Главная » Съедобные грибы » Факторы от которых зависит сила индукционного тока. Сила индукционного тока зависит от скорости изменения магнитного потока

Факторы от которых зависит сила индукционного тока. Сила индукционного тока зависит от скорости изменения магнитного потока

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В - физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция - векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a - угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S - величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) - магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L - коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция - явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция - частный случай электромагнитной индукции.

Индуктивность - величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I - начальное значение тока, t - промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

Учитель физики ГБОУ СОШ №58 г. Севастополя Сафроненко Н.И.

Тема урока: Опыты Фарадея. Электромагнитная индукция.

Лабораторная работа «Исследование явления электромагнитной индукции»

Цели урока : Знать/понимать: определение явления электромагнитной индукции. Уметь описывать и объяснять электромагнитную индукцию, уметь проводить наблюдения природных явлений, использовать простые измерительные приборы для изучения физических явлений.

- развивающая: развивать логическое мышление, познавательный интерес, наблюдательность.

- воспитательная: Формировать убеждённость в возможности познания природы, необходимость разумного использования достижений науки для дальнейшего развития человеческого общества, уважения к творцам науки и техники .

Оборудование : Электромагнитная индукция: катушка с гальванометром, магнит, катушка с сердечником, источник тока, реостат, катушка с сердечником по которой течет переменный ток, сплошное и кольцо с прорезью, катушка с лампочкой. Фильм о М.Фарадее.

Тип урока: комбинированный урок

Метод урока: частично-поисковый, объяснительно-иллюстративный

Домашнее задание:

§21(стр.90-93), устно отвечать на вопросы стр.90, тест 11 стр.108

Лабораторная работа

Исследование явления электромагнитной индукции

Цель работы : выяснить

1)при каких условиях в замкнутом контуре (катушке) возникает индукционный ток;

2)от чего зависит направление индукционного тока;

3)от чего зависит сила индукционного тока.

Оборудование : миллиамперметр, катушка, магнит

Ход урока.

Соедините концы катушки с клеммами миллиамперметра.

1. Выясните, что электрический ток (индукционный) в катушке возникает при изменении магнитного поля внутри катушки. Изменения магнитного поля внутри катушки можно вызвать, вдвигая магнит в катушку или удаляя его из неё.

А)Введите магнит южным полюсом в катушку, а затем удалите.

Б) Введите магнит северным полюсом в катушку, а затем удалите.

При движении магнита появился ток (индукционный) в катушке? (При изменении магнитного поля внутри катушки появился индукционный ток?)

2. Выясните, что направление индукционного тока зависит от направления движения магнита относительно катушки (вносят магнит или удаляют) и от того каким полюсом вносят или удаляют магнит.

А)Введите магнит южным полюсом в катушку, а затем удалите. Пронаблюдайте, что происходит со стрелкой миллиамперметра в обоих случаях.

Б) Введите магнит северным полюсом в катушку, а затем удалите. Пронаблюдайте, что происходит со стрелкой миллиамперметра в обоих случаях. Нарисуйте направления отклонения стрелки миллиамперметра:

Полюса магнита

В катушку

Из катушки

Южный полюс

Северный полюс

3. Выясните, что сила индукционного тока зависит от скорости движения магнита (скорости изменения магнитного поля в катушке).

Медленно вводите магнит в катушку. Пронаблюдайте за показаниями миллиамперметра.

Быстро вводите магнит в катушку. Пронаблюдайте за показаниями миллиамперметра.

Вывод.

Ход урока

Дорога к знаниям? Её легко понять. Ответить можно просто: «Вы ошибаетесь и ошибаетесь опять, но меньше, меньше с каждым разом. Я выражаю надежду, что сегодняшний урок будет ещё одним меньше на этой дороге знаний. Наш урок посвящён явлению электромагнитной индукции, которое открыл английский физик Майкл Фарадей 29 августа 1831 года. Редкий случай, когда дата нового замечательного открытия известна так точно!

Явление электромагнитной индукции – явление возникновения электрического тока в замкнутом проводнике (катушке) при изменении внешнего магнитного поля внутри катушки. Ток называется индукционным. Индукция - наведение, получение.

Цель урока: изучить явление электромагнитной индукции, т.е. при каких условиях в замкнутом контуре (катушке) возникает индукционный ток, выяснить от чего зависит направление и величина индукционного тока.

Одновременно с изучением материала будете выполнять лабораторную работу.

В начале 19 века (1820г.) после опытов датского учёного Эрстеда стало ясно, что электрический ток создаёт вокруг себя магнитное поле. Вспомним ещё раз этот опыт. (Ученик рассказывает опыт Эрстеда ). После этого встал вопрос о том, нельзя ли получить ток с помощью магнитного поля, т.е. произвести обратные действия. В первой половине 19 века учёные обратились именно к таким опытам: стали искать возможность создания электрического тока за счёт магнитного поля. М.Фарадей в своём дневнике записал: «Превратить магнетизм в электричество». И шёл к своей цели почти десять лет. Справился с задачей блестяще. Как напоминание о том, над чем ему всё время следует думать, он носил в кармане магнит. Этим уроком мы отдадим дань уважения великому учёному.

Вспомним Майкла Фарадея. Кто же он такой? (Ученик рассказывает о М.Фарадее ).

Сын кузнеца, разносчик газет, переплётчик книг, самоучка, самостоятельно изучивший физику и химию по книгам, лаборант выдающегося химика Деви и наконец учёный, проделал большую работу, проявил изобретательность, настойчивость, упорство пока не получил электрический ток с помощью магнитного поля.

Совершим путешествие в те далёкие времена и воспроизведём опыты Фарадея. Фарадея считают крупнейшим в истории физики экспериментатором.

N S

1) 2)

S N

Магнит вводили в катушку. При движении магнита в катушке регистрировался ток (индукционный). Первая схема была довольно простой. Во-первых, М.Фарадей использовал в опытах катушку с большим числом витков. Катушка была присоединена к прибору миллиамперметру. Нужно сказать, что в те далёкие времена не было достаточно хороших инструментов для измерения электрического тока. Поэтому пользовались необычным техническим решением: брали магнитную стрелку, располагали рядом с ней проводник, по которому протекал ток, и по отклонению магнитной стрелки судили о протекающем токе. Мы будем судить о токе по показаниям миллиамперметра.

Учащиеся воспроизводят опыт, выполняют п.1 в лабораторной работе. Обратили внимание, что стрелка миллиамперметра отклоняется от своего нулевого значения, т.е. показывает, что в цепи появился ток тогда, когда магнит движется. Стоит магниту остановиться, как стрелка возвращается в нулевое положение, т.е.электрического тока в цепи нет. Ток появляется тогда, когда изменяется магнитное поле внутри катушки.

Пришли к тому о чём говорили в начале урока: получили электрический ток с помощью изменяющегося магнитного поля. Это первая заслуга М. Фарадея.

Вторая заслуга М. Фарадея - установил от чего зависит направление индукционного тока. Установим и мы это. Учащиеся выполняют п.2 в лабораторной работе. Обратимся к п.3 лабораторной работы. Выясним, что сила индукционного тока зависит от скорости движения магнита (скорости изменения магнитного поля в катушке).

Какие выводы сделал М.Фарадей?

    Электрический ток появляется в замкнутой цепи тогда, когда магнитное поле изменяется (если магнитное поле существует, но не меняется, то тока нет).

    Направление индукционного тока зависит от направления движения магнита и его полюсов.

    Сила индукционного тока пропорциональна скорости изменения магнитного поля.

Второй эксперимент М.Фарадея:

Взял две катушки на общем сердечнике. Одну подсоединил к миллиамперметру, а вторую с помощью ключа к источнику тока. Как только цепь замыкалась миллиамперметр показывал индукционный ток. Размыкалась тоже показывал ток. Пока цепь замкнута, т.е. в цепи идёт ток, миллиамперметр не показывал ток. Магнитное поле существует, но не меняется.

Рассмотрим современный вариант опытов М.Фарадея. В катушку соединённую с гальванометром вносим и выносим электромагнит, сердечник, включаем и выключаем ток, с помощью реостата меняем силу тока. На сердечник катушки, по которой течёт переменный ток надевают катушку с лампочкой.

Выяснили условия возникновения в замкнутой цепи (катушке) индукционного тока. А что является причиной его возникновения? Вспомним условия существования электрического тока. Это: заряженные частицы и электрическое поле. Дело в том, что изменяющееся магнитное поле порождает в пространстве электрическое поле (вихревое), которое действует на свободные электроны в катушке и приводит их в направленное движение, создавая таким образом индукционный ток.

Изменяется магнитное поле, изменяется количество силовых линий магнитного поля через замкнутый контур. Если вращать рамку в магнитном поле, то в ней появится индукционный ток. Показать модель генератора.

Открытие явления электромагнитной индукции имело огромное значение для развития техники, для создания генераторов, с помощью которых вырабатывается электрическая энергия, которые стоят на энергетических промышленных предприятиях (электростанциях). Демонстрируется фильм о М.Фарадее «От электричества до электрогенераторов» с 12.02 минуты.

На явлении электромагнитной индукции работают трансформаторы, с помощью которых передают электроэнергию без потерь. Демонстрируется линия электропередачи.

Явление электромагнитной индукции используется в работе дефектоскопа, с помощью которого исследуют стальные балки, рельсы (неоднородности в балке искажают магнитное поле и в катушке дефектоскопа возникает индукционный ток).

Хочется вспомнить слова Гельмгольца: «Пока люди будут пользоваться благами электричества, они будут помнить имя Фарадея».

«Да будут святы те, кто в творческом пылу, исследуя весь мир, открыли в нём законы».

Я думаю, что на нашей дороге знаний ошибок стало ещё меньше.

Что нового узнали? (Что ток можно получить с помощью изменяющегося магнитного поля. Выяснили от чего зависит направление и величина индукционного тока).

Чему научились? (Получать индукционный ток с помощью изменяющегося магнитного поля).

Вопросы:

    В металлическое кольцо в течении первых двух секунд вдвигают магнит, в течении следующих двух секунд он неподвижен внутри кольца, в течении следующих двух секунд его вынимают. В каких промежутках времени в катушке идёт ток? (От 1-2с; 5-6с).

    На магнит надевают кольцо с прорезью и без. В каком возникает индукционный ток? (В замкнутом кольце)

    На сердечнике катушки, которая подключена к источнику переменного тока, находится кольцо. Включают ток и кольцо подпрыгивает. Почему?

Оформление доски:

«Превратить магнетизм в электричество»

М.Фарадей

Портрет М.Фарадея

Рисунки опытов М.Фарадея.

Электромагнитная индукция – явление возникновения электрического тока в замкнутом проводнике (катушке) при изменении внешнего магнитного поля внутри катушки.

Этот ток называется индукционным.

На рисунке показано направление индукционного тока,возникающего в короткозамкнутой проволочной катушке,когда относительно нее перемещают

магнит.Отметьте,какие из следующих утверждений правильные,а какие- неправильные.
А.Магнит и катушка притягиваются друг к другу.
Б. Внутри катушки магнитное поле индукционного тока направленно вверх.
В. Внутри катушки линии магнитной индукции поля магнита направлены вверх.
Г. Магнит удаляют от катушки.

1. Первый закон Ньютона?

2. Какие системы отсчета являются инерциальными и неинерциальными? Приведите примеры.
3. В чем состоит свойство тел, называемое инертностью? Какой величиной характеризуется инертность?
4. Какова связь между массами тел и модулями ускорений, которые они получают при взаимодействии?
5. Что такое сила и чем она характеризуется?
6. Формулировка 2 закона Ньютона? Какова его математическая запись?
7. Как формулируется 2 закон Ньютона в импульсной форме? Его математическая запись?
8. Что такое 1 Ньютон?
9. Как движется тело, если к нему приложена сила постоянная по модулю и направлению? Как направлено ускорение, вызванное действующей на него силой?
10. Как определяется равнодействующая сил?
11. Как формулируется и записывается 3 закон Ньютона?
12. Как направлены ускорения, взаимодействующих между собой тел?
13. Приведите примеры проявления 3 закона Ньютона.
14. Каковы границы применимости всех законов Ньютона?
15. Почему мы можем считать Землю инерциальной системой отсчета, если она двигается с центростремительным ускорением?
16. Что такое деформация, какие виды деформации вы знаете?
17. Какая сила называется силой упругости? Какова природа этой силы?
18. Каковы особенности силы упругости?
19. Как направлена сила упругости (сила реакции опоры, сила натяжения нити?)
20. Как формулируется и записывается закон Гука? Каковы его границы применимости? Постройте график, иллюстрирующий закон Гука.
21. Как формулируется и записывается закон Всемирного тяготения, когда он применим?
22. Опишите опыты, по определению значения гравитационной постоянной?
23. Чему равна гравитационная постоянная, каков ее физический смысл?
24. Зависит ли работа силы тяготения от формы траектории? Чему равна работа силы тяжести по замкнутому контуру?
25. Зависит ли работа силы упругости от формы траектории?
26. Что вы знаете о силе тяжести?
27. Как вычисляется ускорение свободного падения на Земле и других планетах?
28. Что такое первая космическая скорость? Как ее вычисляют?
29. Что называют свободным падением? Зависит ли ускорение свободного падения от массы тела?
30. Опишите опыт Галилео Галилея, доказывающий, что все тела в вакууме падают с одинаковым ускорением.
31. Какая сила называется силой трения? Виды сил трения?
32. Как вычисляют силу трения скольжения и качения?
33. Когда возникает сила трения покоя? Чему она равна?
34. Зависит ли сила трения скольжения от площади соприкасающихся поверхностей?
35. От каких параметров зависит сила трения скольжения?
36. От чего зависит сила сопротивления движению тела в жидкостях и газах?
37. Что называют весом тела? В чем заключается различие между весом тела и силой тяжести, действующей на тело?
38. В каком случае вес тела численно равен модулю силы тяжести?
39. Что такое невесомость? Что такое перегрузка?
40. Как вычислить вес тела при его ускоренном движении? Изменяется ли вес тела, если оно движется по неподвижной горизонтальной плоскости с ускорением?
41. как изменяется вес тела при его движении по выпуклой и вогнутой части окружности?
42. Каков алгоритм решения задач при движении тела под действием нескольких сил?
43. Какая сила называется Силой Архимеда или выталкивающей силой? От каких параметров зависит эта сила?
44. По каким формулам можно вычислить силу Архимеда?
45. При каких условиях тело, находящееся в жидкости плавает, тонет, всплывает?
46. Как зависит глубина погружения в жидкость плавающего тела от его плотности?
47. Почему воздушные шары наполняют водородом, гелием или горячим воздухом?
48. Объясните влияние вращения Земли вокруг своей оси на значение ускорения свободного падения.
49. Как изменяется значение силы тяжести при: а) удалении тела от поверхности Земли, Б) при движении тела вдоль меридиана, параллели

электрической цепи?

3. Каков физический смысл ЭДС? Дать определение вольту.

4. Соединить на короткое время вольтметри источником электрической энергии, соблюдая полярность. Сравнить его показания с вычислением по результатам опыта.

5. От чего зависит напряжение на зажимах источников тока?

6. Пользуясь результатами измерений, определить напряжение на внешней цепи (если работа выполнена I методом), сопротивление внешней цепи (если работа выполнена II методом).

6 вопрос во вложение вычисление

Помогите пожалуйста!

1. При каких условиях появляются силы трения?
2. От чего зависят модуль и направление силы трения покоя?
3. В каких пределах может изменяться сила трения покоя?
4. Какая сила сообщает ускорение автомобилю или тепловозу?
5. Может ли сила трения скольжения увеличить скорость тела?
6. В чем состоит главное отличие силы сопротивления в жидкостях и газах от силы трения между двумя твердыми телами?
7. Приведите примеры полезного и вредного действия сил трения всех видо

В нашем мире все виды существующих сил, за исключением сил тяготения, представлены электромагнитными взаимодействиями. Во Вселенной, несмотря на удивительное разнообразие воздействий тел друг на друга, в любых веществах, живых организмах всегда встречается проявление электромагнитных сил . Как произошло открытие электромагнитной индукции (ЭИ), расскажем ниже.

Вконтакте

Открытие ЭИ

Поворот магнитной стрелки вблизи проводника с током в опытах Эрстеда впервые указал на связь электрических и магнитных явлений. Очевидно: электроток «окружает» себя магнитным полем.

Так нельзя ли добиться его возникновения посредством магнитного поля — подобную задачу поставил Майкл Фарадей. В 1821 году он отметил это свойство в своем дневнике о превращении магнетизма в .

Успех к ученому пришел не сразу. Лишь глубокая уверенность в единстве природных сил и упорный труд привели его через десять лет к новому великому открытию.

Решение задачи долго не давалось Фарадею и другим его коллегам, потому как они пытались получить электричество в неподвижной катушке, используя действие постоянного магнитного поля. Между тем, впоследствии выяснилось: изменяется количество силовых линий, пронизывающих провода, и возникает электроэнергия.

Явление ЭИ

Процесс появления в катушке электричества в результате изменения магнитного поля характерен для электромагнитной индукции и определяет это понятие. Вполне закономерно, что разновидность , возникающего в ходе данного процесса, называется индукционным. Эффект сохранится, если саму катушку оставить без движения, но перемещать при этом магнит. С использованием второй катушки можно и вовсе обойтись без магнита.

Если пропустить электричество через одну из катушек, то при их взаимном перемещении во второй возникнет индукционный ток . Можно надеть одну катушку на другую и менять величину напряжения одной из них, замыкая и размыкая ключ. При этом магнитное поле, пронизывающее катушку, на которую воздействуют ключом, меняется, и это становится причиной возникновения индукционного тока во второй.

Закон

Во время опытов легко обнаружить, что увеличивается число пронизывающих катушку силовых линий — стрелка используемого прибора (гальванометр) смещается в одну сторону, уменьшается – в иную. Более тщательное исследование показывает, что сила индукционного тока прямо пропорциональна скорости изменения числа силовых линий. В этом заключен основной закон электромагнитной индукции.

Данный закон выражает формула:

Она применяется, если за период времени t магнитный поток изменяется на одну и ту же величину, когда скорость изменения магнитного потока Ф/t постоянна.

Важно! Для индукционных токов справедлив закон Ома: I=/R, где — это ЭДС индукции, которую находят по закону ЭИ.

Замечательные опыты, проведенные когда-то знаменитым английским физиком и ставшие основой открытого им закона, сегодня без особого труда способен проделать любой школьник. Для этих целей используются:

  • магнит,
  • две проволочные катушки,
  • источник электроэнергии,
  • гальванометр.

Закрепим на подставке магнит и поднесем к нему катушку с присоединенными к гальванометру концами.

Поворачивая, наклоняя и перемещая ее вверх и вниз, мы меняем число силовых линий магнитного поля, пронизывающих ее витки.

Гальванометр регистрирует возникновение электричества с постоянно меняющимися в ходе опыта величиной и направлением.

Находящиеся же относительно друг друга в покое катушка и магнит не создадут условий и для возникновения электричества.

Другие законы Фарадея

На основе проведенных исследований были сформированы еще два одноименных закона:

  1. Суть первого состоит в такой закономерности: масса вещества m , выделяемая электрическим напряжением на электроде, пропорциональна количеству электричества Q, прошедшему через электролит.
  2. Определение второго закона Фарадея, или зависимости электрохимического эквивалента от атомного веса элемента и его валентности формулируется так: электрохимический эквивалент вещества пропорционален его атомному весу, а также обратно пропорционален валентности.

Из всех существующих видов индукции огромное значение имеет обособленный вид данного явления – самоиндукция. Если мы возьмем катушку, которая имеет большое количество витков, то при замыкании цепи, лампочка загорается не сразу.

На этот процесс может уйти несколько секунд. Очень удивительный на первый взгляд факт. Чтобы понять, в чем здесь дело, необходимо разобраться, что же происходит в момент замыкания цепи . Замкнутая цепь словно «пробуждает» электроток, начинающий свое движение по виткам провода. Одновременно в пространстве вокруг нее мгновенно создается усиливающееся магнитное поле.

Катушечные витки оказываются пронизанными изменяющимся электромагнитным полем, концентрирующимся сердечником. Возбуждаемый же в витках катушки индукционный ток при нарастании магнитного поля (в момент замыкания цепи) противодействует основному. Мгновенное достижение им своего максимального значения в момент замыкания цепи невозможно, оно «растет» постепенно. Вот и объяснение, почему лампочка не вспыхивает сразу. Когда цепь размыкается, основной ток усиливается индукционным в результате явления самоиндукции, и лампочка ярко вспыхивает.

Важно! Суть явления, названного самоиндукцией, характеризуется зависимостью изменения, возбуждающего индукционный ток электромагнитного поля от изменения силы текущего по цепи электротока.

Направление тока самоиндукции определяет правило Ленца. Самоиндукция легко сравнима с инерцией в области механики, поскольку оба явления обладают схожими характеристиками. И действительно, в результате инерции под влиянием силы тело приобретает определенную скорость постепенно, а не сиюминутно. Не сразу – под действием самоиндукции — при включении батареи в цепь появляется и электричество. Продолжая сравнение со скоростью, заметим, он так же не способен мгновенно исчезнуть.

Вихревые токи

Наличие вихревых токов в массивных проводниках может послужить еще одним примером электромагнитной индукции.

Специалисты знают, что металлические трансформаторные сердечники, якоря генераторов и электродвигателей никогда не бывают сплошными. При их изготовлении на отдельные тонкие листы, из которых они состоят, накладывается слой лака, изолирующий один лист от другого.

Нетрудно понять, какая сила заставляет человека создавать именно такое устройство . Под действием электромагнитной индукции в переменном магнитном поле сердечник пронизывают силовые линии вихревого электрополя.

Представим, что сердечник изготовлен из сплошного металла. Поскольку его электрическое сопротивление невелико, возникновение индукционного напряжения большой величины было бы вполне объяснимым. Сердечник бы в итоге разогревался, и немалая часть электрической терялась бесполезно. Кроме того, возникла бы необходимость принятия специальных мер для охлаждения. А изолирующие слои не позволяют достигать больших величин .

Индукционные токи, присущие массивным проводникам, называются вихревыми не случайно – их линии замкнуты подобно силовым линиям электрополя, где они и возникают. Чаще всего вихревые токи применяются в работе индукционных металлургических печей для выплавки металлов. Взаимодействуя с породившим их магнитным полем, они иногда становятся причиной занимательных явлений.

Возьмем мощный электромагнит и поместим между вертикально расположенными его полюсами, к примеру, пятикопеечную монету. Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды.

Поместим, например, пятикопеечную монету между вертикально расположенными полюсами мощного электромагнита и отпустим ее.

Вопреки ожиданию, она не упадет, а будет медленно опускаться. Для прохождения нескольких сантиметров ей потребуются секунды. Передвижение монеты напоминает перемещение тела в вязкой среде. Почему такое происходит.

По правилу Ленца направления возникающих при передвижении монеты вихревых токов в неоднородном магнитном поле таковы, что поле магнита выталкивает монету вверх. Эту особенность используют для «успокоения» стрелки в измерительных приборах. Алюминиевая пластина, находящаяся между магнитными полюсами, прикрепляется к стрелке, и вихревые токи, возникающие в ней, способствуют быстрому затуханию колебаний.

Демонстрацию явления электромагнитной индукции поразительной красоты предложил профессор Московского университета В.К. Аркадьев. Возьмем свинцовую чашу, обладающую сверхпроводящей способностью, и попробуем уронить над ней магнит. Он не упадет, а будет словно «парить» над чашей. Объяснение здесь простое: равное нулю электрическое сопротивление сверхпроводника способствует возникновению в нем электричества большой величины, способных сохраняться продолжительное время и «удерживать» магнит над чашей. По правилу Ленца, направление магнитного поля их таково, что отталкивает магнит и не дает ему упасть.

Изучаем физику — закон электро-магнитной индукции

Правильна формулировка закона Фарадея

Вывод

Электромагнитные силы – это силы, которые позволяют людям видеть окружающий мир и чаще других встречаются в природе, например, свет - тоже пример электромагнитных явлений. Жизнь человечества невозможно представить без данного явления.

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Рисунок 1 — Проводник перемещается в неизменном магнитном поле

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Рисунок 2 — вихревое электрическое поле

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.

С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.

Формула 1 — ЭДС индукции магнитного поля .

Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.

Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.

Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.

Рисунок 3 — асинхронный двигатель.

В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.

Рисунок 4 — электрический трансформатор.

И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.

Рисунок 5 — индукционная плавка металлов.

Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта