов), то есть, грубо говоря — 1 рентген, 1 рад и 1 бэр — это одно и то же.
Зиверт (Зв) — единица эквивалентной и эффективной эквивалентной доз в системе СИ. 1 Зв равен эквивалентной дозе, при которой произведение величины поглощённой дозы в Грэях (в биологической ткани) на коэффициент К будет равно 1 Дж/кг. Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж.
В общем случае:
1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр * К
При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр:
1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Эффективная эквивалентная доза равно эквивалентной дозе, рассчитанной с учётом разной чувствительности различных органов организма к облучению. Эффективная доза учитывает не только, что различные виды излучений обладают разной биологической эффективностью, но и то, что одни части тела человека (органы, ткани) более чувствительны к излучению, чем другие. Например, при одинаковой эквивалентной дозе возникновение рака легких более вероятно, чем рака щитовидной железы. Таким образом, эффективная доза отражает суммарный эффект облучения человека с точки зрения отдаленных последствий.
Для расчета эффективной дозы эквивалентную дозу, полученную конкретным органом, тканью, умножают на соответствующий коэффициент.
Для всего организма этот коэффициент равен 1, а для некоторых органов имеет следующие значения:
костный мозг (красный) — 0,12
щитовидная железа — 0,05
лёгкие, желудок, толстый кишечник — 0,12
гонады (яичники, семенники) — 0,20
кожа — 0,01
Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.
Единица измерения та же, что и у эквивалентной дозы – «бэр», «зиверт»

Что такое мощность эквивалентной дозы, и в чем она измеряется?
Доза, полученная в единицу времени, называется мощностью дозы. Чем больше мощность дозы, тем быстрее растет доза излучения.
Для эквивалентной дозы в СИ единица мощности дозы – зиверт в секунду (Зв/с), внесистемная единица – бэр в секунду (бэр/с). На практике чаще всего используются их производные (мкЗв/час, мбэр/час и т.д.)

Что такое фон, естественный фон, и в чем они измеряется?
Фон – другое название для мощности экспозиционной дозы ионизирующего излучения в данном месте.
Естественный фон — мощность экспозиционной дозы ионизирующего излучения в данном месте, создаваемая только природными источниками излучения.
Единицы измерения, соответственно – бэр и зиверт.
Часто фон и естественный фон измеряют в рентгенах (микрорентгенах и т.д.), примерно приравнивая рентген и бэр (см. вопрос об эквивалентной дозе).

Что такое активность радионуклида и в чем она измеряется?
Количество радиоактивного вещества измеряется не только единицами массы (грамм, миллиграмм и т.д.), но и активностью, которая равняются числу ядерных превращений (распадов) в единицу времени. Чем больше ядерных превращений испытывают атомы данного вещества в секунду, тем выше его активность и тем большую опасность оно может представлять для человека.
Единицей активности в СИ является распад в секунду (расп/с). Эта единица получила название беккерель (Бк). 1 Бк равняется 1 расп/с.
Наиболее употребительной внесистемной единицей активности является кюри (Ки). 1 Ки равняется 3,7* 10 в 10 Бк, что соответствует активности 1 г радия.

Что такое удельная поверхностная активность радионуклида?
Это активность радионуклида, отнесенная к единице площади. Обычно используется для характеристики радиоактивного загрязнения территории (плотности радиоактивного загрязнения).
Единицы измерения — Бк/м2, Бк/км2, Ки/м2, Ки/км2.

Что такое период полураспада и в чем он измеряется?
Период полураспада (T1/2, также обозначается греческой буквой «лямбда», half-life)- время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза. Величина строго постоянная для каждого радионуклида. Периоды полураспада у всех радионуклидов разные — от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).
Это не значит, что через время равное двум T1/2 радионуклид распадется полностью. Через T1/2 радионуклида станет вдвое меньше, через 2*T1/2 – вчетверо и т.д. Полностью радионуклид не распадется теоретически никогда.

Пределы и нормы облучения

(как и где можно облучиться и что мне за это будет?)

Правда ли то, что при полетах на самолете можно получить дополнительную дозу излучения?
В общем случае да. Конкретные цифры зависят от высоты полета, типа самолета, погоды и маршрута, примерно можно оценить фон в салоне самолета как 200-400 мкР/Ч.

Опасно ли делать флюорографию или рентгенографию?
Хотя снимок и занимает всего доли секунды, мощность излучения весьма велика и человек получает достаточную дозу облучения. Не зря врач-рентгенолог при снимке прячется за стальную стенку.
Примерные эффективные дозы для облучаемых органов:
флюорография в одной проекции — 1.0 мЗв
ренген легких — 0.4 мЗ
снимок черепа в двух проекциях — 0.22 мЗв
снимок зуба — 0.02мЗв
снимок носа (гайморовы пазухи) — 0.02 мЗв
снимок голени (ног в связи с переломом) — 0.08мЗв
Указанные цифры верны для одного снимка (если особо не отмечено), при исправном рентгеновском аппарате и применении средств защиты. Скажем, при снимке легких вовсе не обязательно облучать голову и все, что ниже пояса. Требуйте просвинцованный фартук и воротник, их должны вам выдать. Полученная при обследовании доза обязательно записывается в личную карточку больного.
Ну и напоследок — любой врач, отправляющий вас на рентген, обязан оценивать риск избыточного облучения по сравнению с тем, насколько помогут ему ваши снимки для более эффективного лечения.

Радиация на промышленных объектах, свалках, заброшенных зданиях?

Источники радиации можно встретить где угодно, даже в жилом здании, напр. когда-то использовались Радиоизотопные извещатели дыма (РИД) в которых использовались изотопы, излучающие Альфа, Бета и Гамма радиацию, всевозможные шкалы приборов, выпущенных до 60-х годов, на которые наносилась краска в составе которой были соли Радия-226, на свалках находили гамма-дефектоскопы, проверочные источники для дозиметров и.т.д.

Методы и приборы контроля.

Какими приборами можно измерить радиацию?
: Основные приборы – радиометр и дозиметр. Существуют комбинированные приборы – дозиметр-радиометр. Самые распространённые это бытовые дозиметры-радиометры: Терра-П, Припять, Сосна, Стора-Ту, Белла и др. Есть военные приборы типа ДП-5, ДП-2,ДП-3 и др.

А чем отличается радиометр от дозиметра?
Радиометр показывает мощность дозы излучения здесь теперь и сейчас. Но для оценки влияния радиации на организм важна не мощность, а именно полученная доза.
Дозиметр — это прибор, который, измеряя мощность дозы излучения, перемножает её на время воздействия радиации, подсчитывая тем самым полученную владельцем эквивалентную дозу. Бытовые дозиметры измеряют, как правило, только мощность дозы гамма-излучения (некоторые еще и бета-излучения), весовой множитель которых (коэффициент качества излучения) равны 1.
Поэтому даже при отсутствии в приборе функции дозиметра можно мощность дозы, измеренную в Р/ч поделить на 100 и умножить на время облучения, получив таким образом искомое значение дозы в Зивертах. Либо, что то же самое, умножив измеренную мощность дозы на время облучения, получим эквивалентную дозу в бэрах.
Простая аналогия — спидометр в машине показывает мгновенную скорость «радиометр» а счетчик километров интегрирует эту скорость по времени, показывая пройденный машиной путь («дозиметр»).

Дезактивация.

Способы дезактивации техники
Радиоактивная пыль на зараженной технике удерживается силами притяжения (адгезии); величина этих сил зависит от свойств поверхности и среды, в которой происходит притяжение. Силы адгезии в воздухе значительно больше, чем в жидкости. В случае заражения техники, покрытой маслянистыми загрязнениями, адгезия радиоактивной пыли определяется прочностью прилипания самого маслянистого слоя.
При дезактивации происходит два процесса:
· отрыв частиц радиоактивной пыли от зараженной поверхности;
· удаление их с поверхности объекта.

Исходя из этого, способы дезактивации основаны либо на механическом удалении радиоактивной пыли (сметание, сдувание, пылеотсасывание), либо на использовании физико-химических моющих процессов (смывание радиоактивной пыли растворами моющих средств).
Ввиду того, что частичная дезактивация отличается от полной только тщательностью и полнотой обработки, то и способы частичной и полной дезактивации практически одинаковы и зависят только от наличия технических средств дезактивации и дезактивирующих растворов.

Все способы дезактивации можно разделить на две группы: жидкостные и безжидкостные. Промежуточным между ними является газокапельный способ дезактивации.
К жидкостным способам относятся:
· смывание РВ дезактивирующими растворами, водой и растворителями (бензином, керосином, дизтопливом и т.п.) с использованием щеток или ветоши;
· смывание РВ струёй воды под давлением.
При обработке техники этими способами отрыв частиц РВ от поверхности происходит в жидкой среде, когда силы адгезии ослаблены. Транспортировка оторванных частиц при их удалении также обеспечивается жидкостью, стекающей с объекта.
Поскольку скорость движения слоя жидкости, непосредственно примыкающего к твердой поверхности, очень мала, то мала и скорость перемещения пылинок, особенно очень мелких, полностью утопленных в тонком пограничном слое жидкости. Поэтому для достижения достаточной полноты дезактивации приходится одновременно с подачей жидкости протирать поверхность щеткой, или ветошью, использовать растворы моющих средств, облегчающих отрыв радиоактивных загрязнений и удержание их в растворе, или же применять мощную струю воды с большим давлением и расходом жидкости на единицу поверхности.
Жидкостные способы обработки высокоэффективны и универсальны, практически все существующие табельные технические средства дезактивации рассчитаны на жидкостные способы обработки. Самым эффективным из них является способ смывания РВ дезактивирующими растворами с использованием щеток (позволяет снижать зараженность объекта в 50 — 80 раз), а самым быстрым по выполнению — способ смывания РВ струёй воды. Способ смывания РВ дезактивирующими растворами, водой и растворителями с использованием ветоши применяется главным образом для дезактивации внутренних поверхностей кабины автомобиля, различных приборов, чувствительных к большим объёмам воды и дезактивирующих растворов.
Выбор того или иного способа жидкостной обработки зависит от наличия дезактивирующих веществ, емкости водоисточников, технических средств и вида техники, подлежащей дезактивации.
К безжидкостным способам относятся следующие:
· сметание радиоактивной пыли с объекта вениками и другими подсобными материалами;
· удаление радиоактивной пыли методом пылеотсасывания;
· сдувание радиоактивной пыли сжатым воздухом.
При осуществлении этих способов отрыв частиц радиоактивной пыли осуществляется в воздушной среде, когда силы адгезии велики. Существующими способами (пылеотсасывание, струя воздуха от компрессора автомобиля) нельзя создать достаточно мощного потока воздуха. Все эти способы эффективны при удалении сухой радиоактивной пыли с сухих не замасленных и не сильно загрязненных объектов. Табельным техническим средством дезактивации военной техники безжидкостным способом (пылеотсасыванием) в настоящее время является комплект ДК-4, с помощью которого можно обрабатывать технику и жидкостным и безжидкостным способами.
Безжидкостные способы дезактивации позволяют снижать зараженность объектов:
· обметание — в 2 — 4 раза;
· пылеотсасывание — в 5 — 10раз;
· обдувание сжатым воздухом от компрессора автомобиля – в 2-3раза.
Газокапельный способ заключается в обдувании объекта мощным газокапельным потоком.
Источником газового потока служит воздушно-реактивный двигатель, на выходе из сопла в газовый поток вводится вода, которая дробится на мелкие капли.
Сущность способа заключается в том, что на обрабатываемой поверхности образуется пленка жидкости, благодаря чему силы сцепления (адгезии) частиц пыли с поверхностью ослабляются и мощный газовый поток сдувает их с объекта.
Газокапельный способ дезактивации осуществляется с помощью тепловых машин (ТМС-65, УТМ), он позволяет исключить ручной труд при проведении специальной обработки военной техники.
Время дезактивации автомобиля КаМАЗ газокапельным потоком составляет 1 — 2 мин, расход воды — 140л, зараженность снижается в 50 — 100раз.
При дезактивации техники любым из жидкостных или безжидкостных способов необходимо соблюдать следующий порядок обработки:
· объект начинать обрабатывать с верхних частей, постепенно опускаясь вниз;
· последовательно обрабатывать всю поверхность без пропусков;
· каждый участок поверхности обработать 2-3 раза, шероховатые поверхности обработать особенно тщательно с повышенным расходом жидкости;
· при обработке растворами с использованием щёток и ветоши тщательно протирать обрабатываемую поверхность;
· при обработке струёй воды направлять струю под углом 30 — 60° к поверхности, находясь в 3 — 4м от обрабатываемого объекта;
· следить, чтобы брызги и стекающая с обрабатываемого объекта жидкость не попадала на людей, производящих дезактивацию.

Поведение в ситуации потенциальной радиационной опасности.

Если мне сказали, что недалеко взорвалась АЭС, куда бежать?
Никуда не бежать. Во-первых, вас могли обмануть. Во-вторых, в случае действительной опасности лучше всего довериться действиям профессионалов. А для того, чтобы об этих самых действиях узнать, желательно находиться дома, включить радиоприемник или телевизор. В качестве меры предосторожности можно порекомендовать плотно закрыть окна и двери, не выпускать детей и домашних животных на улицу, провести влажную уборку квартиры.

Какие лекарства нужно выпить, чтобы от радиации не было вреда?
При авариях на АЭС в атмосферу выбрасывается большое количество радиоактивного изотопа йода-131, который накапливается в щитовидной железе, что приводит к внутреннему облучению организма и может вызвать рак щитовидной железы. Поэтому в первые дни после загрязнения территории (а лучше до этого загрязнения) необходимо насытить щитовидную железу обычным йодом, тогда организм будет невосприимчив к радиоактивному его изотопу. Пить йод из пузырька исключительно вредно, существуют разнообразные таблетки — обычный йодид калия, йод-актив, йодомарин и т.п., все они представляют собой тот же калий-йод.
Если калий-йода поблизости нет, а территория загрязнена, то в крайнем случае можно капнуть пару капель обычного йода на стакан воды или киселя, и выпить.
Период полураспада йода-131 – чуть более 8 суток. Соответственно, через две недели можно в любом случае о принятии йода внутрь забыть.

Таблица доз радиации.

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.


Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.


Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.


К искусственным источникам относятся:

  • Ядерное оружие;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.


Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

Мутации

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

Коварство многих болезней, вызываемых радиацией, состоит в длительном скрытом периоде. Лучевое поражение может развиться через несколько минут или спустя десятилетия. Иногда последствия облучения организма затрагивают его наследственный аппарат. В этом случае страдают уже последующие поколения.

Генетические последствия радиационного облучения

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

  • до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.
  • до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Неопухолевые последствия воздействия на организм радиации

Отсроченный эффект того, что радиация делает с человеком, часто выражается в функциональных и органических изменениях. К ним относятся:

  • Нарушения микроциркуляции из-за повреждения мелких сосудов, вследствие чего развивается тканевая гипоксия, страдают печень, почки, селезенка.
  • Патологические изменения, созданные дефицитом клеток в органах с низкой скоростью разрастания тканей (половые железы, соединительная ткань).
  • Расстройство регулирующих систем: ЦНС, эндокринной, сердечнососудистой.
  • Избыточное новообразование тканей эндокринных органов в результате снижения их функций, вызванного радиацией.

Канцерогенные последствия радиоактивного облучения

Раньше других проявляют себя такие болезни, вызываемые радиацией, как лейкозы. Они становятся виновниками летальных исходов уже через 10 лет после обучения. Среди людей, подвергшихся действию проникающей радиации после бомбардировок Хиросимы и Нагасаки, смертность от лейкозов пошла на убыль только после 1970 года. Согласно данным НКДАР ООН (Научного комитета по действию атомной радиации), вероятность заболевания лейкозом составляет 1 шанс из 500 при получении дозы облучения 1 Гр.

Еще чаще развивается рак щитовидной железы - по информации того же НКДАР он поражает 10 человек из каждой тысячи облученных (в расчете на индивидуальную поглощенную дозу 1 Гр). С такой же частотой развивается и рак груди у женщин. Правда, оба этих заболевания, несмотря на злокачественность, приводят к смерти далеко не всегда: выжить удается 9 из 10 человек, перенесших рак щитовидной железы, и каждой второй заболевшей раком молочной железы женщине.

Одно из самых грозных отдаленных последствий, которое проникающая радиация может вызвать у людей, - это рак легких. Согласно исследованиям, наиболее высока вероятность заболеть им у шахтеров урановых родников - в 4-7 раз выше, чем у тех, кто пережил атомную бомбардировку. По мнению специалистов НКДАР, одна из причин этого - возраст шахтеров, которые в подавляющем большинстве старше облученного населения японских городов.

В других тканях организма, подвергшегося радиоактивной атаке, опухоли развиваются гораздо реже. Рак желудка или печени встречается не чаще 1 случая на 1000 при получении индивидуальной дозы в 1 Гр, рак иных органов фиксируется с частотностью 0,2-0,5 случая на 1000.

Снижение продолжительности жизни

Единого мнения о безусловном влиянии радиации на среднюю продолжительность жизни человека (СПЖ) у современных ученых нет. Но опыты на грызунах показали, что связь между облучением и более ранней смертностью есть. После получения дозы 1 Гр продолжительность жизни грызунов сокращалась на 1-5 %. Длительное воздействие гамма-излучения приводило к сокращению СПЖ при накоплении суммарной дозы 2 Гр. Причем смерть в каждом случае наступала от разных болезней, вызываемых радиацией: склеротических изменений, злокачественных новообразований, лейкозов и других патологий.

НКДАР ООН также рассматривал вопрос уменьшения продолжительности жизни как отдаленного последствия облучения. В результате специалисты пришли к выводу: при низких и умеренных дозах такая связь сомнительна, но интенсивное облучение проникающей радиацией действительно может вызывать у людей заболевания, сокращающие жизнь.

По оценкам разных ученых сокращение СПЖ человека составляет.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта