Главная » Выращивание » Магнитном поле находится. Что является источником магнитного поля

Магнитном поле находится. Что является источником магнитного поля

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

Магнитное поле и его характеристики

План лекции:

    Магнитное поле, его свойства и характеристики.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

    порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

    действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

    переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.

Н

Магнитное соленоида с током

Аправление линий определяется правилом правого винта. Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.

С

оленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции : индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию :

- закон Ампера

Н
аправление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.

При I = const, B=const, F = BIlsin

Если  =90 0 , F = BIl

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

 0 = 410 -7 Гн/м - магнитная постоянная,  0 = 410 -7 Н/А 2 ,

 - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

    Магнитный поток. Теорема Гаусса для магнитного потока.

Потоком вектора (магнитным потоком) через площадку dS называется скалярная величина, равная

где - проекция на направление нормали к площадке;

 - угол между векторами и .

Направленный элемент поверхности,

Поток вектора - алгебраическая величина,

если - при выходе из поверхности;

если - при входе в поверхность.

Поток вектора магнитной индукции через произвольную поверхность S равен

Для однородного магнитного поля =const,


1 Вб - магнитный поток, проходящий через плоскую поверхность площадью 1 м 2 , расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл.

Магнитный поток через поверхность S численно равен количеству магнитных силовых линий, пересекающих данную поверхность.

Поскольку линии магнитной индукции всегда замкнуты, для замкнутой поверхности число линий, входящих в поверхность (Ф 0), следовательно, полный поток магнитной индукции через замкнутую поверхность равен нулю.

- теорема Гаусса : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

Эта теорема является математическим выражением того, что в природе отсутствуют магнитные заряды, на которых начинались бы или заканчивались линии магнитной индукции.

    Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.

Магнитное поле постоянных токов различной формы было подробно исследовано фр. учеными Био и Саваром. Ими было установлено, что во всех случаях магнитная индукция в произвольной точке пропорциональна силе тока, зависит от формы, размеров проводника, расположения этой точки по отношению к проводнику и от среды.

Результаты этих опытов были обобщены фр. математиком Лапласом, который учел векторный характер магнитной индукции и высказал гипотезу о том, что индукция в каждой точке представляет собой, согласно принципу суперпозиции, векторную сумму индукций элементарных магнитных полей, создаваемых каждым участком этого проводника.

Лапласом в 1820 г. был сформулирован закон, который получил название закона Био-Савара-Лапласа: каждый элемент проводника с током создает магнитное поле, вектор индукции которого в некоторой произвольной точке К определяется по формуле:

- закон Био-Савара-Лапласа.

Из закона Био-Совара-Лапласа следует, что направление вектора совпадает с направлением векторного произведения . Такое же направление дает и правило правого винта (буравчика).

Учитывая, что ,

Элемент проводника, сонаправленный с током;

Радиус-вектор, соединяющий c точкой K;

Закон Био-Савара-Лапласа имеет практическое значение, т.к. позволяет найти в заданной точке пространства индукцию магнитного поля тока, текущего по проводнику конечный размеров и произвольной формы.

Для тока произвольной формы подобный расчет представляет собой сложную математическую задачу. Однако, если распределение тока имеет определенную симметрию, то применение принципа суперпозиции совместно с законом Био-Савара-Лапласа дает возможность относительно просто рассчитать конкретные магнитные поля.

Рассмотрим некоторые примеры.

А. Магнитное поле прямолинейного проводника с током.

    для проводника конечной длины:

    для проводника бесконечной длины:  1 = 0,  2 = 

Б. Магнитное поле в центре кругового тока:

=90 0 , sin=1,

Эрстедом в 1820 году экспериментально было обнаружено, что циркуляция по замкнутому контуру, окружающему систему макротоков, пропорциональна алгебраической сумме этих токов. Коэффициент пропорциональности зависит от выбора системы единиц и в СИ равен 1.

Ц
иркуляцией вектора называется интеграл по замкнутому контуру.

Эта формула носит название теоремы о циркуляции или закона полного тока :

циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков (или полному току), охватываемых этим контуром. его характеристики В пространстве, окружающем токи и постоянные магниты, возникает силовое поле , называемое магнитным . Наличие магнитного поля обнаруживается...

  • О реальной структуре электромагнитного поля и его характеристиках распространения в виде плоских волн.

    Статья >> Физика

    О РЕАЛЬНОЙ СТРУКТУРЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ЕГО ХАРАКТЕРИСТИКАХ РАСПРОСТРАНЕНИЯ В ВИДЕ ПЛОСКИХ ВОЛН... другие составляющие единого поля : электромагнитное поле с векторными компонентами и, электрическое поле с компонентами и, магнитное поле с компонентами...

  • Магнитное поле , цепи и индукция

    Реферат >> Физика

    ... поля ). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля ). В СИ магнитная ... , обладающими магнитным моментом. Магнитное поле и его параметры Направление магнитных линий и...

  • Магнитное поле (2)

    Реферат >> Физика

    Участок проводника АВ с током в магнитное поле перпендикулярно его магнитным линями. При показанном на рисунке... величина зависит только от магнитного поля и может служить его количественной характеристикой . Эта величина принимается...

  • Магнитные материалы (2)

    Реферат >> Экономика

    Материалы, вступающие во взаимодействие с магнитным полем , выражающееся в его изменении, а также в других... и после прекращения воздействия магнитного поля .1. Основные характеристики магнитных материаловМагнитные свойства материалов характеризуется...

  • Представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

    Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

    Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

    Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

    В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока .

    Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

    Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

    В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

    Квантовая теория магнитного поля рассматривает магнитное взаимодействие как отдельный случай электромагнитного взаимодействия. Он переносится безмассовым бозоном. Бозон представляет собой фотон - частицу, которую можно представить как квантовое возбуждение электромагнитного поля.

    Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

    Вычисление значения магнитного поля.

    Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

    Проявление наличия магнитного поля.

    Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q , в системе единиц СГС: F = q / c

    Векторное произведение отображено квадратными скобками.

    В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

    Явление взаимодействия двух магнитов.

    Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

    С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока . Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

    .

    Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

    Электромагнитная индукция.

    В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

    Магнитные поля возникают в природе и могут создаваться искусственно. Человек заметил их полезные характеристики, которые научился применять в повседневной жизни. Что же является источником магнитного поля?

    Как развивалось учение о магнитном поле

    Магнитные свойства некоторых веществ были замечены еще в древности, но по-настоящему их изучение началось в средневековой Европе. Используя мелкие стальные иголки, ученый из Франции Перегрин обнаружил пересечение силовых магнитных линий в определенных пунктах – полюсах. Только через три века, руководствуясь этим открытием, Гилберт продолжил его изучение и впоследствии защищал свою гипотезу, что Земля обладает собственным магнитным полем.

    Бурное развитие теории магнетизма началось с начала 19-го века, когда Ампер обнаружил и описал влияние электрического поля на возникновение магнитного, а открытие Фарадеем электромагнитной индукции установило и обратную взаимосвязь.

    Что такое магнитное поле

    Магнитное поле проявляется в силовом воздействии на электрозаряды, находящиеся в движении, или на тела, у которых имеется магнитный момент.

    1. Проводники, по которым проходит электрический ток;
    2. Постоянные магниты;
    3. Изменяющееся электрическое поле.

    Первопричина возникновения магнитного поля идентична для всех источников: электрические микрозаряды – электроны, ионы или протоны обладают собственным магнитным моментом либо находятся в направленном движении.

    Важно! Взаимно порождают друг друга электрические и магнитные поля, меняющиеся с течением времени. Эта взаимосвязь определяется уравнениями Максвелла.

    Характеристики магнитного поля

    Характеристиками магнитного поля являются:

    1. Магнитный поток, скалярная величина, определяющая, сколько силовых линий магнитного поля проходит через заданное сечение. Обозначается буквой F. Рассчитывается по формуле:

    F = B x S x cos α,

    где В – вектор магнитной индукции, S – сечение, α – угол наклона вектора к перпендикуляру, проведенному к плоскости сечения. Единица измерения – вебер (Вб);

    1. Вектор магнитной индукции (В) показывает силу, действующую на зарядоносители. Он направлен в сторону северного полюса, куда указывает обычная магнитная стрелка. Количественно магнитную индукцию измеряют в теслах (Тл);
    2. Напряженность МП (Н). Определяется магнитной проницаемостью различных сред. В вакууме проницаемость принимается за единицу. Направление вектора напряженности совпадает с направлением магнитной индукции. Единица измерения – А/м.

    Как представить магнитное поле

    Легко видеть проявления магнитного поля на примере постоянного магнита. Он имеет два полюса, и в зависимости от ориентации два магнита притягиваются или отталкиваются. Магнитное поле характеризует процессы, происходящие при этом:

    1. МП математически описывается, как векторное поле. Оно может быть построено посредством многих векторов магнитной индукции В, каждый из которых направлен в сторону северного полюса стрелки компаса и имеет длину, зависящую от магнитной силы;
    2. Альтернативный способ представления заключается в использовании силовых линий. Эти линии никогда не пересекаются, нигде не начинаются и не останавливаются, образуя замкнутые петли. Линии МП объединяются в области с более частым расположением, где магнитное поле является самым сильным.

    Важно! Плотность силовых линий указывает на прочность магнитного поля.

    Хотя в действительности МП видеть нельзя, силовые линии легко визуализировать в реальном мире, расположив железные опилки в МП. Каждая частица ведет себя как крошечный магнит с северным и южным полюсом. Результатом является шаблон, похожий на силовые линии. Ощутить воздействие МП человек не способен.

    Измерение магнитного поля

    Так как это величина векторная, для измерения МП существует два параметра: сила и направление. Направление легко измерить с помощью компаса, соединенного с полем. Пример – компас, помещенный в магнитное поле Земли.

    Измерение других характеристик значительно сложнее. Практические магнитометры появились только в 19-м веке. Большинство из них работают, используя силу, которую электрон чувствует при движении по МП.

    Очень точное измерение малых магнитных полей стало практически осуществимо с момента открытия в 1988 году гигантского магнитосопротивления в слоистых материалах. Это открытие в фундаментальной физике было быстро применено к магнитной технологии жесткого диска для хранения данных на компьютерах, приведшее к тысячекратному увеличению емкости хранилища всего за несколько лет.

    В общепринятых системах измерений МП измеряется в тестах (Тл) или в гауссах (Гс). 1 Тл = 10000 Гс. Гаусс часто используется, потому что Тесла – слишком большое поле.

    Интересно. Маленький магнит на холодильнике создает МП, равное 0,001 Тл, а магнитное поле Земли в среднем – 0,00005 Тл.

    Природа возникновения магнитного поля

    Магнетизм и магнитные поля являются проявлениями электромагнитной силы. Есть два возможных способа, как организовать энергозаряд в движении и, следовательно, магнитное поле.

    Первый – это подсоединить провод к источнику тока, вокруг него образуется МП.

    Важно! По мере увеличения тока (количества зарядов в движении) пропорционально увеличивается МП. При удалении от провода поле снижается в зависимости от расстояния. Это описывается законом Ампера.

    Некоторые материалы, имеющие более высокую магнитопроницаемость, способны концентрировать магнитные поля.

    Поскольку магнитное поле – это вектор, необходимо определить его направление. Для обычного тока, протекающего через прямой провод, направление можно найти по правилу правой руки.

    Чтобы использовать правило, надо представить, что провод обхвачен правой рукой, а большой палец указывает направление тока. Тогда четыре остальных пальца покажут направление вектора магнитной индукции вокруг проводника.

    Второй способ создания МП – использование факта, что в некоторых веществах появляются электроны, обладающие собственным магнитным моментом. Так работают постоянные магниты:

    1. Хотя атомы часто имеют много электронов, они в основном соединяются так, что полное магнитное поле пары компенсируется. Говорят, что два электрона, спаренные таким образом, имеют противоположный спин. Поэтому, чтобы что-то намагнитить, нужны атомы, которые имеют один или несколько электронов с одинаковым спином. Например, железо имеет четыре таких электрона и подходит для изготовления магнитов;
    2. Миллиарды электронов, находящиеся в атомах, могут быть случайно ориентированы, и общего МП не будет, независимо от того, сколько неспаренных электронов имеет материал. Он должен быть стабильным при невысокой температуре, чтобы обеспечить общую предпочтительную ориентацию электронов. Высокая магнитопроницаемость обуславливает намагничивание таких веществ при определенных условиях вне влияния МП. Это ферромагнетики;
    3. Другие материалы могут проявлять магнитные свойства при наличии внешнего МП. Внешнее поле служит для выравнивания всех электронных спинов, которое исчезает после удаления МП. Это вещества – парамагнетики. Металл двери холодильника является примером парамагнетика.

    Землю можно представить в виде конденсаторных обкладок, заряд которых имеет противоположный знак: «минус» – у земной поверхности и «плюс» – в ионосфере. Между ними находится атмосферный воздух в качестве изоляционной прокладки. Гигантский конденсатор сохраняет постоянный заряд, благодаря влиянию земного МП. Пользуясь этими знаниями, можно создать схему получения электро энергии из магнитного поля Земли. Правда, в результате будут невысокие значения напряжения.

    Нужно взять:

    • заземляющее устройство;
    • провод;
    • трансформатор Теслы, способный генерировать высокочастотные колебания и создавать коронный разряд, ионизируя воздух.

    Катушка Теслы будет выступать в роли эмиттера электронов. Вся конструкция соединяется вместе, причем для обеспечения достаточной разности потенциалов трансформатор должен быть поднят на значительную высоту. Таким образом, будет создана электрическая цепь, по которой будет протекать маленький ток. Получить большое количество электроэнергии, пользуясь этим устройством, невозможно.

    Электричество и магнетизм доминируют во многих мирах, окружающих человека: от самых фундаментальных процессов в природе до ультрасовременных электронных устройств.

    Видео

    Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).

    Опыт Эрстеда

    Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

    Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

    Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.

    Опыт Ампера
    Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

    Свойства магнитного поля

    1. Материально, т.е. существует независимо от нас и наших знаний о нём.

    2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

    3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

    4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

    5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

    6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

    Эти токи представляют собой движение электронов по орбитам в атоме.

    Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

    И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.


    7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.

    Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

    8. Магнитное поле характеризует вектор магнитной индукции.

    Вектор магнитной индукции - векторная величина, характеризующая магнитное поле.

    Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

    Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:

    если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.



    Предыдущая статья: Следующая статья:

    © 2015 .
    О сайте | Контакты
    | Карта сайта