Главная » Маринование грибов » Сущность общей теории систем. Теория систем: Закономерности во взаимоотношениях между объектами

Сущность общей теории систем. Теория систем: Закономерности во взаимоотношениях между объектами

  • 1986 Энтони Уилдэн разрабатывает теорию контекста
  • 1988 Учреждение Международного общества по наук о системах (ISSS)
  • 1990 Начало исследования сложных адаптивных систем (в частности, Мюррей Гелл-Манн)
  • Предыстория

    Как и всякая научная концепция, общая теория систем базируется на результатах предыдущих исследований. Исторически «зачатки исследования систем и структур в общем виде возникли достаточно давно. С конца XIX века эти исследования приняли систематический характер (А.Эспинас, Н. А. Белов, А. А. Богданов, Т.Котарбиньский, М.Петрович и др.)» . Так, Л. фон Берталанфи указывал на глубинную связь теории систем с философией Г. В. Лейбница и Николая Кузанского : «Конечно, как и любое другое научное понятие, понятие системы имеет свою долгую историю… В этой связи необходимо упомянуть „натуральную философию“ Лейбница, Николая Кузанского с его совпадением противоположностей, мистическую медицину Парацельса, предложенную Вико и Ибн-Халдуном версию истории последовательности культурных сущностей, или „систем“, диалектику Маркса и Гегеля…» . Одним из непосредственных предшественников Берталанфи является «Тектология » А. А. Богданова , не утратившая теоретической ценности и значимости и в настоящее время. Предпринятая А. А. Богдановым попытка найти и обобщить общеорганизационные законы, проявления которых прослеживаются на неорганическом, органическом, психическом, социальном, культурном и пр. уровнях, привела его к весьма значительным методологическим обобщениям, открывшим путь к революционным открытиям в области философии, медицины, экономики и социологии. Истоки идей самого Богданова также имеют развитую предысторию, уходящую в труды Г. Спенсера , К. Маркса и других ученых. Идеи Л. фон Берталанфи, как правило, являются дополнительными по отношению к идеям А. А. Богданова (например, если Богданов описывает «дегрессию» как эффект, Берталанфи исследует «механизацию» как процесс).

    Непосредственные предшественники и параллельные проекты

    Малоизвестным и поныне остаётся факт, что уже в самом начале XX века русский физиолог Владимир Бехтерев , совершенно независимо от Александра Богданова, обосновал 23 универсальных закона и распространил их на сферы психических и социальных процессов . Впоследствии ученик академика Павлова Пётр Анохин строит «теорию функциональных систем», близкую по уровню обобщённости к теории Берталанфи . Нередко в роли одного из основателей теории систем фигурирует основатель холизма Ян Христиан Смэтс . Кроме того, во многих исследованиях по праксеологии и научной организации труда нередко можно встретить указания на Тадеуша Котарбинского , Алексея Гастева и Платона Керженцева , причисляемых к основоположникам системно-организационного мышления.

    Деятельность Л. фон Берталанфи и International Society for the General Systems Sciences

    Общая теория систем была предложена Л. фон Берталанфи в 1930-е годы . Идея наличия общих закономерностей при взаимодействии большого, но не бесконечного числа физических, биологических и социальных объектов была впервые высказана Берталанфи в 1937 году на семинаре по философии в Чикагском университете . Однако первые его публикации на эту тему появились только после Второй мировой войны . Основной идеей Общей теории систем, предложенной Берталанфи, является признание изоморфизма законов, управляющих функционированием системных объектов. Фон Берталанфи также ввёл понятие и исследовал «открытые системы » - системы, постоянно обменивающиеся веществом и энергией с внешней средой.

    Общая теория систем и Вторая мировая война

    Интеграция этих научно-технических направлений в основной состав общей теории систем обогатила и разнообразила её содержание.

    Послевоенный этап развития теории систем

    В 50-70-е годы XX века был предложен ряд новых подходов к построению общей теории систем учеными, принадлежащими к следующим областям научного знания:

    Синергетика в контексте теории систем

    Нетривиальные подходы к изучению сложных системных образований выдвигает такое направление современной науки, как синергетика , предлагающая современную интерпретацию таких феноменов, как самоорганизация , автоколебания и коэволюция . Такие учёные, как Илья Пригожин и Герман Хакен , обращаются в своих исследования к динамике неравновесных систем , диссипативных структур и производства энтропии в открытых системах. Известный советский и российский философ Вадим Садовский комментирует ситуацию следующим образом:

    Общесистемные принципы и законы

    Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова, так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем. Среди таковых традиционно принято выделять:

    • «гипотеза семиотической непрерывности». «Онтологическая ценность системных исследований, как можно думать, определяется гипотезой, которую можно условно назвать „гипотезой семиотической непрерывности“. Согласно этой гипотезе, система есть образ её среды. Это следует понимать в том смысле, что система как элемент универсума отражает некоторые существенные свойства последнего»: :93 . «Семиотическая» непрерывность системы и среды распространяется и за пределы структурных особенностей систем. «Изменение системы есть одновременно и изменение её окружения, причём источники изменения могут корениться как в изменениях самой системы, так и в изменениях окружения. Тем самым исследование системы позволило бы вскрыть кардинальные диахронические трансформации окружения» :94 ;
    • «принцип обратной связи». Положение, согласно которому устойчивость в сложных динамических формах достигается за счёт замыкания петель обратной связи: «если действие между частями динамической системы имеет этот круговой характер, то мы говорим, что в ней имеется обратная связь» :82 . Принцип обратной афферентации, сформулированный академиком Анохиным П. К., являющийся в свою очередь конкретизацией принципа обратной связи, фиксирует что регулирование осуществляется «на основе непрерывной обратной информации о приспособительном результате» ;
    • «принцип организационной непрерывности» (А. А. Богданов) утверждает, что любая возможная система обнаруживает бесконечные «различия» на её внутренних границах, и, как следствие, любая возможная система принципиально разомкнута относительно своего внутреннего состава, и тем самым она связана в тех или иных цепях опосредования со всем универсумом - со своей средой, со средой среды и т. д. Данное следствие эксплицирует принципиальную невозможность «порочных кругов», понятых в онтологической модальности. «Мировая ингрессия в современной науке выражается как принцип непрерывности . Он определяется различно; тектологическая же его формулировка проста и очевидна: между всякими двумя комплексами вселенной, при достаточном исследовании устанавливаются промежуточные звенья, вводящие их в одну цепь ингрессии » :122 ;
    • «принцип совместимости» (М. И. Сетров), фиксирует, что «условием взаимодействия между объектами является наличие у них относительного свойства совместимости» , то есть относительной качественной и организационной однородности;
    • «принцип взаимно-дополнительных соотношений» (сформулировал А. А. Богданов), дополняет закон расхождения, фиксируя, что «системное расхождение заключает в себе тенденцию развития, направленную к дополнительным связям » :198 . При этом смысл дополнительных соотношений целиком «сводится к обменной связи : в ней устойчивость целого, системы, повышается тем, что одна часть усваивает то, что дезассимилируется другой, и обратно. Эту формулировку можно обобщить и на все и всякие дополнительные соотношения» :196 . Дополнительные соотношения являются характерной иллюстрацией конституирующей роли замкнутых контуров обратных связей в определении целостности системы. Необходимой «основой всякой устойчивой системной дифференциации является развитие взаимно-дополнительных связей между её элементами» . Данный принцип применим по отношению ко всем деривативам сложно организованных систем;
    • «эакон необходимого разнообразия» (У. Р. Эшби). Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие» :294 . Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);
    • «закон иерархических компенсаций» (Е. А. Седов) фиксирует, что «действительный рост разнообразия на высшем уровне обеспечивается его эффективным ограничением на предыдущих уровнях» . «Этот закон, предложенный российским кибернетиком и философом Е.Седовым, развивает и уточняет известный кибернетический закон Эшби о необходимом разнообразии» . Из данного положения следует очевидный вывод: поскольку в реальных системах (в собственном смысле этого слова) первичный материал однороден, следовательно, сложность и разнообразие воздействий регуляторов достигается лишь относительным повышением уровня его организации. Ещё А. А. Богданов неоднократно указывал, что системные центры в реальных системах оказываются более организованными, чем периферические элементы: закон Седова лишь фиксирует, что уровень организации системного центра с необходимость должен быть выше по отношению к периферическим элементам. Одной из тенденций развития систем является тенденция прямого понижения уровня организации периферических элементов, приводящая к непосредственному ограничению их разнообразия: «только при условии ограничения разнообразия нижележащего уровня можно формировать разнообразные функции и структуры находящихся на более высоких уровнях» , т.о. «рост разнообразия на нижнем уровне [иерархии] разрушает верхний уровень организации» . В структурном смысле закон означает, что «отсутствие ограничений… приводит к деструктурализации системы как целого» , что приводит к общей диверсификации системы в контексте объемлющей её среды;
    • «принцип моноцентризма» (А. А. Богданов), фиксирует, что устойчивая система «характеризуется одним центром, а если она сложная, цепная, то у неё есть один высший, общий центр» :273 . Полицентрические системы характеризуются дисфункцией процессов координации, дезорганизованностью, неустойчивостью и т. д. Подобного рода эффекты возникают при наложении одних координационных процессов (пульсов) на другие, чем обусловлена утрата целостности;
    • «закон минимума» (А. А. Богданов), обобщающий принципы Либиха и Митчерлиха, фиксирует: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент » :146 . «Во всех тех случаях, когда есть хоть какие-нибудь реальные различия в устойчивости разных элементов системы по отношению к внешним воздействиям, общая устойчивость системы определяется наименьшей её частичной устойчивостью» . Именуемое также «законом наименьших относительных сопротивлений», данное положение является фиксацией проявления принципа лимитирующего фактора: темпы восстановления устойчивости комплекса после нарушающего её воздействия определяются наименьшими частичными, а так как процессы локализуются в конкретных элементах, устойчивость систем и комплексов определены устойчивостью слабейшего её звена (элемента);
    • «принцип внешнего дополнения» (выведен С. Т. Биром) «сводится к тому, что в силу теоремы неполноты Гёделя любой язык управления в конечном счёте недостаточен для выполнения перед ним задач, но этот недостаток может быть устранён благодаря включению „чёрного ящика“ в цепь управления» . Непрерывность контуров координации достигается лишь посредством специфического устройства гиперструктуры, древовидность которой отражает восходящую линию суммации воздействий. Каждый координатор встроен в гиперструктуру так, что передаёт по восходящей лишь частичные воздействия от координируемых элементов (например, сенсоров). Восходящие воздействия к системному центру подвергаются своеобразному «обобщению» при суммации их в сводящих узлах ветвей гиперструктуры. Нисходящие по ветвям гиперструктуры координационные воздействия (например, к эффекторам) асимметрично восходящим подвергаются «разобобщению» локальными координаторами: дополняются воздействиями, поступающими по обратным связям от локальных процессов. Иными словами, нисходящие от системного центра координационные импульсы непрерывно специфицируются в зависимости от характера локальных процессов за счёт обратных связей от этих процессов.
    • «теорема о рекурсивных структурах» (С. Т. Бир) предполагает, что в случае, «если жизнеспособная система содержит в себе жизнеспособную систему, тогда их организационные структуры должны быть рекурсивны» ;
    • «закон расхождения» (Г.Спенсер), также известный как принцип цепной реакции: активность двух тождественных систем имеет тенденцию к прогрессирующему накоплению различий. При этом «расхождение исходных форм идёт „лавинообразно“, вроде того как растут величины в геометрических прогрессиях, - вообще, по типу ряда, прогрессивно восходящего» :186 . Закон имеет и весьма продолжительную историю: «как говорит Г. Спенсер, „различные части однородной агрегации неизбежно подвержены действиям разнородных сил, разнородных по качеству или по напряжённости, вследствие чего и изменяются различно“. Этот спенсеровский принцип неизбежно возникающей разнородности внутри любых систем… имеет первостепенное значение для тектологии» . Ключевая ценность данного закона заключается в понимании характера накопления «различий», резко непропорционального периодам действия экзогенных факторов среды.
    • «закон опыта» (У. Р. Эшби) охватывает действие особого эффекта, частным выражением которого является то, что «информация, связанная с изменением параметра, имеет тенденцию разрушать и замещать информацию о начальном состоянии системы» :198 . Общесистемная формулировка закона, не связывающая его действие с понятием информации, утверждает, что постоянное «единообразное изменение входов некоторого множества преобразователей имеет тенденцию уменьшать разнообразие этого множества » :196 - в виде множества преобразователей может выступать как реальное множество элементов, где воздействия на вход синхронизированы, так и один элемент, воздействия на который рассредоточены в диахроническом горизонте (если линия его поведения обнаруживает тенденцию возврата к исходному состоянию, и т.с. он описывается как множество). При этом вторичное, дополнительное «изменение значения параметра делает возможным уменьшение разнообразия до нового, более низкого уровня » :196 ; более того: сокращение разнообразия при каждом изменении обнаруживает прямую зависимость от длины цепи изменений значений входного параметра. Данный эффект в рассмотрении по контрасту позволяет более полным образом осмыслить закон расхождения А. А. Богданова - а именно положение, согласно которому «расхождение исходных форм идёт „лавинообразно“» :197 , то есть в прямой прогрессирующей тенденции: поскольку в случае единообразных воздействий на множество элементов (то есть «преобразователей») не происходит увеличения разнообразия проявляемых ими состояний (и оно сокращается при каждой смене входного параметра, то есть силы воздействия, качественных сторон, интенсивности и т. д.), то к первоначальным различиям уже не «присоединяются несходные изменения» :186 . В этом контексте становится понятным, почему процессы, протекающие в агрегате однородных единиц имеют силу к сокращению разнообразия состояний последних: элементы подобного агрегата «находятся в непрерывной связи и взаимодействии, в постоянной конъюгации, в обменном слиянии активностей. Именно постольку же и происходит, очевидно выравнивание развивающихся различий между частями комплекса» :187 : однородность и однотипность взаимодействий единиц поглощают какие-либо внешние возмущающие воздействия и распределяют неравномерность по площади всего агрегата.
    • «принцип прогрессирующей сегрегации» (Л. фон Берталанфи ) означает прогрессирующий характер потери взаимодействий между элементами в ходе дифференциации, однако к оригинальной версии принципа следует добавить тщательно замалчиваемый Л. Фон Берталанфи момент: в ходе дифференциации происходит становление опосредованных системным центром каналов взаимодействий между элементами. Понятно, что происходит потеря лишь непосредственных взаимодействий между элементами, что существенным образом трансформирует принцип. Данный эффект оказывается потерей «совместимости» . Является немаловажным то обстоятельство, что сам процесс дифференциации в принципе нереализуем вне централистически регулируемых процессов (в противном случае координация развивающихся частей оказалась бы невозможной): «расхождение частей» с необходимость не может быть простой потерей взаимодействий, и комплекс не может превращаться в некое множество «независимых каузальных цепей» , где каждая такая цепь развивается самостоятельно вне зависимости от остальных. Непосредственные взаимодействия между элементами в ходе дифференциации действительно ослабевают, однако не иначе как по причине их опосредования центром.
    • «принцип прогрессирующей механизации» (Л. фон Берталанфи) является важнейшим концептуальным моментом. В развитии систем «части становятся фиксированными по отношению к определённым механизмам» . Первичные регуляции элементов в исходном агрегате «обусловлены динамическим взаимодействием внутри единой открытой системы, которая восстанавливает свое подвижное равновесие. На них накладываются в результате прогрессирующей механизации вторичные механизмы регуляции, управляемые фиксированными структурами преимущественно типа обратной связи» . Существо этих фиксированных структур было обстоятельно рассмотрено Богдановым А. А. и наименовано «дегрессией»: в ходе развития систем формируются особые «дегрессивные комплексы», фиксирующие процессы в связанных с ними элементах (то есть ограничивающие разнообразие изменчивости, состояний и процессов). Таким образом, если закон Седова фиксирует ограничение разнообразия элементов нижних функционально-иерархических уровней системы, то принцип прогрессирующей механизации обозначает пути ограничения этого разнообразия - образование устойчивых дегрессивных комплексов: «„скелет“, связывая пластичную часть системы, стремится удержать её в рамках своей формы, а тем самым задержать её рост, ограничить её развитие» , снижение интенсивности обменных процессов, относительная дегенерация локальных системных центров и т. д. Следует заметить, что функции дегрессивных комплексов не исчерпываются механизацией (как ограничением разнообразия собственных процессов систем и комплексов), но также распространяются на ограничение разнообразия внешних процессов.
    • «принцип актуализации функций» (впервые сформулировал М. И. Сетров) также фиксирует весьма нетривиальное положение. «Согласно этому принципу объект выступает как организованный лишь в том случае, если свойства его частей (элементов) проявляются как функции сохранения и развития этого объекта» , или: «подход к организации как непрерывному процессу становления функций её элементов может быть назван принципом актуализации функций» .Таким образом, принцип актуализации функций фиксирует, что тенденция развития систем есть тенденция к поступательной функционализации их элементов; само существование систем и обусловлено непрерывным становлением функций их элементов.

    Общая теория систем и другие науки о системах

    Кибернетика Винера

    Тектология Богданова

    А.А. Богданов «Всеобщая организационная наука (тектология)», т.1 - 1911 г., т.3 - 925 г.

    Тектология должна изучать общие закономерности организации для всех уровней. Все явления - непрерывные процессы организации и дезорганизации.

    Богданову принадлежит ценнейшее открытие, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

    Особенностью тектологии Богданова является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации, роли открытых систем. Он подчеркивал роли моделирования и математики как потенциальных методов решения задач тектологии.

    Н. Винер «Кибернетика», 1948 г.

    Наука об управлении и связи в животных и машинах.

    "Кибернетика и общество‘. Н.Винер анализирует с позиций кибернетики процессы, происходящие в обществе.

    Первый международный конгресс по кибернетике - Париж, 1966 г.

    С кибернетикой Винера связаны такие продвижения, как типизация моделей систем, выявление особого значения обратных связей в системе, подчеркивание принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и, в особенности идеи математического эксперимента с помощью ЭВМ.

    Кибернетика - это наука об оптимальном управлении сложными динамическими системами (А.И. Берг)

    Кибернетика - это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию (А.Н. Колмогоров)

    Параллельно, и как бы независимо, от кибернетики прокладывался еще один подход к науке о системах - общая теория систем.

    Идея построения теории, приложимой к системам любой природы, была выдвинута австрийским биологом Л. Берталанфи.

    Л. Берталанфи ввел понятие открытой системы и теории, приложимой к системам любой природы. Термин «общая теория систем» употреблял устно в 30-х годах, после войны – в публикациях.

    Один из путей реализации своей идеи Берталанфи видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности.

    Одним из важнейших достижений Берталанфи считается введение им понятия открытой системы.

    В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешнее воздействие, Берталанфи подчеркивает особое значение обмена веществом, энергией и информацией с открытой средой.



    Отправной точкой общей теории систем как самостоятельной науки можно считать 1954г., когда было организовано общество содействия развитию общей теории систем.

    Свой первый ежегодник "Общие системы" общество опубликовало в 1956г.

    В статье, помещенной в первом томе ежегодника, Берталанфи указал причины появления новой отрасли знания:

    · Существует общая тенденция к достижению единства различных естественных и общественных наук. Такое единство может быть предметом изучения ОТС.

    · Эта теория может быть важным средством формирования строгих теорий в науках о живой природе и обществе.

    Развивая объединяющие принципы, которые имеют место во всех областях знания, эта теория приблизит нас к цели - достижению единства науки.
    Все это может привести к достижению необходимого единства научного образования.

    Ампер - физик, Трентовский - философ, Федоров - геолог, Богданов - медик, Винер - математик, Берталанфи - биолог.

    Это еще раз указывает на положение общей теории систем - в центре человеческих знаний. По степени общности Дж. ван Гиг ставит общую теорию систем на один уровень с математикой и философией.

    Близко к ОТС на дереве научного знания расположены другие науки, занимающиеся изучением систем: кибернетика, телеология, теория информации, инженерная теория связи, теория ЭВМ, системотехника, исследование операций и сопряженные с ними научные и инженерные направления.

    2. Определение понятия «система», предмет теории систем.

    Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.

    Все определения можно разделить на три группы.

    Три группы определений:

    — комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя;

    — инструмент, способ исследования процессов и явлений;

    — компромисс между двумя первыми, искусственно создаваемый комплекс элементов для решения сложной задачи.

    — Первая группа

    Задача наблюдателя - выделить систему из окружающей среды, выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь система - объект исследования и управления.

    — Вторая группа

    Наблюдатель, имея некоторую цель, синтезирует систему, как абстрактное отображение реальных объектов. Система - совокупность взаимосвязанных переменных, представляющих характеристики объектов данной системы (совпадает с понятием модели).

    — Третья группа

    Наблюдатель не только выделяет систему из среды, но и синтезирует ее. Система - реальный объект и одновременно абстрактное отображение связей действительности (системотехника).

    Значительные проблемы, стоящие перед нами, не могут быть решены на том же уровне мышления, на котором мы их создали.

    Альберт Эйнштейн

    Основные положения теории систем

    Возникновение теории систем было обусловлено необходимостью обобщения и систематизации знаний о системах, которые сформировались в процессе становления и исторического развития неких «системных» идей. Суть идей этих теорий заключалась в том, что каждый объект реального мира рассматривался в качестве системы , т.е. представлял собой совокупность частей, составлявших единое целое. Сохранение целостности любого объекта обеспечивалось за счет связей и отношений между его частями.

    Развитие системного мировоззрения происходило на протяжении длительного исторического периода, в рамках которого были обоснованы следующие важные постулаты:

    • 1) понятие «система» отражает внутренний порядок мира, обладающего собственной организацией и структурой, в отличие от хаоса (отсутствие организованного порядка);
    • 2) целое больше суммы его частей;
    • 3) познать часть можно только при одновременном рассмотрении целого;
    • 4) части целого находятся в постоянной взаимосвязи и взаимной зависимости.

    Процесс интеграции системных взглядов, большой объем эмпирических знаний о системах в разных научных областях, и прежде всего в философии, биологии, физике, химии, экономике, социологии, кибернетике, привел в XX в. к необходимости теоретического обобщения и обоснования «системных» идей в самостоятельную теорию систем.

    Одним из первых, кто предпринял попытку обосновать системную теорию организации систем, был русский ученый А. А. Богданов , который в период с 1912 по 1928 г. разработал «всеобщую организационную науку». В основе труда Богданова «Тектология. Всеобщая организационная наука» лежит следующая идея: существование закономерностей организации частей в единое целое (систему) путем структурных связей, характер которых может способствовать организации (или дезорганизации) внутри системы. В гл. 4 мы более подробно остановимся на основных положениях всеобщей организационной науки, которую А. А. Богданов также называл тектологией. Эти положения в настоящее время приобретают большую актуальность в связи с необходимостью динамичного развития социально- экономических систем.

    Дальнейшее развитие системная теория получила в трудах австрийского биолога Л. фон Берталанфи. В 1930-е гг. он обосновал ряд системных положений, которые объединили имевшиеся на тот момент знания в области исследования систем разной природы. Эти положения легли в основу обобщенной концепции общей теории систем (ОТС), выводы из которой позволили разработать математический аппарат для описания систем разных типов. Свою задачу ученый видел в том, чтобы исследовать общность понятий, законы существования и методы исследования систем па основе принципа изоморфизма (подобия ) в качестве универсальных научных категорий и фундаментальной основы развития научных знаний о системах на междисциплинарном уровне. В рамках этой теории была сделана попытка количественно определить и исследовать такие фундаментальные понятия, как «целесообразность» и «целостность».

    Важным результатом работы Л. фон Берталанфи стало обоснование концепции сложной открытой системы , в рамках которой ее жизнедеятельность возможна лишь при взаимодействии с окружающей средой на основе обмена ресурсами (материальными, энергетическими и информационными), необходимыми для ее существования. Следует отметить, что термин «общая теория систем» в научном сообществе подвергался серьезной критике в связи с высоким уровнем его абстракции. Термин «общая» имел скорее дедуктивный характер, так как позволял обобщить теоретические выводы о закономерностях организации и функционирования систем разной природы, являлся научно-методологической концепцией исследования объектов в качестве систем и методов их описания на языке формальной логики.

    Дальнейшее развитие ОТС получила в работах американского математика М. Месаровича , который предложил математический аппарат описания систем ! , позволяющий моделировать объекты-системы, сложность которых определяется числом составных элементов и видом их формализованного описания. Он обосновал возможность математического представления системы в виде функций , аргументами которых являются свойства его элементов и характеристики структуры.

    Математическое обоснование закономерностей соединения элементов в систему и описание их связей представлялось им с помощью математических средств, т.е. с помощью дифференциальных, интегральных, алгебраических уравнений или в виде графов, матриц и графиков. Большое значение в своей математической теории систем М. Месарович придавал исследованию системы управления, так как именно структура управления отражает характер функциональных связей и отношений между элементами, которые во многом определяют ее состояние и поведение в целом. На основе применения математических средств был разработан струк-

    турно-функциональный метод (подход) описания системы управления в качестве единой системы переработки информации (возникновения, хранения, преобразования и передачи). Система управления рассматривалась как поэтапная система принятия решений, основанная на формализованных процедурах. Использование структурно-функционального подхода исследования систем позволило М. Месаровичу создать теорию иерархических многоуровневых систем*, которая стала прикладным направлением в дальнейшем развитии теории управления системами.

    В 1960-1970 гг. системные идеи стали проникать в разные области научных знаний, что привело к созданию предметных системных теорий, т.е. теорий, которые исследовали предметные аспекты объекта на основе системных принципов: биологических, социальных, экономических систем и т.д. Постепенно обобщение и систематизация знаний о системах разной природы привели к формированию нового научно-методологического направления исследования явлений и процессов, которое в настоящее время называется теорией систем.

    Так, в 1976 г. в Москве был создан Институт системных исследований АН СССР. Цель его создания состояла в развитии методологии системных исследований и системного анализа. Большой вклад в это дело внести многие советские ученые: В. Г. Афанасьев , И. В. Блауберг, Д. М. Гвишиани, Д. С. Конторов, Я. Я. Моисеев, В. Я. Садовский, А. И. Уемов, Э. Г. Юдин и многие другие.

    Советский философ В. Я. Садовский отмечал: «Процесс интеграции приводит к выводу, что многие проблемы получат правильное научное освещение только в том случае, если они будут опираться одновременно на общественные, естественные и технические науки. Это требует применения результатов исследования разных специалистов - философов, социологов, психологов, экономистов, инженеров. В связи с усилением процессов интеграции научных знаний возникла потребность в развитии системных исследований» .

    Философ А. И. Уёмов в 1978 г. опубликовал монографию «Системный подход и общая теория систем», в которой предложил свой вариант параметрической теории систем. Методологической основой этой теории стали положения материалистической диалектики, в частности метод восхождения от абстрактного к конкретному. В данной теории автор определил ряд системных понятий, закономерностей систем и их параметрических свойств. В частности, понятие «система» он рассматривал в качестве обобщенной философской категории, отражающей «...всеобщие стороны, отношения и связи между реальными объектами в определенной исторической и логической последовательности » .

    И. В. Блауберг и Э. Г. Юдин считали, что «метод целостного подхода имеет важное значение в становлении более высоких ступеней мышления, а именно перехода от аналитической ступени к синтетической, которая направляет познавательный процесс к более всестороннему и глубокому познанию явлений» . Развитие метода целостного подхода при исследовании систем разной природы привело к разработке универсальных теоретических положений, которые были объединены в единую теоретико-методологическую базу исследования в качестве междисциплинарной науки, названной теорией систем.

    Дальнейшее развитие теории систем пошло по трем основным научным направлениям: системономия, системология и системотехника.

    Системономия (от греч. nomos - закон) - учение о системах как проявлении законов Природы. Это направление является философским обоснованием системного мировоззрения, объединяющего системный идеал, системный метод и системную парадигму.

    Обратите внимание!

    Главный тезис теории систем гласит: «Любой объект исследования есть объект- система и любой объект-система принадлежит хотя бы одной системе объектов одного и того же рода». Это положение является основополагающим в формировании системных взглядов и объективного восприятия мира Человека и мира Природы в качестве взаимосвязанных объектов (явлений, процессов), касающихся систем разной природы.

    В конце 1950-х - начале 1960-х гг. появилось новое методологическое направление исследования сложных и больших систем - системный анализ. В рамках системного анализа решаются сложные проблемы проектирования систем с заданными свойствами, осуществляется поиск альтернативных решений и выбор оптимального для конкретного случая.

    В 1968 г. советский ученый В. Т. Куликов предложил термин «системология» (от греч. logos - слово, учение) для обозначения науки о системах. В рамках этой науки объединяются все варианты существующих теорий о системах, включая общую теорию систем, специализированные теории систем и системный анализ.

    Системология как междисциплинарная наука на качественно новом уровне интегрирует теоретические знания о понятиях, законах и закономерностях существования, организации, функционирования и управления системами различной природы с целью создания целостной системной методологии исследования систем. В системологии обобщаются не только научные знания о системах, их возникновении, развитии и преобразовании, но и изучаются проблемы их саморазвития на основе теории синергетики.

    Исследования в области кибернетики (II. Винер), развитие технических и компьютерных систем, которые инициировали формирование новой системы «человек - техника», потребовали развития прикладных системных теорий, таких как исследование операций, теория автоматов, теория алгоритмов и т.п. Так появилось новое направление в развитии системного подхода под названием «системотехника». Следует отметить, что понятие «система» в сочетании с понятием «техника» (от греч. techne - искусство применения, мастерство) рассматривалось в качестве комплекса общих и частных методик практического применения системных принципов и методов описания состояния и поведения систем математическим языком.

    Впервые в России это термин был введен в 1960-е гг. советским ученым, профессором кафедры кибернетики МИФИ Г. Н. Поваровым. Тогда это считалось инженерной дисциплиной, изучающей проектирование, создание, испытание и эксплуатацию сложных систем технического и социально-технического назначения. За рубежом этот термин возник в период между двумя мировыми войнами XX в. как сочетание двух понятий инженерного искусства (от англ, system design - разработка, проектирование технических систем) и инжиниринга (англ, systems engineering - конструирование, создание систем, техника разработки систем, системный метод разработки), которые объединили разные направления науки и техники о системах.

    Системотехника - научно-прикладное направление, изучающее общесистемные свойства системотехнических комплексов (СТК).

    Системные идеи все больше проникали в частные теории систем разной природы, поэтому основные положения теории систем становятся фундаментальной основой современных системных исследований, системного мировоззрения.

    Если системология в основном использует качественные представления о системах на основе философских понятий, то системотехника оперирует количественными представлениями и опирается на математический аппарат их моделирования. В первом случае - это теоретико-методологические основы исследования систем, во втором - научно-практические основы проектирования и создание систем с заданными параметрами.

    Постоянное развитие теории систем позволило объединить предметно- содержательный (онтологический) и теоретико-познавательный (гносеологический) аспекты теорий о системах и сформировать общесистемные положения, которые рассматриваются в качестве трех основных общесистемных законов систем (эволюции, иерархии и взаимодействия). Закон эволюции объясняет целевую направленность создания природных и социальных систем, их организацию и самоорганизацию. Закон иерархии определяет тип структурных отношений в сложных многоуровневых системах, для которых характерны упорядоченность, организованность, взаимодействие между элементами целого. Иерархия отношений является основой построения системы управления. Закон взаимодействия объясняет наличие обменных процессов (веществом, энергией и информацией) между элементами в системе и системы с внешним окружением для обеспечения ее жизнедеятельности.

    Предметом исследования в теории систем являются сложные объекты- системы. Объектом исследования в теории систем являются процессы создания, функционирования и развития систем.

    В теории систем изучаются:

    • различные классы, виды и типы систем;
    • устройство системы (структура и ее виды);
    • состав системы (элементы, подсистемы);
    • состояние системы;
    • основные принципы и закономерности поведения систем;
    • процессы функционирования и развития систем;
    • окружающая среда, в рамках которой выделена и организована система, а также процессы, протекающие в ней;
    • факторы внешней среды, влияющие на функционирование системы.

    Обратите внимание!

    В теории систем все объекты рассматриваются в качестве систем и исследуются в виде обобщенных (абстрактных) моделей. Эти модели основаны на описании формальных связей между ее элементами и различными факторами внешней среды, влияющими на ее состояние и поведение. Результаты исследования объясняются лишь на основе взаимодействия элементов (компонентов) системы, т.е. па основе ее организации и функционирования, а не на основе содержания (биологического, социального, экономического и др.) элементов систем. Специфика содержания систем изучается предметными теориями систем (экономических, социальных, технических и т.п.).

    В теории систем был сформирован понятийный аппарат, который включает такие общесистемные категории, как цель , система, элемент , связь, отношение, структура, функция, организация, управление, сложность, открытость и др.

    Эти категории являются универсальными для всех научных исследований явлений и процессов реального мира. В теории систем определены такие категории, как субъект и объект исследования. Субъектом исследования является наблюдатель, который играет важную роль в определении цели исследования, принципов выделения объектов в качестве элементов из среды и их компоновки для объединения в целый объект-систему.

    Система рассматривается как некое единое целое, состоящее из взаимосвязанных элементов, каждый из которых, обладая определенными свойствами, вносит свой вклад в уникальные характеристики целого. Включение наблюдателя в систему обязательных категорий теории систем позволило расширить ее основные положения и глубже понять сущность системных исследований (системного подхода). К основным положениям теории систем можно отнести следующие:

    • 1) понятие «система» и понятие «среда» являются основой теории систем и имеют фундаментальное значение. Л. фон Берталанфи определял систему как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой» ;
    • 2) взаимоотношения системы со средой имеют иерархический и динамический характер;
    • 3) свойства целого (системы) определяются характером и типом связей между элементами.

    Следовательно, основное положение теории систем состоит в том, что любой объект исследования в качестве системы необходимо рассматривать в тесной взаимосвязи с окружающей средой. С одной стороны, элементы системы влияют друг на друга через взаимные связи при обмене ресурсами; с другой стороны, состояние и поведение целостной системы создает изменения в ее окружении. Эти положения и составляют основу системных взглядов (системного мировоззрения) и принципа системных исследований объектов реального мира. Наличие взаимосвязей между всеми явлениями в природе и обществе определено современной философской концепцией познания Мира в качестве целостной системы и процесса мирового развития.

    Методология теории систем сформировалась на основе фундаментальных законов философии, физики, биологии, социологии, кибернетики, синергетики и других системных теорий.

    Основными методологическими принципами теории систем являются:

    • 1) устойчиво-динамичные состояния системы при сохранении внешней формы и содержания в условиях взаимодействия с окружающей средой - принцип целостности ;
    • 2) деления целого на элементарные частицы - принцип дискретности ;
    • 3) формирования связей при обмене энергией, информацией и веществом между элементами системы и между целостной системой и окружающей ее средой - принцип гармонии ;
    • 4) построения отношений между элементами целого образования (структура управления системой) - принцип иерархии ;
    • 5) соотношения симметрии и диссимметрии (асимметрии) в природе как степень соответствия описания реальной системы формальными методами - принцип адекватности.

    В теории систем широко используются методы моделирования систем, а также математический аппарат ряда теорий:

    • множеств (формально описывает свойства системы и ее элементов на основе математических аксиом);
    • ячеек (подсистем) с определенными граничными условиями, причем между этими ячейками происходит перенос свойств (например, цепная реакция);
    • сетей (изучает функциональную структуру связей и отношений между элементами в системе);
    • графов (изучает реляционные (матричные) структуры, представляемые в топологическом пространстве);
    • информации (изучает способы информационного описания системы- объекта на основе количественных характеристик);
    • кибернетики (изучает процесс управления, т.е. передачи информации между элементами системы и между системой и окружающей средой, с учетом принципа обратной связи);
    • автоматов (система рассматривается с точки зрения «черного ящика», т.е. описания входных и выходных параметров);
    • игр (исследует систему-объект с точки зрения «рационального» поведения при условии получения максимального выигрыша при минимальных потерях);
    • оптимальных решений (позволяет математически описать условия выбора наилучшего решения из альтернативных возможностей);
    • очередей (опирается на методы оптимизации обслуживания элементов в системе потоками данных при массовых запросах).

    В современных системных исследованиях экономических и социальных систем больше внимание уделяется средствам описания сложных процессов динамичной устойчивости , которые исследуются в теориях синергетики, бифуркаций, особенностей, катастроф и др., которые опираются на описание нелинейных математических моделей систем.

    • Месарович М., Такахара Я. Общая теория систем: математические основы / под ред.С. В. Емельянова; пер. с англ. Э. Л. Наппельбаума. М.: Мир, 1978.
    • Берталанфи Л. фон. История и статус общей теории систем // Системные исследования: ежегодник. 1972. М.: Наука, 1973. С. 29.

    ОБЩАЯ ТЕОРИЯ СИСТЕМ с пециально-научная и логико-методологическая концепция исследований объектов, представляющих собой системы . Общая теория систем тесно связана с системным подходом и является конкретизацией и логико-методологическим выражением его принципов и методов. Первый вариант общей теории систем был выдвинут Л. фон Берталанфи , однако у него было много предшественников (в частности, А.А.Богданов ). Общая теория систем возникла у Берталанфи в русле защищаемого им «организмического» мировоззрения как обобщение разработанной им в 1930-х гг. «теории открытых систем», в рамках которой живые организмы рассматривались как системы, постоянно обменивающиеся со средой веществом и энергией. По замыслу Берталанфи общая теория систем должна была отразить существенные изменения в понятийной картине мира, которые принес 20 в. Для современной науки характерно: 1) ее предмет – организация; 2) для анализа этого предмета необходимо найти средства решения проблем со многими переменными (классическая наука знала проблемы лишь с двумя, в лучшем случае – с несколькими переменными); 3) место механицизма занимает понимание мира как множества разнородных и несводимых одна к другой сфер реальности, связь между которыми проявляется в изоморфизме действующих в них законов; 4) концепцию физикалистского редукционизма, сводящего всякое знание к физическому, сменяет идея перспективизма – возможность построения единой науки на базе изоморфизма законов в различных областях. В рамках общей теории систем Берталанфи и его сотрудниками разработан специальный аппарат описания «поведения» открытых систем, опирающийся на формализм термодинамики необратимых процессов, в частности на аппарат описания т.н. эквифинальных систем (способных достигать заранее определенного конечного состояния независимо от изменения начальных условий). Поведение таких систем описывается т.н. телеологическими уравнениями, выражающими характеристику поведения системы в каждый момент времени как отклонение от конечного состояния, к которому система как бы «стремится».

    В 1950–70-х гг. предложен ряд других подходов к построению общей теории систем (М.Месарович, Л.Заде, Р.Акофф, Дж.Клир, А.И.Уемов, Ю.А.Урманцев, Р.Калман, Е.Ласло и др.). Основное внимание при этом было обращено на разработку логико-концептуального и математического аппарата системных исследований. В 1960-е гг. (под влиянием критики, а также в результате интенсивного развития близких к общей теории систем научных дисциплин) Берталанфи внес уточнения в свою концепцию, и в частности различил два смысла общей теории систем. В широком смысле она выступает как основополагающая наука, охватывающая всю совокупность проблем, связанных с исследованием и конструированием систем (в теоретическую часть этой науки включаются кибернетика, теория информации, теория игр и решений, топология, теория сетей и теория графов, а также факторальный анализ). Общая теория систем в узком смысле из общего определения системы как комплекса взаимодействующих элементов стремится вывести понятия, относящиеся к организменным целым (взаимодействие, централизация, финальность и т.д.), и применяет их к анализу конкретных явлений. Прикладная область общей теории систем включает, согласно Берталанфи, системотехнику, исследование операций и инженерную психологию.

    Учитывая эволюцию, которую претерпело понимание общей теории систем в работах Берталанфи и др., можно констатировать, что с течением времени имело место все более увеличивающееся расширение задач этой концепции при фактически неизменном состоянии ее аппарата и средств. В результате создалась следующая ситуация: строго научной концепцией (с соответствующим аппаратом, средствами и т.д.) можно считать лишь общую теорию систем в узком смысле; что же касается общей теории систем в широком смысле, то она или совпадает с общей теорией систем в узком смысле (в частности, по аппарату), или представляет собой действительное расширение и обобщение общей теории систем в узком смысле и аналогичных дисциплин, но тогда встает вопрос о развернутом представлении ее средств, методов и аппарата. В последние годы множатся попытки конкретных приложений общей теории систем, напр., к биологии, системотехнике, теории организации и др.

    Общая теория систем имеет важное значение для развития современной науки и техники: не подменяя специальные системные теории и концепции, имеющие дело с анализом определенных классов систем, она формулирует общие методологические принципы системного исследования.

    Литература:

    1. Общая теория систем. М., 1966;

    2. Кремянский В.И. Некоторые особенности организмов как «систем» с точки зрения физики, кибернетики и биологии. – «ВФ», 1958, № 8;

    3. Лекторский В.Α. , Садовский В.Н. О принципах исследования систем. – «ВФ», 1960, № 8;

    4. Сетров М.И. Значение общей теории систем Л.Берталанфи для биологии. – В кн.: Философские проблемы современной биологии. М. – Л., 1966;

    5. Садовский В.Н. Основания общей теории систем. М., 1974;

    6. Блауберг И.В. Проблема целостности и системный подход. М., 1997;

    7. Юдин Э.Г. Методология науки. Системность. Деятельность. М., 1997;

    8. Bertalanffy L. Das biologische Weltbild, Bd. 1. Bern, 1949;

    9. Idem. Zu einer allgemeinen Systemlehre. – Biologia generalis, 1949, S. 114–29;

    10. Idem. An Outline of General System Theory. – «British Journal Philosophy of Science», 1950, p. 134–65;

    11. Idem. Biophysik des Fliessgleichgewichts. Braunschweig, 1953;

    12. General Systems, Yearbook of the Society for General Systems Research, eds. L.Bertalanffy and A.Rapoport. Michigan, 1956 (изд. продолжается);

    13. Zadeh L.O. The Concept of State in System Theory. – Views on General System Theory, ed. by M.D.Mesarovic. N. Y., 1964.

    В.Н.Садовский

    Круг значений понятия “система” в греческом языке весьма обширен: сочетание, организм, устройство, организация, союз, строй, руководящий орган. Первенство в использовании этого понятия приписывается стоикам. Также это понятие прослеживается у Аристотеля.

    Некоторые идеи, лежащие в основе общей теории систем встречаются уже у Гегеля. Они сводятся к следующему:

    Целое есть нечто большее, чем сумма частей.

    Целое определяет природу частей.

    Части не могут быть познаны при рассмотрении их вне целого.

    Части находятся в постоянной взаимосвязи и взаимозависимости.

    В явной форме вопрос о научном подходе к управлению сложными системами первым поставил М.А. Ампер. В своей работе “Опыт о философии наук, или аналитическое изложение классификации всех человеческих знаний” (ч.1 - 1834г., ч.2 - 1843) при построении и классификации всевозможных, в том числе и не существовавших тогда, наук, он выделил специальную науку об управлении государством и назвал ее кибернетикой. Однако первый по-настоящему научный труд по этой тематике написал польский философ-гегельянец Б. Трентовский. В 1843г. он опубликовал книгу “Отношение философии к кибернетике как искусству управления народом”. Трентовский ставил целью построение научных основ практической деятельности руководителя (“кибернета”). Он подчеркивал, что действительно эффективное управление должно учитывать все важнейшие внешние и внутренние факторы, влияющие на объект управления. Главная сложность управления, по мнению Трентовского, связана со сложностью поведения людей. Используя знания диалектики, Трентовский утверждал, что общество, коллектив, да и сам человек - это система, единство противоречий, разрешение которых и есть развитие.

    Однако в середине XIX века знания Трентовского оказались невостребованными. Практика управления еще могла обходиться без науки управления. Кибернетика была на время позабыта.

    В 1891г. академик Е.С. Федоров, работавший в области минералогии и кристаллографии, изучавший особенности строения кристаллических решеток, отметил, что все невообразимое разнообразие природных тел реализуется из ограниченного и небольшого числа исходных форм. Развивая системные представления, он установил и некоторые закономерности развития систем. Ему принадлежит наблюдение, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а способность к приспособлению (“жизненная подвижность”), не стройность, а способность к повышению стройности.

    Следующая ступень в изучении системности как самостоятельного предмета связана с именем А.А. Богданова. С 1911 по1925гг. вышли три тома книги “Всеобщая организационная наука (тектология)”. Богданову принадлежит идея о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. Все явления рассматриваются как непрерывные процессы организации и дезорганизации. Богданову принадлежит ценнейшее открытие, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей. Особенностью тектологии Богданова является то, что основное внимание уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого, значению обратных связей, учету собственных целей организации, роли открытых систем. Он подчеркивал роли моделирования и математики как потенциальных методов решения задач тектологии.

    По настоящему явное и массовое усвоение системных понятий, общественное осознание системности мира, общества и человеческой деятельности началось с 1948г., когда американский математик Н. Винер опубликовал книгу под названием “Кибернетика”. Первоначально он определил кибернетику как “науку об управлении и связи в животных и машинах”. Такое определение сформировалось у Винера, благодаря его особому интересу к аналогиям процессов в живых организмах и машинах, однако оно неоправданно сужает сферу приложения кибернетики. Уже в следующей книге “Кибернетика и общество” Н.Винер анализирует с позиций кибернетики процессы, происходящие в обществе.

    С кибернетикой Винера связаны такие продвижения, как типизация моделей систем, выявление особого значения обратных связей в системе, подчеркивание принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и, в особенности идеи математического эксперимента с помощью ЭВМ.

    Параллельно, и как бы независимо, от кибернетики прокладывался еще один подход к науке о системах - общая теория систем. Идея построения теории, приложимой к системам любой природы, была выдвинута австрийским биологом Л. Берталанфи. Один из путей реализации этой идеи Берталанфи видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности. Одним из важнейших достижений Берталанфи считается введение им понятия открытой системы. В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается просто как отклик на внешнее воздействие, Берталанфи подчеркивает особое значение обмена веществом, энергией и информацией (негэнтропией) с открытой средой.

    Отправной точкой общей теории систем как самостоятельной науки можно считать 1954г., когда было организовано общество содействия развитию общей теории систем. Свой первый ежегодник “Общие системы” общество опубликовало в 1956г. В статье, помещенной в первом томе ежегодника, Берталанфи указал причины появления новой отрасли знания:

    Существует общая тенденция к достижению единства различных естественных и общественных наук.

    Такое единство может быть предметом изучения ОТС.

    Эта теория может быть важным средством формирования строгих теорий в науках о живой природе и обществе.

    Развивая объединяющие принципы, которые имеют место во всех областях знания, эта теория приблизит нас к цели - достижению единства науки.

    Все это может привести к достижению необходимого единства научного образования .

    Приведенный исторический экскурс показывает, что развитием системного анализа занимались ученые самых различных специальностей: Ампер - физик, Трентовский - философ, Федоров - геолог, Богданов - медик, Винер - математик, Берталанфи - биолог. Это еще раз указывает на положение общей теории систем - в центре человеческих знаний. По степени общности Дж. ван Гиг ставит общую теорию систем на один уровень с математикой и философией.

    Близко к ОТС на дереве научного знания расположены другие науки, занимающиеся изучением систем: кибернетика, телеология, теория информации, инженерная теория связи, теория ЭВМ, системотехника, исследование операций и сопряженные с ними научные и инженерные направления.



    Предыдущая статья: Следующая статья:

    © 2015 .
    О сайте | Контакты
    | Карта сайта