Главная » Съедобные грибы » Принцип близкодействия автор. Близкодействие и действие на расстоянии

Принцип близкодействия автор. Близкодействие и действие на расстоянии

Близкоде́йствие - представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется с помощью промежуточной среды (поля) и осуществляется с конечной скоростью. В начале 18 века одновременно с теорией близкодействия зародилась противоположная ей теория дальнодействия , согласно которой тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определенным законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации И. Ньютона .

Одним из родоначальников теории близкодействия считается М. В. Ломоносов . Ломоносов был противником теории дальнодействия, считая, что тело не может воздействовать на другие тела мгновенно. Он полагал, что электрическое взаимодействие передается от тела к телу через особую среду «эфир», заполняющую все пустое пространство, в частности и пространство между частицами, из которых состоит «весомая материя», т. е. вещество. Электрические явления, по Ломоносову, следует рассматривать как определенные микроскопические движения, происходящие в эфире. То же самое относится и к магнитным явлениям.

Однако теоретические представления Ломоносова и Л. Эйлера в то время не могли получить развития. После открытия закона Кулона , который по своей форме был таким же, как и закон всемирного тяготения, теория дальнодействия совсем вытесняет теорию близкодействия. И только в начале 19 века М. Фарадей возрождает теорию близкодействия. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое и магнитное (если он движется) поля. Поля одного заряда действуют на другой и наоборот. Всеобщее признание теории близкодействия начинается со второй половины 19 века, после экспериментального доказательства теории Дж. Максвелла , сумевшего придать идеям Фарадея точную количественную форму, столь необходимую в физике - систему уравнений электромагнитного поля.

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три: сильное, слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого

Действие на расстоянии представляет собой взаимодействие объектов между собой, не используя при этом никаких посредников. Согласно этой теории между взаимодействующими объектами находится пустота. То есть отрицается наличие, какого либо агента передающего воздействие от одного тела к другому.

Рисунок 1 — дальнодействие на примере двух зарядов

Также считается, что это самое воздействие передается бесконечно быстро. Ну, или, по крайней мере, со скоростью света. Расстояние также может быть любым, действие тел друг на друга всё равно будет происходить.

В качестве примера теории действия на расстоянии приводится сила всемирного тяготения. Которая описана в классической теории гравитации Ньютона. Но, тем не менее, хотя сам Ньютон и открыл гравитацию он так и не смог объяснит механизм ее работы. То бишь луна притягивается к земле без постороннего физического агента, как и земля к солнцу, но вот каков механизм этого взаимодействия он так и не объяснил.

Рисунок 2 — притяжение луны к земле

Ученые того времени не сразу приняли теорию дальнодействия. Они всё-таки пытались адаптировать законы механики к явлениям, которые объяснялись с помощью теории действия на расстоянии. При этом использовали теорию близкодействия. Которая сводилась к тому, что тела находящиеся на расстоянии не могут взаимодействовать между собой непосредственно. То есть, чтобы сила передавалась от одного тела к другому, нужен какой либо физический посредник.

В результате адаптации возникло такое понятие как эфир. Да-да тот самый эфир, который вспоминают при теле или радиовещании. Суть эфира заключается в том, что он и взял на себя функции той физической среды, которая должна являться посредником для передачи силы между телами. То есть, используя понятия эфира, можно применить теорию близкодействия к явлению скажем гравитации. Одно тело давит на эфир, который, сжимаясь, передает воздействие на другое тело.

Рисунок 3 — эфирная частица заполняющая вакуум

К слову считалось, что эфир заполняет пространство внутри атома между ядром и электронами. Он та и являлся связующим звеном между ними, так как выходила, что внутри твердых физических тел на самом деле находилась пустота. Электромагнитная волна, испускаемая все при том же радиовещании, так же распространялась благодаря эфиру.

Но в итоге от понятия эфира пришлось отказаться. Хотя оно конечно и давало объяснение каким образом взаимодействуют тела находящиеся на расстоянии но математически доказать это не удалось. Не противоречивую теорию, включающую в себя близкодействие и понятие эфира, так и не сформировали.

Современная физика проводи четкую границу в материальных частицах. Одни из них являются источниками вызывающими взаимодействие, к примеру, носители заряда. То есть это непосредственно вещество скажем металл. А другие только переносят это взаимодействие, их называют полем.

Мы уже знаем, что вскоре после того, как был установлен закон Кулона, электростатика и магнитостатика были сформулированы в форме теории псевдоблизкодействия. Максвелл взялся за задачу слить эту теорию воедино с идеями Фарадея, разработав ее так, чтобы она включала и вновь открытые

явления диэлектрической и магнитной поляризации, электромагнетизма и магнитной индукции.

В качестве исходного пункта своей теории Максвелл взял уже упоминавшуюся выше идею о том, что электрическое поле всегда сопровождается электрическим смещением не только в веществе, где отличается от 1, но и в эфире, для которого Мы рассказали, как можно представить себе смещение в виде разделения и перетекания электрических жидкостей в молекулах. Установили мы и дифференциальный закон, связывающий плотность заряда в каждой точке пространства с дивиргенцией равной

Точно те же соображения применимы к магнетизму с одним важным отличием: согласно Амперу, не существует реальных магнитов и магнитных величин, существуют лишь электромагниты. Магнитное поле всегда должно вызываться электрическими токами, будь это токи проводимости в проволоках или молекулярные токи в молекулах. Отсюда следует, что магнитные силовые линии нигде не оканчиваются, т. е. они либо замкнуты, либо уходят в бесконечность. Это так в случае электромагнита - катушки, через которую протекает ток (фиг. 9 7, а, б): магнитные силовые линии внутри катушки прямые, а снаружи они частично замкнуты, а частично уходят в пространство, в бесконечность. Если рассмотреть виток катушки, лежащий между двумя плоскостями то можно видеть, что точно столько «магнитного смещения» входит через плоскость А, сколько выходит через плоскость В. Поэтому мы должны записать

Это и есть максвелловская формула близкодействия для магнетизма. Заметим, что вместо понятия «смещение» используется выражение магнитная индукция.

Перейдем теперь к электромагнитному закону Био и Савара. Для того чтобы превратить его в закон близкодействия, предположим, что электрический ток протекает не в тонкой проволоке, а равномерно распределен с плотностью по круговому поперечному сечению Выясним вопрос, как велика напряженность магнитного поля на границе поперечного сечения. По закону Био и Савара, это магнитное поле лежит в направлении, перпендикулярном плоскости окружности, и, согласно формуле (54), имеет величину где - радиус окружности, а длина элемента тока. Но площадь поперечного сечения В нашем случае - круг и равна следовательно, формулу

(54) можно записать как

причем это справедливо для любого как угодно малого поперечного сечения и любой как угодно малой длины.

Фиг. 97. Магнитное поле катушки (соленоида). а - силовые лииии в катушке становятся видимыми при помощи железных опилок, б - ток , текущий сквозь катушку.

Итак, слева мы имеем определенную дифференциальную величину, характеризующую магнитное поле, а записанный нами закон утверждает, что эта величина пропорциональна плотности тока. Здесь мы не сможем провести математический анализ того, как образуется эта дифференциальная величина. Она должна учитывать не только напряженность, но и направление магнитного поля,

поэтому она обвивается или «завихряется» вокруг направления тока, т. е. зависит от дифференциальной операции, называемой «вихрем», или «ротором», поля Я (записывается как Соответственно мы можем записать символически

опять-таки рассматривая эту формулу лишь как мнемоническую запись соотношения между напряженностью и направлением магнитного поля с одной стороны, и плотностью тока с другой. Для математика, однако, эта формула представляет собой дифференциальное уравнение того же вида, что и закон (58).

Четыре символические формулы (58) - (61) обнаруживают чудесную симметрию. Формальное сходство такого рода - ни в коем случае не малозначительноеобстоятельство. В нем находит свое проявление фундаментальная простота явлений природы, скрытая от прямого взгляда из-за ограниченности человеческих чувств и открывающаяся лишь перед нашими аналитическими способностями.

В общем случае ток проводимости и ток смещения существуют одновременно. Для первого из них верен закон Ома (52), (стр. 159); для второго - закон Максвелла

Когда одновременно имеют место оба тока, мы получаем

В случае магнетизма тока проводимости не существует, поэтому

Если подставить эти выражения в наши символические уравнения (58) - (61), то мы получаем

Это и есть уравнения Максвелла - законы, которые остаются основой электромагнитных и оптических теорий и в наше время. Математик видит в них строгие математические уравнения. Для нас же они просто мнемонические формулировки, утверждающие следующее:

а) Везде, где присутствует электрический заряд, возникает электрическое поле такого вида, что в каждом объеме заряд точно компенсируется смещением.

б) Из каждой замкнутой поверхности выходит в точности столько магнитного смещения, сколько в нее входит (не существует свободных магнитных зарядов).

в) Всякий электрический ток, будь это ток проводимости или ток смещения, всегда окружен магнитным полем.

г) Магнитный ток смещения всегда окружен электрическим полем.

Максвелловские уравнения поля, как их называют, представляют собой истинную теорию близкодействия, или контактного взаимодействия, ибо, как мы сейчас увидим, из них вытекает конечная скорость распространения электромагнитных сил.

Однако в те времена, когда они были впервые установлены, вера в прямое действие на расстоянии, согласно модели ньютоновского тяготения, настолько укоренилась в умах, что прошло довольно много времени, прежде чем уравнения Максвелла были приняты - ведь теория дальнодействия не менее успешно справилась, с описанием явления индукции при помощи формул. В теории дальнодействия это осуществлялось с помощью предположения, что движущиеся заряды вызывают, в дополнение к кулоновскому притяжению, определенные действия на расстоянии, зависящие от величины и направления скорости зарядов. Первые гипотезы такого рода были выдвинуты Нейманом (1845 г.). Другой знаменитый закон был сформулирован Вильгельмом Вебером (1846 г.); аналогичные формулы предложили Риман (1858 г.) и Клаузиус (1877 г.). Общей для этих теорий была идея о том, что все электрические и магнитные взаимодействия следует объяснять с помощью сил, действующих между элементарными электрическими зарядами, или, как мы сейчас говорим, «электронами». Эти теории, таким образом, предшествовали современной теории электронов, но с одним существенным упущением: они не учитывали конечность скорости распространения сил. Такие электродинамические теории, основанные на дальнодействии, давали полное объяснение электродвижущих сил и токов индукции, возникающих в случае замкнутых токов проводимости. Но в случае «открытых» цепей, именно заряда и разряда конденсаторов, они были обречены на неудачу, ибо в этом явлении начинают играть роль токи смещения, о которых теории дальнодействия ничего не могли сказать. Тем, что у нас

есть сейчас полностью удовлетворительные экспериментальные приборы, позволяющие сделать выбор между теорией дальнодействия и теорией близкодействия, мы обязаны Гельмгольцу. Именно он добился определенного успеха в осуществлении соответствующих экспериментов и он же стал одним из наиболее ревностных первых последователей теории Максвелла. Но закрепил победу максвелловской теории ученик Гельмгольца - Герц, открывший электромагнитные волны.

Понятие взаимодействия. Концепция дальнодействия и близкодействия

Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

Концепции дальнодействия и близкодействия

Близкодействие и дальнодействие --это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепции близкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое)

1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

(И. Ньютон) - самое слабое взаимодействие.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик - фотон (г-квант).

3. Слабое взаимодействие связано со всеми видами в-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики - промежуточный векторный бозон: W + , W - , Z 0 . (Ферми).

4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками - частицами, из которых состоят протоны и нейтроны - c помощью т.н. глюонов. (Юкава).

От дальнодействия к близкодействию: теория электромагнитного поля.

Идея единства разных сил природы и ее эмпирическое подтвер­ждение . В начале XIX в. начинают закладываться основы теории электричества и магнетизма. Большую роль здесь сыграло мировоззренческое представ­ление о единстве сил природы. Начало здесь положил датский фи­зик Х. К. Эрстед (1777-1851) , получивший докторскую степень по философии. Его внимание привлекла идея немецкого натурфилософа Ф. Шеллинга о взаимовлиянии природных сил. В 1813 г. ученый поставил проблему - выяснить связь между «вольтаическим электричеством» и магнетизмом. Решение пришло в 1820г., когда обнаружилось, что электрический ток создает вокруг проводника магнитное поле, которое влияет на магнитную стрелку. В 1821 г. француз A. M. Ампер (1775-1836 ) установил, что два параллельных друг другу проводника с электрическим током ведут себя как два магнита: если токи идут в одном направлении, то проводники при­тягиваются, в случае противоположных направлений они отталки­ваются. Английский физик М. Фарадей (1791-1867) поставил про­блему обратной зависимости: может ли магнитное поле порождать ток в проводнике? В 1831 г. он установил, что в проводнике, нахо­дящемся в переменном магнитном поле, появляется ток. Так было открыто явление электромагнитной индукции.

Все эти эмпирические законы объединяла математи­ческая теория немецкого физика В. Е. Вебера (1804-1891) . Ее ос­нову составила идея дальнодействующих сил, которые родственны ньютоновской гравитационной силе, не нуждающейся в промежу­точной среде и действующей мгновенно. Авторитет Ньютона в физическом сообществе был таким высоким, что ученые слепо следо­вали его призыву «не измышлять гипотез» по поводу механизма действия сил. И все же здесь нашлись исключения, прежде всего, в лице Фарадея.

Работая переплетчиком в типографии, Фарадей самостоятельно изучил физику и это увлечение привело его в науку. Как верующий человек он был уверен во взаимосвязи электрических и магнитных явлений, так как «природа едина от Бога». Нетрадиционное мышление самоучки и талант эксперимен­тирования сделали его ученым мирового уровня. Сложной матема­тикой своего времени он не овладел и поэтому все силы отдавал опытам и осмыслению их результатов. Идея дальнодействия, господствовавшая на университетс­ких кафедрах, не повлияла на сознание Фарадея. Тем более, что разнообразные эксперименты убеждали его в близкодействии электрических и магнитных сил. Особо в этом отношении выделя­лись факты движения проводников (железные опилки вблизи маг­нита, провода и контуры с током и т. п.)

Для электричества и магнетизма близкодействие универсально . Новаторское мышление Фара­дея предвосхитило идейные сдвиги в физической картине приро­ды. Ньютоновская идея дальнодействия сыграла положительную роль при формировании закона всемирного тяготения. В условиях отсутствия нужных фактов и должной математики она не дала уче­ным увлечься конструированием преждевременных умозритель­ных моделей тяготения. Но в первой половине XIX в. ситуация начала меняться. Физика стала восприимчивой к картезианским представлениям о дви­жении различных материальных объектов, сред, выступающих но­сителями близкодействующих сил. В оптике ньютоновская концеп­ция уступила место волновой теории света с моделью колебаний эфирной среды. В кинетической теории теплота предстала в виде движения атомов и молекул вещества. Механика сплошных сред также способствовала возрождению картезианских идей. Ученые с острой интуицией первыми почувствовали необходимость пере­мен. Так, немецкий исследователь К . Ф. Гаусс (1777-1855) и его ученик Б. Риман предположили, что электродинамические силы действуют не мгновенно, а с конечной скоростью, равной скорос­ти света. Кроме того, к середине XIX в. сформировались математи­ческие методы в виде дифференциальных уравнений в частных производных. Этот аппарат стал необходимым для реализации идеи близкодействия. Многие уравнения гидродинамики и тер­модинамики оказывались пригодными для электродинамики. В 40–50-е гг. на повестку дня встала проблема создания элек­тродинамики на базе принципа близкодействия и ее разрешил Максвелл.

Эмпирические законы Фарадея переводятся на язык математики . В качест­ве исходного материала Максвелл взял эмпирические обобщения Фарадея. Свою главную задачу он видел в том, чтобы придать им соответствующую математическую форму. Эта работа оказалась далеко неформальной, ибо перевод эмпирических образов на язык математики требовал особого творчества. Так, анализируя электро­магнитную индукцию, Фарадей выдвинул идею «электротоничес­кого состояния», где изменение магнитного поля вызывает вихре­вое электрическое поле.

Поле и эфир . Из фарадеевского наследия Максвелл также взял принцип близкодействия и идею поля. Они дополняли друг друга, так как близкодействие должно происходить в материальной не­прерывной среде, в этой среде как раз и действует поле. Правда, у Фарадея поле понималось неопределенно и среда рассматрива­лась как нечто подобное газовой среде. И не случайно Максвелл на первых порах строил модели электрического поля, помещая его в особую жидкоподобную среду, которая несжимаема, безынерци­онна и течет, испытывая сопротивление. Позднее в качестве среды у него закрепился эфир, который заполняет все пространство и пронизывает все весомые тела. Этим представлением широко поль­зовался Томсон, под чьим научным влиянием находился Максвелл. Отсюда поле у него стало областью эфира, непосредственно свя­занной с электрическими и магнитными явлениями: «...Электро­магнитное поле – это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнит­ном состоянии».

Экстравагантность тока смещения . Идеи поля и эфира сыгра­ли определяющую роль в понимании центрального элемента теории - гипотезы тока смещения. В опытах Фарадея наблюдались эф­фекты, удаленные на большом расстоянии от электричества, теку­щего по проводнику. Такого же объяснения требовал факт прохож­дения переменного тока через изолятор, разделяющий две пласти­ны конденсатора. В признании нового вида электрического тока могли сыграть свою роль соображения симметрии - ток проводи­мости дополняется током смещения. Но как возможно движение последнего? И вот тут на сцену выступил эфир. Как и проводник, он является телом, обладающим лишь большой разреженностью и проницаемостью. Упругие свойства эфира позволяют переменно­му электрическому полю смещаться туда - сюда, т. е. колебаться. Это и есть ток смещения, имеющий форму волнового колебатель­ного процесса и распространяющийся в эфире вне проводников. Так же, как и ток проводимости, он может порождать магнитное поле. Согласно закону индукции, переменное магнитное поле со­здает переменное электрическое поле. Своей теорией Максвелл утвердил полное взаимодействие: любое переменное электричес­кое поле, основанное либо на токе проводимости, либо на токе сме­щения, порождает магнитное поле. Налицо симметрия взаимных влияний динамичных полей, которая составляет единую природу электромагнитного поля.



Свет как электромагнитное поле . Теория Максвелла помогла глубже понять сущность света. С древних времен существовала корпускулярная (лат. corpusculum - тельце) гипотеза, утверждав­шая, что свет представляет собой поток прямолинейно движущих­ся, очень маленьких частиц. Согласно другому предположению, свет является волнами с весьма малой длиной. В начале XIX в. Е. Юнг и О. Френель представили убедительные аргументы в поль­зу волновой гипотезы. Измерения установили, что скорость света равна примерно 300000 км/с.

Электромагнитное поле - это не только свет . Согласно теории Максвелла, электромагнитные волны распространяются так­же со скоростью 300000 км/с. Совпадение скоростей и волновая теория света побудили ученого отнести свет к электромагнитным процессам. Теория света как последовательного чередования элек­трических и магнитных полей не только хорошо объясняла старые факты, но и предсказывала неизвестные явления. Кроме видимого света должно быть инфракрасное, ультрафиолетовое излучения и другие виды волн. Свет также должен оказывать определенное дав­ление на вещество.

Опытное обнаружение электромагнитных волн . Теория Мак­свелла была опубликована в 1873 г. в «Трактате об электричестве и магнетизме». Почти все физики отнеслись к ней скептически, осо­бое неприятие вызвала гипотеза тока смещения. В теориях Вебера и Гельмгольца таких экзотических идей не было. В данной ситу­ации требовалось свидетельство решающих экспериментов и оно состоялось. В 1887 г. немецкий физик Г. Герц (1857-1894) создал генератор электромагнитных волн и осуществил их прием. Тем са­мым был обнаружен таинственный «ток смещения», который от­крыл перспективу новой практики (радио, телевидение). В 1895 г. немецкий физик В.К. Рентген обнаружил новое излучение, назван­ное рентгеновским и оказавшимся электромагнитными волнами с частотой более высокой, чем ультрафиолетовое излучение. В 1900 г. русский ученый П. Н. Лебедев (1866-1912) посредством очень тонких опытов открыл давление световых волн и измерил его вели­чину. Вся эта научная практика однозначно указала на теорию Мак­свелла как на истинный образ природы.

Материя - это вещество и электромагнитное поле . В силу своей фундаментальности теория Максвелла существенно повлия­ла на научную картину природы. Рухнула длительная монополия идеи вещества, и через понятие электромагнитного поля стала фор­мироваться идея физического поля как самостоятельного вида ма­терии. Программа обнаружения единства природы получила заме­чательный результат - былое различие электричества и магнетиз­ма уступило место единому электромагнитному процессу. Мак­свелл продемонстрировал высокую эвристическую силу математи­ческой гипотезы и дал образец синтеза математики с физикой. Новая электродинамика стала венцом классической физики.

Задания.

1. Какие тенденции были характерны для развития биологии с XVI по XIX в.?

2. Почему открытие Д. И. Менделеевым периодического закона оценивается как революция в химии?

3. Какие мировоззренческие выводы были сделаны из закона сохранения энергии?

4. За что махисты и энергетисты критиковали атомистику?

5. Можно ли с позиции лапласовского детерминизма признать статистическую закономерность?

6. Какие новые идеи принесла с собой электродинамика Максвелла?



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта