Главная » Как собирать » Производная суммы дробей со степенями и корнями. Производная дроби из двух функций Производная дроби с корнем в знаменателе

Производная суммы дробей со степенями и корнями. Производная дроби из двух функций Производная дроби с корнем в знаменателе

Формула производной дроби из двух функций. Доказательство двумя способами. Подробно разобранные примеры дифференцирования частного.

Содержание

Формула производной дроби

Пусть функции и определены в некоторой окрестности точки и имеют в точке производные. И пусть . Тогда их частное имеет в точке производную, которая определяется по формуле:
(1) .

Доказательство

Введем обозначения:
;
.
Здесь и являются функциями от переменных и . Но для простоты записи мы будем опускать обозначения их аргументов.

Далее замечаем, что
;
.
По условию функции и имеют производные в точке , которые являются следующими пределами:
;
.
Из существования производных следует, что функции и непрерывны в точке . Поэтому
;
.

Рассмотрим функцию y от переменной x , которая является дробью из функций и :
.
Рассмотрим приращение этой функции в точке :
.
Умножим на :

.
Отсюда
.

Теперь находим производную:

.

Итак,
.
Формула доказана.

Вместо переменной можно использовать любую другую переменную. Обозначим ее как x . Тогда если существуют производные и , причем , то производная дроби, составленной двух функций, определяется по формуле:
.
Или в более короткой записи
(1) .

Доказательство вторым способом

Примеры

Здесь мы рассмотрим простые примеры вычисления производной дроби, применяя формулу производной частного (1). Заметим, что в более сложных случаях, находить производную дроби проще с помощью логарифмической производной .

Пример 1

Найдите производную дроби
,
где , , , - постоянные.

Применим правило дифференцирования суммы функций :
.
Производная постоянной
.
Из таблицы производных находим:
.
Тогда
;
.

Заменим на и на :
.

Теперь находим производную дроби по формуле
.

.

Пример 2

Найти производную функции от переменной x
.

Применяем правила дифференцирования , как в предыдущем примере.
;
.

Применяем правило дифференцирования дроби
.


.

Основные правила дифференцирования. Сумма.

Выведем несколько правил вычисления производных, В этом пункте значения функций u и v и их производных в точке х 0 обозначаются для краткости так: u(х 0) = u, v(х 0) = v, u"(х 0) = u", v"(х 0)=v`. Если функции u и v дифференцируемы в точке х 0 , то их сумма дифференцируема в этой точке и

(u+v)" = u" + v" .

Коротко говорят: производная суммы равна сумме производных . 1) Для доказательства вычислим сначала приращение суммы функций в рассматриваемой точке: Δ(u+v) = u (х 0 +Δx)+ v(х 0 +Δx) – (u(х 0)+v(х 0)) = (u(х 0 +Δx)-u(х 0)) + (v(х 0 +Δx)-v(х 0)) = Δu + Δv 2)

3) Функции u и v дифференцируемы в точке х 0 , т. е. при Δх→0

при Δх→0 (см. правило 3, а) предельного перехода ), т. е. (u+v)" = u"+v’

Основные правила дифференцирования. Произведение.

Если функции и и v дифференцируемы в точке х 0 , то их произведение дифференцируемо в этой точке и

(uv)" = u"v+uv" .

1) Найдем сначала приращение произведения:

Δ(uv) = u(х 0 +Δx)v(х 0 +Δx)-u(х 0)v(х 0)=(u(х 0)+ Δu)(v(х 0)+ Δv)-u(х 0)v(х 0) =

U(х 0)v(х 0)+ Δuv(х 0)+u(х 0) Δv+ΔuΔv-u(х 0)v(х 0)= Δuv(х 0)+u(х 0) Δv+ΔuΔv

3) В силу дифференцируемости функций u и v в точке х 0 при Δx→0 имеем

т. е. (uv)" = u"v+uv", что и требовалось доказать. Следствие. Если функция u дифференцируема в х 0 , а С - постоянная, то функция Сu дифференцируема в этой точке и

(Сu)" = Сu" .

Коротко говорят: постоянный множитель можно выносить за знак производной . Для доказательства воспользуемся правилом 2 и известным из пункта о производной , фактом С" = 0:

(Сu)" = Сu" + С"u = Cu" + 0⋅u = Cu".

Пример.

Продифференцировать функцию .

Решение.

В данном примере . Применяем правило производной произведения:

Обращаемся к таблице производных основных элементарных функций и получаем ответ:

Основные правила дифференцирования. Частное

Если функции u и v дифференцируемы в точке x 0 и функция v не равна нулю в этой точке, то частное u/v также дифференцируемо в x 0 и

Выведем сначала формулу

1) найдем приращение функции 1/v:

2) Отсюда

3) При Δx→0 имеем Δv/Δx→v’ (в силу дифференцируемости v в точке x 0), Δv→0 (по доказанной лемме ). Поэтому

Теперь, пользуясь правилом нахождения производной произведения функций, находим производную частного:

Пример.

Выполнить дифференцирование функции .

Решение.

Исходная функция представляет собой отношение двух выражений sinx и 2x+1 . Применим правило дифференцирования дроби:

Не обойтись без правил дифференцирования суммы и вынесения произвольной постоянной за знак производной:

Производная сложной функции.

Если функция f имеет производную в точке х 0 , а функция g имеет производную в точке y 0 =f(x 0 )y то сложная функция h(х) = g(f(х)) также имеет производную в точке х 0 , причем

h’(x 0 ) = g’(f(x 0 )) f’(x 0 ) (1)

Для доказательства формулы (1) надо (как и раньше) при Δx≠0 рассмотреть дробь Δh/Δx и установить, что

при Δx→0. Введем обозначения:

Δy = f(x 0 +Δx)-f(x 0)= Δf

Тогда Δh = h(х 0 + Δх) - h(x 0) = g(f(x 0 +Δx)) - g(f(x 0)) = g(y 0 + Δy) - g(y 0) = Δg. Δy→0 при Δx→0, так как f дифференцируема в точке x 0 . Далее доказательство мы проведем только для таких функций f, у которых Δf≠0 в некоторой окрестности точки х 0 . Тогда

при Δx→0, так как Δf/Δx→f’(x 0) при Δx→0, а Δg/Δy→g’(y 0) при Δy→0, что выполнено при Δx→0.

Пример.НА ВСЯКИЙ СЛУЧАЙ!! ! ! !!! http://www.mathelp.spb.ru/book1/proizvodnaya.htm

Производная обратной функции.

Пусть функция дифференцируема и строго монотонна на . Пусть также в точке производная . Тогда в точке определена дифференцируемая функция , которую называют обратной к , а ее производная вычисляется по формуле .

Найти производную обратной тригонометрической функции y = arcsinx. Обратная функция x = siny и , по формуле для обратной функции .

Найдем функции y = arctgx. Обратная функция x = tgy,

Производная суммы, производная разности.

Для доказательства второго правила дифференцирования воспользуемся определением производной и свойством предела непрерывной функции.

Подобным образом можно доказать, что производная суммы (разности) n функций равна сумме (разности) n производных

Пример.

Найти производную функции

Решение.

Упростим вид исходной функции

Используем правило производной суммы (разности):

В предыдущем пункте мы доказали, что постоянный множитель можно выносить за знак производной, поэтому

Осталось воспользоваться таблицей производных:

Докажем правило дифференцирования частного двух функций (дроби) . Стоит оговориться, что g(x) не обращается в ноль ни при каких x из промежутка X .

По определению производной

Пример.

Выполнить дифференцирование функции .

Решение.

Исходная функция представляет собой отношение двух выражений sinx и 2x+1 . Применим правило дифференцирования дроби:

Не обойтись без правил дифференцирования суммы и вынесения произвольной постоянной за знак производной:

В заключении, давайте соберем все правила в одном примере.

Пример.

Найти производную функции , где a – положительное действительное число.

Решение.

А теперь по порядку.

Первое слагаемое .

Второе слагаемое

Третье слагаемое

Собираем все вместе:

4.Вопрос.Производные Основных элементарных функций.

Задание. Найти производную функции

Решение. Используем правила дифференцирования и таблицу производных:

Ответ.

5.Вопрос.Производная сложной функции примеры

Все примеры этого раздела опираются на таблицу производных и теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция u=φ(x) имеет в некоторой точке x0 производную u′x=φ′(x0), 2) функция y=f(u) имеет в соответствующей точке u0=φ(x0) производную y′u=f′(u). Тогда сложная функция y=f(φ(x)) в упомянутой точке также будет иметь производную, равную произведению производных функций f(u) и φ(x):

(f(φ(x)))′=f′u(φ(x0))⋅φ′(x0)

или, в более короткой записи: y′x=y′u⋅u′x.

В примерах этого раздела все функции имеют вид y=f(x) (т.е. рассматриваем лишь функции одной переменной x). Соответственно, во всех примерах производная y′ берётся по переменной x. Чтобы подчеркнуть то, что производная берётся по переменной x, часто вместо y′ пишут y′x.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции y=ecosx.

Решение

Нам нужно найти производную сложной функции y′. Так как y=ecosx, то y′=(ecosx)′. Чтобы найти производную (ecosx)′ используем формулу №6 из таблицы производных. Дабы использовать формулу №6 нужно учесть, что в нашем случае u=cosx. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения cosx вместо u:

y′=(ecosx)′=ecosx⋅(cosx)′(1.1)

Теперь нужно найти значение выражения (cosx)′. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя u=x в формулу №10, имеем: (cosx)′=−sinx⋅x′. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

y′=(ecosx)′=ecosx⋅(cosx)′=ecosx⋅(−sinx⋅x′)(1.2)

Так как x′=1, то продолжим равенство (1.2):

y′=(ecosx)′=ecosx⋅(cosx)′=ecosx⋅(−sinx⋅x′)=ecosx⋅(−sinx⋅1)=−sinx⋅ecosx(1.3)

Итак, из равенства (1.3) имеем: y′=−sinx⋅ecosx. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, – как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ : y′=−sinx⋅ecosx.

Пример №2

Найти производную функции y=9⋅arctg12(4⋅lnx).

Решение

Нам необходимо вычислить производную y′=(9⋅arctg12(4⋅lnx))′. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

y′=(9⋅arctg12(4⋅lnx))′=9⋅(arctg12(4⋅lnx))′(2.1)

Теперь обратимся к выражению (arctg12(4⋅lnx))′. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: ((arctg(4⋅lnx))12)′. Теперь видно, что необходимо использовать формулу №2, т.е. (uα)′=α⋅uα−1⋅u′. В эту формулу подставим u=arctg(4⋅lnx) и α=12:

Дополняя равенство (2.1) полученным результатом, имеем:

y′=(9⋅arctg12(4⋅lnx))′=9⋅(arctg12(4⋅lnx))′=108⋅(arctg(4⋅lnx))11⋅(arctg(4⋅lnx))′(2.2)

Примечание: показать\скрыть

Теперь нужно найти (arctg(4⋅lnx))′. Используем формулу №19 таблицы производных, подставив в неё u=4⋅lnx:

(arctg(4⋅lnx))′=11+(4⋅lnx)2⋅(4⋅lnx)′

Немного упростим полученное выражение, учитывая (4⋅lnx)2=42⋅(lnx)2=16⋅ln2x.

(arctg(4⋅lnx))′=11+(4⋅lnx)2⋅(4⋅lnx)′=11+16⋅ln2x⋅(4⋅lnx)′

Равенство (2.2) теперь станет таким:

y′=(9⋅arctg12(4⋅lnx))′=9⋅(arctg12(4⋅lnx))′==108⋅(arctg(4⋅lnx))11⋅(arctg(4⋅lnx))′=108⋅(arctg(4⋅lnx))11⋅11+16⋅ln2x⋅(4⋅lnx)′(2.3)

Осталось найти (4⋅lnx)′. Вынесем константу (т.е. 4) за знак производной: (4⋅lnx)′=4⋅(lnx)′. Для того, чтобы найти (lnx)′ используем формулу №8, подставив в нее u=x: (lnx)′=1x⋅x′. Так как x′=1, то (lnx)′=1x⋅x′=1x⋅1=1x. Подставив полученный результат в формулу (2.3), получим:

y′=(9⋅arctg12(4⋅lnx))′=9⋅(arctg12(4⋅lnx))′==108⋅(arctg(4⋅lnx))11⋅(arctg(4⋅lnx))′=108⋅(arctg(4⋅lnx))11⋅11+16⋅ln2x⋅(4⋅lnx)′==108⋅(arctg(4⋅lnx))11⋅11+16⋅ln2x⋅4⋅1x=432⋅arctg11(4⋅lnx)x⋅(1+16⋅ln2x).

Напомню, что производная сложной функции чаще всего находится в одну строку, – как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ : y′=432⋅arctg11(4⋅lnx)x⋅(1+16⋅ln2x).

Пример №3

Найти y′ функции y=sin3(5⋅9x)−−−−−−−−−√7.

Решение

Для начала немного преобразим функцию y, выразив радикал (корень) в виде степени: y=sin3(5⋅9x)−−−−−−−−−√7=(sin(5⋅9x))37. Теперь приступим к нахождению производной. Так как y=(sin(5⋅9x))37, то:

y′=((sin(5⋅9x))37)′(3.1)

Используем формулу №2 из таблицы производных, подставив в неё u=sin(5⋅9x) и α=37:

((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))37−1(sin(5⋅9x))′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′

Продолжим равенство (3.1), используя полученный результат:

y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′(3.2)

Теперь нужно найти (sin(5⋅9x))′. Используем для этого формулу №9 из таблицы производных, подставив в неё u=5⋅9x:

(sin(5⋅9x))′=cos(5⋅9x)⋅(5⋅9x)′

Дополнив равенство (3.2) полученным результатом, имеем:

y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′==37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅(5⋅9x)′(3.3)

Осталось найти (5⋅9x)′. Для начала вынесем константу (число 5) за знак производной, т.е. (5⋅9x)′=5⋅(9x)′. Для нахождения производной (9x)′ применим формулу №5 таблицы производных, подставив в неё a=9 и u=x: (9x)′=9x⋅ln9⋅x′. Так как x′=1, то (9x)′=9x⋅ln9⋅x′=9x⋅ln9. Теперь можно продолжить равенство (3.3):

y′=((sin(5⋅9x))37)′=37⋅(sin(5⋅9x))−47(sin(5⋅9x))′==37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅(5⋅9x)′=37⋅(sin(5⋅9x))−47cos(5⋅9x)⋅5⋅9x⋅ln9==15⋅ln97⋅(sin(5⋅9x))−47⋅cos(5⋅9x)⋅9x.

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав (sin(5⋅9x))−47 в виде 1(sin(5⋅9x))47=1sin4(5⋅9x)−−−−−−−−−√7. Тогда производная будет записана в такой форме:

y′=15⋅ln97⋅(sin(5⋅9x))−47⋅cos(5⋅9x)⋅9x=15⋅ln97⋅cos(5⋅9x)⋅9xsin4(5⋅9x)−−−−−−−−−√7.

Ответ : y′=15⋅ln97⋅cos(5⋅9x)⋅9xsin4(5⋅9x)−−−−−−−−−√7.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

Решение

В формуле №2 таблицы производных записана производная функции uα. Подставляя α=−1 в формулу №2, получим:

(u−1)′=−1⋅u−1−1⋅u′=−u−2⋅u′(4.1)

Так как u−1=1u и u−2=1u2, то равенство (4.1) можно переписать так: (1u)′=−1u2⋅u′. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё α=12:

(u12)′=12⋅u12−1⋅u′=12u−12⋅u′(4.2)

Так как u12=u−−√ и u−12=1u12=1u−−√, то равенство (4.2) можно переписать в таком виде:

(u−−√)′=12⋅1u−−√⋅u′=12u−−√⋅u′

Полученное равенство (u−−√)′=12u−−√⋅u′ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения α.

Пример №5

Найти y′, если y=arcsin2x.

Решение

Нахождение производной сложной функции в данном примере запишем без подробных пояснений, которые были даны в предыдущих задачах.

Ответ : y′=2xln21−22x−−−−−−√.

Пример №6

Найти y′, если y=7⋅lnsin3x.

Решение

Как и в предыдущем примере, нахождение производной сложной функции укажем без подробностей. Желательно записать производную самостоятельно, лишь сверяясь с указанным ниже решением.

Ответ : y′=21⋅ctgx.

Пример №7

Найти y′, если y=9tg4(log5(2⋅cosx)).

Решение

6 Вопрос. Производная обратной функции примеры.

Производная обратной функции

Формула

Известно свойство степеней, что

Используя производную степенной функции:

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта