Главная » Галлюциногенные » Брожение в клетках. Спиртовое брожение В клетках каких растений происходит спиртовое брожение

Брожение в клетках. Спиртовое брожение В клетках каких растений происходит спиртовое брожение

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

Спиртовое брожение лежит в основе приготовления любого алкогольного напитка. Это самый простой и доступный способ получить этиловый спирт. Второй метод – гидратация этилена, является синтетическим, применяется редко и только в производстве водки. Мы рассмотрим особенности и условия брожения, чтобы лучше понять, как сахар превращается спирт. С практической точки эти знания помогут создать оптимальную среду для дрожжей – правильно поставить брагу, вино или пиво.

Спиртовое брожение – это процесс превращения дрожжами глюкозы в этиловый спирт и углекислый газ в анаэробной (бескислородной) среде. Уравнение следующее:

C6H12O6 → 2C2H5OH + 2CO2.

В результате одна молекула глюкозы превращается в 2 молекулы этилового спирта и 2 молекулы углекислого газа. При этом происходит выделение энергии, что приводит к незначительному повышению температуры среды. Также в процессе брожения образуются сивушные масла: бутиловый, амиловый, изоамиловый, изобутиловый и другие спирты, которые являются побочными продуктами обмена аминокислот. Во многом сивушные масла формируют аромат и вкус напитка, но большинство из них вредны для человеческого организма, поэтому производители стараются очистить спиртное от вредных сивушных масел, но оставить полезные.

Дрожжи – это одноклеточные грибы шарообразной формы (около 1500 видов), активно развивающиеся в жидкой или полужидкой среде богатой сахарами: на поверхности плодов и листьев, в нектаре цветов, мертвой фитомассе и даже почве.


Дрожжевые клетки под микроскопом

Это одни из самых первых организмов, «прирученных» человеком, в основном дрожжи используются для выпечки хлеба и приготовления спиртных напитков. Археологами установлено, что древние египтяне за 6000 лет до н. э. научились делать пиво, а к 1200 году до н. э. освоили выпечку дрожжевого хлеба.

Научное исследование природы брожения началось в XIX веке, первыми химическую формулу предложили Ж. Гей-Люссак и А. Лавуазье, но осталась неясной сущность процесса, возникло две теории. Немецкий ученый Юстус фон Либих предполагал, что брожение имеет механическую природу – колебания молекул живых организмов передаются сахару, который расщепляется на спирт и углекислый газ. В свою очередь, Луи Пастер считал, что в основе процесса брожения биологическая природа – при достижении определенных условий дрожжи начинают перерабатывать сахар в спирт. Пастеру опытным путем удалось доказать свою гипотезу, позже биологическую природу брожения подтвердили другие ученые.

Русское слово «дрожжи» происходит от старославянского глагола «drozgati», что значит «давить» или «месить», прослеживается явная связь с выпечкой хлеба. В свою очередь, английское название дрожжей «yeast» восходит от староанглийских слов «gist» и «gyst», которые значат «пена», «выделять газ» и «кипеть», что ближе к винокурению.

В качестве сырья для спирта используют сахар, сахаросодержащие продукты (в основном фрукты и ягоды), а также крахмалосодержащее сырье: зерно и картофель. Проблема в том, что дрожжи не могут сбродить крахмал, поэтому сначала нужно расщепить его до простых сахаров, это делается ферментом – амилазой. Амилаза содержится в солоде – пророщенном зерне, и активируется при высокой температуре (обычно 60-72 °C), а сам процесс преобразования крахмала до простых сахаров называется «осахариванием». Осахаривание солодом («горячее») можно заменить внесением синтетических ферментов, при котором не нужно нагревать сусло, поэтому метод называется «холодным» осахариванием.

Условия брожения

На развитие дрожжей и ход брожения влияют следующие факторы: концентрация сахара, температура и свет, кислотность среды и наличие микроэлементов, содержание спирта, доступ кислорода.

1. Концентрация сахара. Для большинства рас дрожжей оптимальная сахаристость сусла составляет 10-15%. При концентрации выше 20% брожение ослабевает, а при 30-35% почти гарантированно прекращается, поскольку сахар становится консервантом, препятствующим работе дрожжей.

Интересно, что при сахаристости среды ниже 10% брожение тоже протекает слабо, но прежде чем подслащать сусло, нужно помнить о максимальной концентрации спирта (4-й пункт), полученного в ходе брожения.

2. Температура и свет. Для большинства штаммов дрожжей оптимальная температура брожения – 20-26 °C (пивным дрожжам низового брожения требуется 5-10 °C). Допустимый диапазон – 18-30 °C. При более низких температурах брожение существенно замедляется, а при значениях ниже нуля процесс останавливается и дрожжи «засыпают» — впадают в анабиоз. Для возобновления брожения достаточно поднять температуру.

Слишком высокая температура уничтожает дрожжи. Порог выносливости зависит от штамма. В общем случае опасными считаются значения выше 30-32 °C (особенно для винных и пивных), однако существуют отдельные расы спиртовых дрожжей, способные выдержать температуру сусла до 60 °C. Если дрожжи «сварились», для возобновления брожения придется добавить в сусло новую партию.

Процесс брожения сам по себе вызывает повышение температуры на несколько градусов – чем больше объем сусла и активнее работа дрожжей, тем сильнее нагрев. На практике коррекцию температуры делают, если объем больше 20 литров – достаточно держать температуру ниже 3-4 градусов от верхней границы.

Емкость оставляют в темном месте или накрывают плотной тканью. Отсутствие прямых солнечных лучей позволяет избежать перегрева и позитивно сказывается на работе дрожжей – грибки не любят солнечного света.

3. Кислотность среды и наличие микроэлементов. Среда кислотностью 4.0-4.5 рН способствует спиртовому брожению и подавляет развитие сторонних микроорганизмов. В щелочной среде выделяются глицерин и уксусная кислота. В нейтральном сусле брожение протекает нормально, но активно развиваются патогенные бактерии. Кислотность сусла корректируют перед внесением дрожжей. Зачастую винокуры-любители повышают кислотность лимонной кислотой или любым кислым соком, а для снижения гасят сусло мелом или разбавляют водой.

Кроме сахара и воды дрожжам требуются другие вещества – в первую очередь это азот, фосфор и витамины. Эти микроэлементы дрожжи используют для синтеза аминокислот, входящих в состав их белка, а также для размножения на начальном этапе брожения. Проблема в том, что в домашних условиях точно определить концентрацию веществ не получится, а превышение допустимых значений может негативно сказаться на вкусе напитка (особенно это касается вина). Поэтому предполагается, что крахмалосодержащее и фруктовое сырье изначально содержит требуемое количество витаминов, азота и фосфора. Обычно подкармливают только брагу из чистого сахара.

4. Содержание спирта. С одной стороны, этиловый спирт – продукт жизнедеятельности дрожжей, с другой – это сильный токсин для дрожжевых грибков. При концентрации спирта в сусле 3-4% брожение замедляется, этанол начинает тормозить развитие дрожжей, при 7-8% дрожжи уже не размножаются, а при 10-14% перестают перерабатывать сахар – брожение прекращается. Только отдельные штаммы культурных дрожжей, выведенных в лабораторных условиях, толерантны к концентрации спирта выше 14% (некоторые продолжают брожение даже при 18% и выше). Из 1% сахара в сусле получается около 0.6% спирта. Это значит, что для получения 12% спирта требуется раствор с содержанием сахара 20% (20 × 0.6 = 12).

5. Доступ кислорода. В анаэробной среде (без доступа кислорода) дрожжи нацелены на выживание, а не размножение. Именно в таком состоянии выделяется максимум алкоголя, поэтому в большинстве случаев нужно оградить сусло от доступа воздуха и одновременно организовать отвод углекислого газа с емкости, чтобы избежать повышенного давления. Эта задача решается путем установки гидрозатвора.

При постоянном контакте сусла с воздухом возникает опасность скисания. В самом начале, когда брожение активное, выделяющийся углекислый газ выталкивает воздух от поверхности сусла. Но в конце, когда брожение ослабевает и углекислоты появляется всё меньше, воздух попадает в незакрытую емкость с суслом. Под воздействием кислорода активируются уксуснокислые бактерии, которые начинают перерабатывать этиловый спирт на уксусную кислоту и воду, что приводит к порче вина, снижению выхода самогона и появлению у напитков кислого привкуса. Поэтому так важно закрыть емкость гидрозатвором.

Однако для размножения дрожжей (достижения оптимального их количества) требуется кислород. Обычного достаточно той концентрации, что находится в воде, но для ускоренного размножения брагу после внесения дрожжей оставляют на несколько часов открытой (с доступом воздуха) и несколько раз перемешивают.

Пар.22 В клетках каких организмов происходит спиртовое брожение? В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение-, молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2. Откуда берется энергия для синтеза АТФ из АДФ? Выделяется в процессе диссимиляции, т. е. в реакциях расщепления органических веществ в клетке. В зависимости от специфики организма и условий его обитания диссимиляция может проходить в два или три этапа. Какие этапы выделяют в энергетическом обмене? 1 –подготовительный;заключ.в распаде крупных органических молекул до более простых: полисах.-моносах., липиды-глиц.и жир. кислоты, белки-а.к. Расщепление происходит в ПС. Энергии выделяется мало, при этом она рассеивается в виде тепла. Образующиеся соединения (моносах.,жир.кислоты, а.к. и др.) могут использоваться клеткой в реакциях пласт.обмена, а также для дальнейшего расщ-я с целью получения энергии. 2- бескислородный=гликолиз (ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты); С6Н12О6 + 2Н3Р04 + 2АДФ --- 2С3Н6О3 + 2АТФ + 2Н2О. заключается в ферментативном расщ-ии орг.вещ-в, которые были получены в ходе подгот.этапа. О2 в реакциях этого этапа не участвует. Реакции гликолиза катализируются многими ферментами и протекают в цитоплазме клеток. 40% энергии сохраняется в молекулах АТФ, 60% рассеивается в виде тепла. Глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до соединений, которые еще богаты энергией и, окисляясь далее, могут дать ее в больших количествах (молочная кислота, этиловый спирт и др.). 3- кислородный (клет.дыхание); органические вещества, образ.в ходе 2 этапа и содержащие большие запасы хим.энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс происходит в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ: 2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 - 6СО2 + 42Н2О + З6АТФ. Выделяется большое кол-во энергии, 55% запас.в виде АТФ, 45% рассеивается в виде тепла. В чем отличия энергетич.обмена у аэробов и анаэробов? Больш-во жив.существ, обитающих на Земле, относятся к аэробам, т.е. используют в процессах ОВ О2 из окружающей среды. У аэробов энерг.обмен происходит в 3 этапа: подготов., бескислор.и кислород. В результате этого орган.вещ-ва распадаются до простейших неорган.соединений. У организмов, обитающих в бескислор.среде и не нуждающихся в кислороде, - анаэробов, а также у аэробов при недостатке кислорода ассимиляция происходит в два этапа: подготовительный и бескислородный. В двухэтапном варианте энергетического обмена энергии запасается гораздо меньше, чем в трехэтапном. ТЕРМИНЫ: Фосфорилирование – присоединение 1 остатка фосф.кислоты к молекуле АДФ. Гликолиз - ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты. Спиртовое брожение – хим.реакция брожения в результате которой молекула глюкозы в анаэроб.условиях превращ.в этиловый спирт и СО2 Пар.23 Какие организмы являются гетеротрофами? Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу) Какие организмы на Земле практически не зависят от энергии солнечного света? Хемотрофы - используют для синтеза органических веществ энергию, высвобождающуюся в ходе химических превращений неорганических соединений. ТЕРМИНЫ: Питание - совокупность процессов, включающих поступление в организм, переваривание, всасывание и усвоение им пищевых веществ. В процессе питания организмы получают химические соединения, используемые ими для всех процессов жизнедеятельности. Автотрофы - организмы, синтезирующие органические соединения из неорганических, получая из окружающей среды углерод в виде СО2, воду и мин.соли. Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу)

1. Какова химическая природа АТФ?

Ответ. Аденозинтрифосфат (АТФ) - это нуклеотид, состоящий из пуринового основания аденина, моносахарида рибозы и 3-х остатков фосфорной кислоты. Во всех живых организмах выполняет роль универсального аккумулятора и переносчика энергии. Под действием специальных ферментов концевые фосфатные группы отщепляются с освобождением энергии, которая идет на мышечное сокращение, синтетические и др. процессы жизнедеятельности.

2. Какие химические связи называются макроэргическими?

Ответ. Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

3. В каких клетках АТФ больше всего?

Ответ. Наибольшее содержание АТФ в клетках, в которых велики затраты энергии. Это клетки печени и поперечнополосатой мускулатуры.

Вопросы после §22

1. В клетках каких организмов происходит спиртовое брожение?

Ответ. В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение:молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2:

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.

2. Откуда берётся энергия для синтеза АТФ из АДФ?

Ответ. Синтез АТФ осуществляется на следующих этапах. На этапе гликолиза происходит расщепления молекулы глюкозы, содержащей шесть атомов углерода (С6Н12О6), до двух молекул трёхуглеродной пировиноградной кислоты, или ПВК (C3H4O3). Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток. В ходе гликолиза при расщеплении 1 М глюкозы выделяется 200 кДж энергии, но 60 % её рассеивается в виде тепла. Оставшихся 40 % энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ.

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О

В аэробных организмах после гликолиза (или спиртового брожения) следует завершающий этап энергетического обмена – полное кислородное расщепление, или клеточное дыхание. В процессе этого третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс, так же как и гликолиз, является многостадийным, но происходит не в цитоплазме, а в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ:

2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 → 6СО2 + 42Н2О + 36АТФ.

Таким образом, суммарно энергетический обмен клетки в случае распада глюкозы можно представить следующим образом:

С6Н12О6 + 6О2 + 38АДФ + 38Н3РО4 → 6СО2 + 44Н2О + 38АТФ.

3. Какие этапы выделяют в энергетическом обмене?

Ответ. I этап, подготовительный

Сложные органические соединения распадаются на простые под действием пищеварительных ферментов, при этом выделяется только тепловая энергия.

Белки → аминокислоты

Жиры → глицерин и жирные кислоты

Крахмал → глюкоза

II этап, гликолиз (бескислородный)

Осуществляется в цитоплазме, с мембранами не связан. В нём участвуют ферменты; расщеплению подвергается глюкоза. 60 % энергии рассеивается в виде тепла, а 40 % - используется для синтеза АТФ. Кислород не участвует.

III этап, клеточное дыхание (кислородный)

Осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной. В нём участвуют ферменты, кислород. Расщеплению подвергается молочная кислота. СО2 выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ.

Ответ. Все проявления жизни аэробов нуждаются в затрате энергии, пополнение которой происходит клеточном дыхании – сложном процессе, в который вовлечены многие ферментные системы.

Между тем, его можно представить как ряд последовательных реакций окисления – восстановления, при которых электроны отсоединяются от молекулы какого-либо питательного вещества и переносятся сначала на первичный акцептор, затем на вторичный и далее – до конечного. При этом энергия потока электронов накапливается в макроэргических химических связях (главным образом, фосфатных связях универсального источника энергии – АТФ). Для большинства организмов конечным акцептором электронов служит кислород, который, реагируя с электронами и ионами водорода, образует молекулу воды. Без кислорода обходятся лишь анаэробы, покрывающие свои энергетические потребности за счет брожения. К анаэробам относятся многие бактерии, ресничные инфузории, некоторые черви и несколько видов моллюсков. Эти организмы в качестве конечного акцептора электронов используют этиловый или бутиловый спирт, глицерин и др.

Преимущество кислородного, то есть аэробного типа энергетического обмена над анаэробным очевидно: количество энергии, выделяющееся при окислении питательного вещества кислородом, в несколько раз выше, чем при его окислении, например, пировиноградной кислотой (происходит при таком распространенном типе брожения, как гликолиз). Таким образом, благодаря высокой окислительной способности кислорода, аэробы эффективнее используют потребляемые питательные вещества, чем анаэробы. Вместе с тем, аэробные организмы могут существовать лишь в среде, содержащей свободный молекулярный кислород. В противном случае они погибают.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта