Главная » Несъедобные грибы » Размеры и строение нашей галактики. Виды галактик во вселенной

Размеры и строение нашей галактики. Виды галактик во вселенной

Подумайте о самых крупных объектах ночного неба, изображения которых вы видели. Да, конечно, они бывают совершенно разными – умирающие звёзды, остатки сверхновых, формирующие звёзды туманности и звёздные скопления, как старые, так и новые – но ничто не сравнится с красотой спиральных галактик. Содержащие от миллиардов до триллионов звёзд, эти «островные вселенные» демонстрируют уникальную структуру. Структуру довольно-таки загадочную, если задуматься об этом – как задумался читатель Грег Роджерс:

Что меня всегда удивляло по поводу спиральных галактик, так это их рукава, обёрнутые вокруг них не более чем на половину галактики. Поскольку внешняя часть вращается вокруг ядра медленнее, можно было бы ожидать встретить галактики, рукава которых обёрнуты множество раз вокруг ядра. Неужто Вселенная недостаточно старая для того, чтобы в ней появились так сильно закрученные галактики?

Рассматривайте какие угодно спиральные галактики, но у всех них будет схожая видимая структура.


Из центрального ядра наружу тянутся несколько спиральных рукавов – обычно от двух до четырёх – оборачивающихся вокруг галактики по мере удаления от центра. Одно из фантастических открытий 1970-х, вступившее в противоречие с ожиданиями, заключалось в том, что скорость движения звёзд по орбите вокруг галактики не уменьшается по мере отдаления от ядра – так, как это происходит с планетами в Солнечной системе, которые путешествуют по орбитам тем медленнее, чем дальше они расположены от центра. Скорость вращения звёзд остаётся постоянной – это ещё один из способов сказать, что у кривых вращения галактик плоский профиль.

Мы измеряли это, изучая галактики, расположенные к нам ребром, и подсчитывая, какое красное или синее смещение демонстрируют звёзды по отношению к их расстоянию от центра галактики. И хотя скорости отдельных звёзд практически не меняются, звезда, расположенная в два раза дальше от центра обращается вокруг него в два раза медленнее, а расположенная в десять раз дальше – в десять раз медленнее.

Вооружившись этим, можно подсчитать, что для галактики типа нашего Млечного пути Солнцу требуется 220 млн лет для завершения одного оборота вокруг галактики. Поскольку мы расположены примерно в 26000 световых годах от центра Галактики, наша позиция чуть ближе, чем половина пути от центра до самых окраин. Это значит, что поскольку нашей галактики около 12 млрд лет, внешние звёзды должны были совершить полный оборот всего 25 раз. Звёзды, расположенные так же, как Солнце, сделали 54 оборота. Звёзды внутри круга радиусом 10 000 световых лет совершили уже более 100 оборотов. Иначе говоря, можно ожидать, что галактики со временем закручиваются, как показано на видео ниже.

Но как показывают фотографии галактик, они не закручиваются многократно. В большинстве случаев рукава не обхватывают галактику даже единожды! Когда это свойство галактик выяснилось впервые, оно означало, по меньшей мере, следующее: эти спиральные рукава были нематериальны, это всего лишь видимость. И это так, вне зависимости от того, изолированы галактики или нет. Но есть ещё кое-что, если присмотреться.

Заметили розовые пятнышки, расположенные вдоль рукавов? Они появляются там, где присутствуют активные регионы формирования новых звёзд. Розовая точка – излишки излучаемого света на вполне определённой длине волны: 656,3 нм. Это излучение происходит, когда новые звёзды горят достаточно ярко для того, чтобы ионизировать газы, и затем, когда электроны воссоединяются с протонами, новообразованные атомы водорода испускают свет на определённой частоте, включая и ту, что делает эти регионы розовыми.

Нам это говорит о том, что эти спиральные рукава состоят из регионов, в которых плотность материала выше, чем в других частях галактики, и что звёзды свободно заходят и выходят из этих рукавов с течением времени.

Идея, объясняющая это, существует с 1964 года, и известна, как теория волн плотности . Теория утверждает, что рукава остаются на тех же самых местах с течением времени, так, как пробки на дороге остаются на тех же местах. Отдельные объекты (звёзды в галактике, автомобили на дороге) могут двигаться сквозь них, но примерно одно и то же количество объектов в любой момент всегда остаётся в «пробке». Из-за этого расположение уплотнённых участков остаётся неизменным.

Физика процесса проста: звёзды в определённых регионах создают привычные нам силы гравитации, и именно они и сохраняют спиральную форму. Иначе говоря, если мы начнём с региона с повышенной плотностью газа, и позволим нашему диску вращаться, то получим изначальный набор регионов, где впервые формируются звёзды: прото-рукава. С эволюцией галактики эти рукава – и регионы повышенной плотности – сохраняются только лишь благодаря эффектам гравитации.

Удивительно, что этот эффект так же хорошо работает как при наличии тёмной материи, окружающей галактику в виде гигантского гало, так и при её отсутствии.


Слева – галактика без тёмной материи, справа – с тёмной материей

И хотя предположения вопроса Грега были неверны, поскольку внешние звёзды галактики двигаются с такой же скоростью, как и внутренние, рукава и правда никогда не заворачиваются, вне зависимости от возраста галактики – просто из-за физики самой галактики. Как и пробки на дорогах, звёзды, газ и пыль, оказывающиеся в спиральных рукавах в любой момент времени, находятся в более плотном окружении, а когда они вырываются оттуда, расстояние от них до других звёзд увеличивается – в таком положении сегодня находится и наше Солнце.

Многие факты, известные сегодня, кажутся такими знакомыми и привычными, что трудно представить, как раньше жили без них. Однако научные правды в большинстве своем появились не на заре человечества. Почти во всем это касается познаний о космическом пространстве. Виды туманностей, галактик, звезд сегодня известны почти каждому. Между тем путь к современному пониманию строения Вселенной был довольно долгим. Люди далековато не сразу осознали, что планета — часть Солнечной системы, а она — Галактики. Виды галактик стали изучаться в астрономии еще позже, когда пришло понимание, что Млечный путь не одинок и им Вселенная не ограничивается. Основоположником систематизации, как и вообщем познания космоса вне «молочной дороги», стал Эдвин Хаббл. Благодаря его исследованиям сегодня мы очень многое знаем о галактиках.

Хаббл изучал туманности и обосновал, что многие из них являются формированиями, схожими с Млечным путем. На основе собранного материала он описал, какой вид имеет галактика и какие типы подобных космических объектов существуют. Хаббл измерил расстояния до некоторых из них и предложил свою систематизацию. Ей ученые пользуются и сегодня.

Все множество систем во Вселенной он разделил на 3 вида: галактики эллиптические, спиралевидные и неправильные. Каждый тип интенсивно изучается астрологами всего мира.

Кусочек Вселенной, где расположена Земля, Млечный путь, относится к типу «спиралевидные галактики». Виды галактик выделяются на основе различий их форм, влияющих на определенные свойства объектов.

Спиралевидные

Виды галактик распространены по Вселенной не одинаково. По современным данным чаще других встречаются спиралевидные. Кроме Млечного пути к этому типу относится Туманность Андромеды (М31) и галактика в созвездии Треугольника (М33). Подобные объекты имеют легко узнаваемое строение. Если посмотреть со стороны, как смотрится такая галактика, вид сверху будет напоминать расходящиеся по воде концентрические круги. От сферического центрального утолщения, называемого балджем, расходятся спиральные рукава. Число таких ответвлений бывает разным — от 2 до 10. Весь диск со спиральными рукавами находится снутри разреженного облака звезд, которое в астрономии называется «гало». Ядро же галактики представляет собой скопление светил.

Подтипы

В астрономии для обозначения спиралевидных галактик употребляется буковка S. Их делят на типы зависимо от структурной оформленности рукавов и особенностей общей формы:

галактика Sa: рукава туго закрученные, гладкие и неоформленные, балдж яркий и протяженный;

галактика Sb: рукава мощные, четкие, балдж менее выражен;

галактика Sc: рукава хорошо развиты, представляют собой клочковатую структуру, балдж просматривается плохо.

Кроме того, некоторые спиральные системы обладают центральной практически прямой перемычкой (ее называют «бар»). В обозначение галактики в данном случае добавляется буковка B (Sba либо Sbc).

Формирование

Образование спиралевидных галактик, судя по всему, схоже с появлением волн от удара камня по поверхности воды. К появлению рукавов, по мнению ученых, привел некий толчок. Сами спиральные ответвления представляют собой волны повышенной плотности вещества. Природа толчка может быть различной, один из вариантов — перемещения в центральной массе звезд.

Спиральные ответвления — это молодые звезды и нейтральный газ (основной элемент — водород). Они лежат в плоскости вращения галактики, потому она напоминает сплющенный диск. Образование молодых звезд может быть и в центре таких систем.

Наиблежайшая соседка


Туманность Андромеды — спиралевидная галактика: вид сверху на нее выявляет несколько рукавов, исходящих из общего центра. С Земли невооруженным глазом ее можно увидеть как размытое туманное пятно. По своим размерам соседка нашей галактики несколько превосходит ее: 130 тысяч световых лет в поперечнике.

Туманность Андромеды хотя и самая близкая к Млечному пути галактика, а расстояние до нее огромно. Свету для того, чтобы преодолеть его, требуется два миллиона лет. Этот факт отлично объясняет, почему полеты к соседней галактике пока вероятны только в фантастических книгах и фильмах.

Эллиптические системы

Рассмотрим теперь другие виды галактик. Фото эллиптической системы хорошо показывает ее отличие от спиралевидного собрата. У такой галактики нет рукавов. Она похожа на эллипс. Подобные системы могут быть сжатыми в разной степени, представлять собой нечто вроде линзы либо же шара. В таких галактиках практически не встречается холодный газ. Наиболее впечатляющие представители этого типа заполнены разреженным жарким газом, температура которого добивается миллиона градусов и выше.

Отличительная черта многих эллиптических галактик — красноватый оттенок. Длительное время астрологи полагали это признаком древности таких систем. Считалось, что они в главном состоят из старых звезд. Однако исследования последних десятилетий показали ошибочность этого предположения.

Образование

Длительное время бытовала еще одна догадка, связанная с эллиптическими галактиками. Они считались самыми первыми из появившихся, сформировавшимися скоро после Огромного взрыва. Сегодня эта теория считается устаревшей. Большой вклад в ее опровержение занесли немецкие астрологи Алар и Юрий Тумре, также южноамериканский ученый Франсуа Швайцер. Их исследования и открытия последних лет подтверждают истинность другой догадки, иерархической модели развития. Согласно ей более крупные структуры формировались из довольно небольших, то есть галактики образовались далековато не сразу. Их появлению предшествовало образование звездных скоплений.

Эллиптические системы по современным представлениям сформировались из спиралевидных в результате слияния рукавов. Одно из подтверждений этого — огромное количество «закрученных» галактик, наблюдаемое в удаленных участках космоса. Напротив, в наиболее приближенных областях приметно выше концентрация эллиптических систем, довольно ярких и протяженных.

Символы

Эллиптические галактики в астрономии также получили свои обозначения. Для них употребляют символ «Е» и цифры от 0 до 6, которыми указывается степень уплощения системы. Е0 — это галактики практически правильной шаровой формы, а Е6 — самые плоские.

Бушующие ядра


К эллиптическим галактикам относятся системы NGC 5128 из созвездия Кентавра и М87, расположенное в Деве. Их особенностью является мощное радиоизлучение. Астрологов сначала интересует устройство центральной части таких галактик. Наблюдения российских ученых и исследования телескопа Хаббла показывают довольно высшую активность этой зоны. В 1999 году южноамериканские астрологи получили данные о ядре эллиптической галактике NGC 5128 (созвездие Кентавр). Там в постоянном движении находятся огромные массы жаркого газа, закручивающегося вокруг центра, может быть, черной дыры. Точных данных о природе таких процессов пока нет.

Системы неправильной формы


Внешний облик галактики третьего типа не структурирован. Такие системы представляют собой клочковатые объекты хаотичной формы. Неправильные галактики встречаются на просторах космоса реже других, однако их исследование способствует более точному понимаю протекающих во Вселенной процессов. До 50% массы таких систем составляет газ. В астрономии принято обозначать подобные галактики через символ Ir.

Спутники

К галактикам неправильной формы относятся две системы, наиболее близко расположенные к Млечному пути. Это его спутники: Огромное и Малое Магелланово Облако. Они хорошо видны на ночном небе южного полушария. Большая из галактик расположена на расстоянии 200 тысяч световых лет от нас, а меньшую отделяет от Млечного пути — 170 000 св. лет.

Астрологи пристально изучают просторы этих систем. И Магеллановы Облака сполна отплачивают за это: в галактиках-спутниках нередко обнаруживаются очень достойные внимания объекты. Например, 23 февраля 1987 года в Большенном Магеллановом Облаке вспыхнула сверхновая. Особый энтузиазм вызывает и эмиссионная туманность Тарантул.

Она расположена также в Большенном Магеллановом Облаке. Тут ученые обнаружили область постоянного звездообразования. Некоторым светилам, составляющим туманность, всего два миллиона лет. Кроме того, тут же расположена самая впечатляющая из обнаруженных на 2011 год звезд — RMC 136a1. Ее масса составляет 256 солнечных.

Взаимодействие

Основные виды галактик описывают особенности формы и расположения элементов этих космических систем. Однако не менее увлекателен вопрос об их содействии. Не секрет, что все объекты космоса находятся в постоянном движении. Не исключение и галактики. Виды галактик, по крайней мере, некоторые из их представителей могли образоваться в процессе слияния либо столкновения 2-ух систем.

Если вспомнить, что представляют собой такие объекты, становится понятным, насколько масштабные конфигурации происходят во время их взаимодействия. При столкновении высвобождается колоссальное количество энергии. Любопытно, что подобные события даже более возможны на просторах космоса, чем встреча 2-ух звезд.

Однако не всегда «общение» галактик завершается столкновением и взрывом. Небольшая система может пройти сквозь своего крупного собрата, потревожив при этом его структуру. Так образуются формирования, схожие по внешнему облику с вытянутыми коридорами. Они состоят из звезд и газа и часто становятся зонами образования новых светил. Примеры таких систем хорошо известны ученым. Один из них — галактика Колесо телеги в созвездии Скульптор.

В некоторых случаях системы не соударяются, а проходят мимо друг дружку либо лишь слегка соприкасаются. Однако независимо от степени взаимодействия оно приводит к серьезным изменениям структуры обеих галактик.

Будущее

По предположениям ученых не исключено, что через некоторое, достаточно продолжительное, время Млечный путь поглотит наиблежайшего своего спутника, относительно недавно обнаруженную крохотную по космическим меркам систему, расположенную на расстоянии 50 световых лет от нас. Данные исследовательских работ свидетельствуют о впечатляющей продолжительности жизни этого спутника, которая, возможно, завершится в процессе слияния со своим более крупным соседом.

Столкновение — вероятное будущее для Млечного пути и Туманности Андромеды. Сейчас огромного соседа отделяет от нас примерно 2,9 миллиона световых лет. Две галактики приближаются друг к другу со скоростью 300 км/с. Возможное столкновение по расчетам ученых случится через три миллиарда лет. Однако произойдет ли оно либо галактики лишь слегка заденут друг дружку, сегодня точно никто не знает. Для прогнозирования не хватает данных об особенностях движения обоих объектов.

Современная астрономия подробно изучает такие космические структуры, как галактики: виды галактик, особенности взаимодействия, их отличия и сходства, будущее. В этой области еще немало непонятного и требующего дополнительного исследования. Виды строения галактик известны, но нет точного понимания многих деталей, связанных, например, с их образованием. Современные темпы совершенствования познания и техники, однако, позволяют надеяться на значимые прорывы в дальнейшем. В любом случае галактики не перестанут быть центром множества исследовательских работ. И связано это не только с любопытством, присущим всем людям. Данные о космических закономерностях и жизни звездных систем позволяют спрогнозировать будущее нашего кусочка Вселенной, галактики Млечный путь.

В современной астрономии наиболее широко используется самая первая классификация галактик, предложенная Эдвином Пауэллом Хабблом в 1926 году, и доработанная впоследствии им же, а затем Жераром де Вокулером и Аланом Сендиджем.

Эта классификация основана на форме известных галактик. Согласно ей, все галактики делятся на 5 основных типов:

Эллиптические (Е);

Спиральные (S);

Спиральные галактики с перемычкой - баром (SB);

Неправильные (Irr);

Галактики слишком тусклые, чтобы их можно было классифицировать, Хаббл обозначил символом Q.

Кроме того, в обозначениях галактик в этой классификации используются цифры, указывающие, насколько сплюснута эллиптическая галактика, и буквы - для указания, насколько плотно рукава спиральных галактик примыкают к ядру.

Графически эту классификацию представляют как ряд, который называют последовательность Хаббла (или камертон Хаббла из-за сходства схемы с этим инструментом).


Эллиптические галактики (тип Е) составляют 13% от общего числа галактик. Они выглядят как круг или эллипс, яркость которого быстро уменьшается от центра к периферии. По форме эллиптические галактики очень разнообразны: они бывают как шаровые, так и очень сплюснутые. В связи с этим они подразделены на 8 подклассов - от Е0 (шаровая форма, сжатие отсутствует) до Е7 (наибольшее сжатие).


Эллиптические галактики - наиболее простые по структуре. Они состоят в основном из старых красных и желтых гигантов, красных, желтых и белых карликов. В них нет пылевой материи. Образование звезд в галактиках этого типа не идет уже несколько миллиардов лет. Холодного газа и космической пыли в них почти нет. Вращение обнаружено лишь у наиболее сжатых из эллиптических галактик.

Спиральные галактики - самый многочисленный тип: они составляют около 50% всех наблюдаемых галактик. Большая часть звёзд спиральной галактики расположена в пределах галактического диска. На галактическом диске заметен спиральный узор из двух или более закрученных в одну сторону ветвей или рукавов, выходящих из центра галактики.



Различают два типа спиралей. У первого типа, обозначаемого SA или S, спиральные ветви выходят непосредственно из центрального уплотнения. У второго они начинаются у концов продолговатого образования, в центре которого находится овальное уплотнение. Создаётся впечатление, что две спиральные ветви соединены перемычкой, из-за чего такие галактики и называются пересеченными спиралями; они обозначаются символом SB.



Спиральные галактики различаются степенью развитости своей спиральной структуры, что в классификации отмечается добавлением к символам S (или SA) и SB букв а, b,с.

Рукава спиральных галактик имеют голубоватый цвет, так как в них присутствует много молодых гигантских звёзд. Все спиральные галактики вращаются со значительными скоростями, поэтому звёзды, пыль и газы сосредоточены у них в узком диске (звезды «Населения I»). Вращение в подавляющем большинстве случаев происходит в сторону закручивания спиральных ветвей.

Каждая спиральная галактика имеет центральное сгущение. Цвет сгущений спиральных галактик - красновато-жёлтый, свидетельствующий о том, что они состоят в основном из звезд спектральных классов G, K, и M (то есть самых маленьких и холодных).

Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов спектральных классов О и В говорит об активных процессах звёздообразования, происходящих в спиральных рукавах этих галактик.

Диск спиральных галактик погружён в разреженное слабосветящееся облако звёзд - гало. Гало состоит из молодых звезд «Населения II», образующих многочисленные шаровые скопления.

В некоторых галактиках центральная часть имеет шарообразную форму и ярко светится. Эта часть называется балдж (от англ. bulge - утолщение, вздутие). Балдж состоит из старых звезд «Населения II» и, часто, сверхмассивной черной дыры в центре. У других галактик в центральной части располагается "звёздная перемычка" - бар.

Наиболее известные спиральные галактики - это наша Галактика Млечный Путь и туманность Андромеды.

Линзовидная галактика (тип S0) является промежуточным типом между спиральной и эллиптической галактиками. У галактик этого типа яркое центральное сгущение (балдж) сильно сжато и похоже на линзу, а ветви отсутствуют или очень слабо прослеживаются.



Состоят линзовидные галактики из старых звёзд-гигантов, поэтому и цвет их - красноватый. Две трети линзовидных галактик, подобно эллиптическим, не содержат газа, в одной трети содержание газа такое же, как у спиральных галактик. Поэтому процессы звездообразования идут очень медленными темпами. Пыль в линзовидных галактиках сосредоточена вблизи галактического ядра. К линзовидным галактикам относится около 10% известных галактик.

Для неправильных или иррегулярных галактик (Ir) характерна неправильная, клочковатая форма. Неправильные галактики характеризуются отсутствием центральных уплотнений и симметричной структуры, а также низкой светимостью. Такие галактики содержат много газа (в основном нейтрального водорода) - до 50% их общей массы. К этому типу относится около 25% всех звёздных систем.


Неправильные галактики делятся на 2 большие группы. К первой из них, обозначаемой как Irr I, относят галактики с намеком на определенную структуру. Деление Irr I не окончательное: так, если в изучаемой галактике обнаруживается подобие спиральных рукавов (характерны для галактик типа S), галактика получает обозначение Sm или SBm (имеет в своей структуре перемычку); если же подобного явления не наблюдается - обозначение Im.

Ко второй группе неправильных галактик (Irr II) относятся все остальные галактики с хаотичной структурой.

Есть еще и третья группа неправильных галактик - карликовые, обозначаемые как dI или dIrrs. Считается, что карликовые неправильные галактики похожи на наиболее ранние галактические образования, существовавшие во Вселенной. Некоторые из них представляют собой небольшие спиральные галактики, разрушенные приливными силами более массивных компаньонов.

Характерными представителями таких галактик является Большое и Малое Магеллановы Облака . В прошлом считалось, что Большое и Малое Магеллановы облака относятся к неправильным галактикам. Однако позже было обнаружено, что они имеют спиральную структуру с баром. Поэтому эти галактики были переквалифицированы в SBm, четвёртый тип спиральных галактик с баром.

Галактики, которые обладают теми или иными индивидуальными особенностями, не позволяющими отнести их ни к одному из перечисленных выше классов, называются пекулярными .

Пример пекулярной галактики - радиогалактика Centaurus A (NGC 5128).

Классификация Хаббла является на данный момент самой распространенной, но не единственной. В частности, широко используются Система де Вокулёра, представляющая собой более расширенную и переработанную версию классификации Хаббла, и Йеркская система, в которой галактики группируются в зависимости от их спектров, формы и степени концентрации к центру.

Многие факты, известные сегодня, кажутся такими знакомыми и привычными, что трудно представить, как раньше жили без них. Однако научные истины в большинстве своем возникли не на заре человечества. Во многом это касается познаний о космическом пространстве. Виды туманностей, галактик, звезд сегодня известны почти каждому. Между тем путь к современному пониманию был достаточно длительным. Люди далеко не сразу осознали, что планета — часть Солнечной системы, а она — Галактики. Виды галактик стали изучаться в астрономии еще позже, когда пришло понимание, что Млечный путь не одинок и им Вселенная не ограничивается. как и вообще познания космоса вне «молочной дороги», стал Эдвин Хаббл. Благодаря его исследованиям сегодня мы очень многое знаем о галактиках.

Виды галактик во Вселенной

Хаббл изучал туманности и доказал, что многие из них являются формированиями, схожими с Млечным путем. На основе собранного материала он описал, какой вид имеет галактика и какие типы подобных космических объектов существуют. Хаббл измерил расстояния до некоторых из них и предложил свою классификацию. Ей ученые пользуются и сегодня.

Все множество систем во Вселенной он разделил на 3 вида: галактики эллиптические, спиралевидные и неправильные. Каждый тип активно изучается астрономами всего мира.

Кусочек Вселенной, где расположена Земля, Млечный путь, относится к типу «спиралевидные галактики». Виды галактик выделяются на основе различий их форм, влияющих на определенные свойства объектов.

Спиралевидные

Виды галактик распространены по Вселенной не одинаково. По современным данным чаще других встречаются спиралевидные. Кроме Млечного пути к этому типу относится Туманность Андромеды (М31) и галактика в (М33). Подобные объекты имеют легко узнаваемое строение. Если посмотреть со стороны, как выглядит такая галактика, вид сверху будет напоминать расходящиеся по воде концентрические круги. От сферического центрального утолщения, называемого балджем, расходятся спиральные рукава. Число таких ответвлений бывает разным — от 2 до 10. Весь диск со спиральными рукавами находится внутри разреженного облака звезд, которое в астрономии называется «гало». Ядро же галактики представляет собой скопление светил.

Подтипы

В астрономии для обозначения спиралевидных галактик используется буква S. Их делят на типы в зависимости от структурной оформленности рукавов и особенностей общей формы:

    галактика Sa: рукава туго закрученные, гладкие и неоформленные, балдж яркий и протяженный;

    галактика Sb: рукава мощные, четкие, балдж менее выражен;

    галактика Sc: рукава хорошо развиты, представляют собой клочковатую структуру, балдж просматривается плохо.

Кроме того, некоторые спиральные системы обладают центральной практически прямой перемычкой (ее называют «бар»). В обозначение галактики в этом случае добавляется буква B (Sba или Sbc).

Формирование

Образование спиралевидных галактик, судя по всему, схоже с появлением волн от удара камня по поверхности воды. К возникновению рукавов, по мнению ученых, привел некий толчок. Сами спиральные ответвления представляют собой волны повышенной плотности вещества. Природа толчка может быть различной, один из вариантов — перемещения в звезд.

Спиральные ответвления — это молодые звезды и нейтральный газ (основной элемент — водород). Они лежат в плоскости вращения галактики, потому она напоминает сплющенный диск. Образование молодых звезд возможно и в центре таких систем.

Ближайшая соседка

Туманность Андромеды — спиралевидная галактика: вид сверху на нее выявляет несколько рукавов, исходящих из общего центра. С Земли невооруженным глазом ее можно увидеть как размытое туманное пятно. По своим размерам соседка нашей галактики несколько превосходит ее: 130 тысяч световых лет в диаметре.

Туманность Андромеды хотя и самая близкая к Млечному пути галактика, а расстояние до нее огромно. Свету для того, чтобы преодолеть его, требуется два миллиона лет. Этот факт отлично объясняет, почему полеты к соседней галактике пока возможны только в фантастических книгах и фильмах.

Эллиптические системы

Рассмотрим теперь другие виды галактик. Фото эллиптической системы хорошо демонстрирует ее отличие от спиралевидного собрата. У такой галактики нет рукавов. Она похожа на эллипс. Подобные системы могут быть сжатыми в разной степени, представлять собой нечто вроде линзы или же шара. В таких галактиках практически не встречается холодный газ. Наиболее внушительные представители этого типа заполнены разреженным горячим газом, температура которого достигает миллиона градусов и выше.

Отличительная черта многих эллиптических галактик — красноватый оттенок. Долгое время астрономы полагали это признаком древности таких систем. Считалось, что они в основном состоят из старых звезд. Однако исследования последних десятилетий показали ошибочность этого предположения.

Образование

Долгое время бытовала еще одна гипотеза, связанная с эллиптическими галактиками. Они считались самыми первыми из возникших, сформировавшимися вскоре после Большого взрыва. Сегодня эта теория считается устаревшей. Большой вклад в ее опровержение внесли немецкие астрономы Алар и Юрий Тумре, а также американский ученый Франсуа Швайцер. Их исследования и открытия последних лет подтверждают истинность другой гипотезы, иерархической модели развития. Согласно ей более крупные структуры формировались из достаточно небольших, то есть галактики образовались далеко не сразу. Их появлению предшествовало образование звездных скоплений.

Эллиптические системы по современным представлениям сформировались из спиралевидных в результате слияния рукавов. Одно из подтверждений этого — большое количество «закрученных» галактик, наблюдаемое в удаленных участках космоса. Напротив, в наиболее приближенных областях заметно выше концентрация эллиптических систем, достаточно ярких и протяженных.

Символы

Эллиптические галактики в астрономии также получили свои обозначения. Для них используют символ «Е» и цифры от 0 до 6, которыми указывается степень уплощения системы. Е0 — это галактики практически правильной шаровой формы, а Е6 — самые плоские.

Бушующие ядра

К эллиптическим галактикам относятся системы NGC 5128 из созвездия Кентавра и М87, расположенное в Деве. Их особенностью является мощное радиоизлучение. Астрономов в первую очередь интересует устройство центральной части таких галактик. Наблюдения российских ученых и исследования телескопа Хаббла показывают достаточно высокую активность этой зоны. В 1999 году американские астрономы получили данные о ядре эллиптической галактике NGC 5128 (созвездие Кентавр). Там в постоянном движении находятся огромные массы горячего газа, закручивающегося вокруг центра, возможно, черной дыры. Точных данных о природе таких процессов пока нет.

Системы неправильной формы

Она расположена также в Большом Магеллановом Облаке. Здесь ученые обнаружили область постоянного звездообразования. Некоторым светилам, составляющим туманность, всего два миллиона лет. Кроме того, здесь же расположена самая внушительная из обнаруженных на 2011 год звезд — RMC 136a1. Ее масса составляет 256 солнечных.

Взаимодействие

Основные виды галактик описывают особенности формы и расположения элементов этих космических систем. Однако не менее интересен вопрос об их взаимодействии. Не секрет, что все объекты космоса находятся в постоянном движении. Не исключение и галактики. Виды галактик, по крайней мере, некоторые из их представителей могли образоваться в процессе слияния или столкновения двух систем.

Если вспомнить, что представляют собой такие объекты, становится понятным, насколько масштабные изменения происходят во время их взаимодействия. При столкновении высвобождается колоссальное количество энергии. Интересно, что подобные события даже более вероятны на просторах космоса, чем встреча двух звезд.

Однако не всегда «общение» галактик заканчивается столкновением и взрывом. Небольшая система может пройти сквозь своего крупного собрата, потревожив при этом его структуру. Так образуются формирования, схожие по внешнему виду с вытянутыми коридорами. Они состоят из звезд и газа и часто становятся зонами образования новых светил. Примеры таких систем хорошо известны ученым. Один из них — галактика Колесо телеги в созвездии Скульптор.

В некоторых случаях системы не соударяются, а проходят мимо друг друга или лишь слегка соприкасаются. Однако независимо от степени взаимодействия оно приводит к серьезным изменениям структуры обеих галактик.

Будущее

По предположениям ученых не исключено, что через некоторое, довольно продолжительное, время Млечный путь поглотит ближайшего своего спутника, относительно недавно обнаруженную крохотную по космическим меркам систему, расположенную на расстоянии 50 световых лет от нас. Данные исследований свидетельствуют о внушительной продолжительности жизни этого спутника, которая, вероятно, закончится в процессе слияния со своим более крупным соседом.

Столкновение — возможное будущее для Млечного пути и Туманности Андромеды. Сейчас огромного соседа отделяет от нас примерно 2,9 миллиона световых лет. Две галактики приближаются друг к другу со скоростью 300 км/с. Вероятное столкновение по расчетам ученых случится через три миллиарда лет. Однако произойдет ли оно или галактики лишь слегка заденут друг друга, сегодня точно никто не знает. Для прогнозирования не хватает данных об особенностях движения обоих объектов.

Современная астрономия подробно изучает такие космические структуры, как галактики: виды галактик, особенности взаимодействия, их отличия и сходства, будущее. В этой области еще немало непонятного и требующего дополнительного изучения. Виды строения галактик известны, но нет точного понимания многих деталей, связанных, например, с их образованием. Современные темпы совершенствования знания и техники, однако, позволяют надеяться на значительные прорывы в будущем. В любом случае галактики не перестанут быть центром множества исследований. И связано это не только с любопытством, присущим всем людям. Данные о космических закономерностях и жизни позволяют спрогнозировать будущее нашего кусочка Вселенной, галактики Млечный путь.

Связанная силами гравитационного взаимодействия. Количество звезд и размеры галактик могут быть различными. Как правило, галактики содержат от нескольких миллионов до нескольких триллионов (1 000 000 000 000) звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные . Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной астрономом Эдвином Хабблом, в 1925 году существуют несколько видов галактик:

  • эллиптические(E),
  • линзообразные(S0),
  • обычные спиральные(S),
  • пересеченные спиральные(SB),
  • неправильные (Ir).


Эллиптические галактики — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. В таких галактиках нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой — большим или меньшим сжатием.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной — около 25 %.

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа (почти сферического утолщения в центре галактики). Спиральные галактики имеют центральное сгущение и несколько спиральных ветвей, или рукавов, которые имеют голубоватый цвет, так как в них присутствует много молодых гигантских звезд. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Диск спиральной галактики обычно окружён большим сфероидальным гало (светящееся кольцо вокруг объекта; оптический феномен), состоящим из старых звёзд второго поколения. Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узком диске. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.



Многие спиральные галактики имеют в центре перемычку (бар), от концов которой отходят спиральные рукава. Наша Галактика также относится к спиральным галактикам с перемычкой.

Линзообразные галактики — это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Их примерно 20% среди всех звездных систем. В этих галактиках яркое основное тело - линза, окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.

Неправильные галактики — это галактики, которые не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции , происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.

С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения . К ним относится наше .

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад.

Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики - это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течение короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них, «активность».

В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали . Сейчас считается, что ядра некоторых галактик представляют собой квазары.




Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта