Главная » Галлюциногенные » Что такое молекулярный уровень организации жизни. Уровни организации живой материи

Что такое молекулярный уровень организации жизни. Уровни организации живой материи

Молекулярно-генетический . Элементарная единица организации – ген. Элементарное явление – редупликация ДНК, перенос генетической информации в дочернюю клетку. Молекулярный уровень организации жизни является предметом изучения молекулярной биологии. Она изучает строение белков, их функции (в том числе как ферментов), роль нуклеиновых кислот в хранении, репликации и реализации генетической информации, т.е. процессы синтеза ДНК, РНК, белков.

Клеточный уровень. Этот уровень организации живого представлен клетками – самостоятельными организмами (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта клеточного уровня заключается в том, что с этого уровня начинается жизнь , так как возникающий на молекулярном уровне матричный синтез происходит в клетках. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, ее элементарными единицами, из которых построены все живые существа. Характерной особенностью клеточного уровня является специализация клеток. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и времени.

Тканевый уровень. Ткань – совокупность клеток, имеющих общее происхождение, сходное строение и выполняющих одинаковые функции. У млекопитающих, например, выделяют четыре основных типа тканей: эпителиальная, соединительная, мышечная и нервная.

Организменный (онтогенетический) уровень. На организменном уровне изучают особь и свойственные ей как целому черты строения, физиологические процессы, в том числе дифференцировку, механизмы адаптации и поведения. Элементарная неделимая единица организации жизни на этом уровне – особь. Жизнь всегда представлена в виде дискретных индивидуумов. Это могут быть и одноклеточные индивидуумы, и многоклеточные, состоящие из миллионов и миллиардов клеток.

Популяционно-видовой уровень. Основной элементарной, структурной единицей на этом уровне является популяция. Популяция – локальная, географически отделенная в той или иной степени от других группа особей одного вида, свободно скрещивающихся друг с другом и имеющих общий для них генетический фонд. Элементарное явление популяционно-видового уровня – изменение генотипического состава популяции, а элементарный материал – мутация. На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, проблемы сохранения исчезающих видов, динамику генетического состава популяций.

Биоценотический уровень. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества. Такие сообщества в конкретных участках биосферы называют биоценозами. Биоценоз – комплекс, складывающийся из растительного сообщества (фитоценоза), населяющего его животного мира (зооценоза), микроорганизмов и соответствующего участка земной поверхности. Все компоненты биоценоза связаны между собой круговоротом веществ. Биоценоз – продукт совместного исторического развития видов, различающихся по систематическому положению.

Процесс «трансляции» на­след­ствен­ной ин­фор­ма­ции про­ис­хо­дит на уров­не ор­га­ни­за­ции жизни

1) клеточном

2) организменном

3) биогеоценотическом

4) молекулярном

Пояснение.

События на клеточном уровне обеспечивают биоинформационное и вещественно-энергетическое сопровождение феномена жизни на всех уровнях ее организации. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. В клетке сохраняется и воплощается в процессы жизнедеятельности биологическая (генетическая, наследственная) информация - ДНК, матричный механизм репликации ДНК и синтеза белков .

Про­цесс транс­ля­ции - про­цесс син­те­за белка из ами­но­кис­лот на мат­ри­це иРНК (мРНК), осу­ществ­ля­е­мый ри­бо­со­мой. Участ­ву­ют не­сколь­ко ком­по­нен­тов клет­ки, по­это­му ответ - на кле­точ­ном уров­не ор­га­ни­за­ции.

Ответ: 1

Раздел: Основы цитологии

Гость 26.05.2014 18:14

Здравствуйте. Разве про­цесс трансляции на­след­ствен­ной информации про­ис­хо­дит на кле­точ­ном уровне? Мне ка­жет­ся на молекулярном. Не­сколь­ко выше был по­доб­ный вопрос и там ука­зан молекулярный уро­вень организации.

Наталья Евгеньевна Баштанник

На молекулярно-генетическом уровне протекают важнейшие процессы жизнедеятельности - кодирование, передача и реализация наследственной информации. На этом же уровне организации жизни осуществляется процесс изменения наследственной информации.

На органоидно-клеточном уровне протекают важнейшие процессы жизнедеятельности: обмен веществ (в том числе и и биосинтез белка - ТРАНСЛЯЦИЯ) и превращение энергии в клетке, ее рост, развитие и деление.

Гость 23.03.2015 19:21

На молекулярном уровне происходят такие процессы как: передача генетической информации - репликация, транскрипция, трансляция.

На клеточном уровне происходит процессы такие как: клеточный метаболизм, жизненные циклы и деление, которые регулируются белками-ферментам.

(Информация на основе "Сборника разноуровневых заданий для подготовки к ЕГЭ". Автор сборника - А.А.Кириленко)

Наталья Евгеньевна Баштанник

Молекулярный уровень. Основу организации на этом уровне представляют 4 азотистых основания, 20 аминокислот, несколько сотен тысяч биохимических реакций, почти все из которых сопряжены с синтезом или разложением АТФ -- универсального энергетического компонента живого.

Клеточный уровень. Клетка является минимальной единицей жизни. Все живое состоит из клеток. Основные механизмы воспроизводства жизни работают именно на клеточном уровне.

На клеточном уровне происходит два основных процесса, необходимых для самовоспроизведения жизни - митоз - деление клетки с сохранением числа хромосом и генов, и мейоз - редукционное деление, необходимое для производства половых клеток - гамет.


1. Уровни организации жизни

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания , типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.
2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, необходимой для осуществления жизнедеятельности организма.
В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.).
Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности.
Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле.
Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей , и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое.
В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков.
При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым.
Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК.
Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле , т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания.
Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении.
Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную).
Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции.
При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций.
На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

Уровни организации живого

В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень . Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой (рис. 42). На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК. В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмоле-кулярные структуры, примерами которых являются нуклеопроте-иды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, глико-лиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекуляр-ные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень . Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются ос-иовной формой организации живой материи, элементарными еди-Вицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки». Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью. Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические)."Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточ-ностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень . Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных орга-нелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень . Этот уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность орга-низменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида. Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень . Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганиз-менную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен. В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью. Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами. На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

Вопросы для обсуждения

1. В чем заключается всеобщий методологический подход к пониманию сущности жизни? Когда он возник и в связи с чем?

2. Можно ли определить сущность жизни? Если да, то в чем заключается это определение и каковы его научные обоснования?

3. Возможна ли постановка вопроса о субстрате жизни?

4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого.

5. Какое значение для биологии имеет подразделение живого на уровни организации? Имеет ли такое подразделение практическое значение?

6. Какими общими чертами характеризуются разные уровни организации живого?

7. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

Литература

Верная Д. Возникновение жизни М.: Мир. 1969. 391 стр.

Опарин А. В. Материя, жизнь, интеллект. М.: Наука. 1977. 204 стр

Пехов А. П. Биология и научно-технический прогресс. М.: Знание. 1984. 64 стр.

Karcher S. J. Molecular Biology. Acad. Press. 1995. 273 pp.

Murphy M. P., O"Neill L. A. (Eds.) What is Life? The Next Fifty Years. Cambridge University Press. 1995. 203 pp.

Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней. Уровень организации живой материи — это функциональное место биологической структуры определенной степени сложности в общей иерархии живого.

Выделяют следующие уровни организации живой материи.

  • Молекулярный (молекулярно-генетический) уровень . На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения , такие как белки, нуклеиновые кислоты и др.
  • Субклеточный (надмолекулярный) уровень . На этом уровне живая материя организуется в органоиды : хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, аппарат Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
  • Клеточный уровень . На этом уровне живая материя представлена клетками. Клетка — элементарная структурная и функциональная единица живого.
  • Органно-тканевой уровень . На этом уровне живая материя организуется в ткани и органы. Ткань — совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган — часть многоклеточного организма, выполняющая определенную функцию или функции.
  • Организменный (онтогенетический) уровень . На этом уровне живая материя представлена организмами. Организм (особь, индивид) — неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
  • Популяционно-видовой уровень . На этом уровне живая материя организуется в популяции. Популяция — совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид — совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).
  • Биоценотический уровень . На этом уровне живая материя образует биоценозы. Биоценоз — совокупность популяций разных видов, обитающих на определенной территории.
  • Биогеоценотический уровень . На этом уровне живая материя формирует биогеоценозы. Биогеоценоз — совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
  • Биосферный уровень . На этом уровне живая материя формирует биосферу. Биосфера — оболочка Земли, преобразованная деятельностью живых организмов.

Необходимо отметить, что биогеоценотический и биосферный уровни организации живой материи выделяют не всегда, поскольку они представлены биокосными системами, включающими не только живое, но и неживое вещество. Также часто не выделяют субклеточный и органно-тканевой уровни, включая их в клеточный и организменный соответственно.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта