Главная » Маринование грибов » Виды излучений источники света шкала электромагнитных волн. Инфракрасное, световое и ультрафиолетовое излучения

Виды излучений источники света шкала электромагнитных волн. Инфракрасное, световое и ультрафиолетовое излучения

ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 103 м (радиоволны) до 10-8 см (рентгеновские лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые ускоренно движущимися заряженными частицами. Обнаруживаются электромагнитные волны в конечном счете по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяются со скоростью 300000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и гамма-излучениям, сильно поглощаемым атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волн. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Радиоволны

n= 105-1011 Гц, l»10-3-103 м.

Получают с помощью колебательных контуров и макроскопических вибраторов.

Свойства: Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое)

n=3*1011-4*1014 Гц, l=8*10-7-2*10-3 м.

Излучается атомами и молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны l»9*10-6 м.

Свойства:

1. Проходит через некоторые непрозрачные тела, также сквозь дождь, дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение: Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Видимое излучение

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

n=4*1014-8*1014 Гц, l=8*10-7-4*10-7 м.

Свойства: Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Ультрафиолетовое излучение

n=8*1014-3*1015 Гц, l=10-8-4*10-7 м (меньше, чем у фиолетового света).

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых t>1000оС, а также светящимися парами ртути.

Свойства: Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Применение: В медицине, в промышленности.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (p=10-3-10-5 Па) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01нм).

Свойства: Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь.

Применение: В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

g-Излучение

n=3*1020 Гц и более, l=3,3*10-11 м.

Источники: атомное ядро (ядерные реакции).

Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие.

Применение: В медицине, производстве (g-дефектоскопия).

Вывод

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).









Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света,причем источник света остается холодным. Светлячок Кусок дерева, пронизанный светящейся грибницей Рыба,обитающая на большой глубине




Электромагнитные излучения Радио излучение Радио излучение Инфракрасное излучение Инфракрасное излучение Видимое излучение Видимое излучение Ультрафиолетовое излучение Ультрафиолетовое излучение Рентгеновское излучение Рентгеновское излучение Гамма излучение Гамма излучение


Шкала электромагнитных излучений Шкала электромагнитных волн простирается от длинных Радиоволн до гамма – лучей. Электромагнитные волны различной Длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).


Все виды излучений имеют, по существу, одну и ту же физическую природу Луи де Бройль Самостоятельная работа по заполнению таблицы Виды излученийДиапазон длин волн ИсточникСвойстваПрименение Радио излучение Инфракрасное излучение Видимое излучение Ультрафиолетовое излучение Рентгеновское излучение -излучение


Виды излучений Диапазон длин волн Источник СвойстваПрименение Радиоволны 10 км (310^4 – 310 ^12 Гц) Транзисторные цепиОтражение, Преломление Дифракция Поляризация Связь и навигация Инфракрас- ное излучение 0,1 м – 770 нм (310^ 12 – 4 10 ^14 Гц) Электрический камин Отражение, Преломление Дифракция Поляризация Приготовление пищи Нагревание, сушка, Тепловое фотокопирование Видимый свет 770 – 380 нм (410^ 14 – 810 ^14 Гц) Лампа накаливания, Молнии, Пламя Отражение, Преломление Дифракция Поляризация Наблюдение за видимым миром, Преимущественно путем отражения Ультрафио летовое излучение 380 – 5 нм (810^ 14 – 610 ^16 Гц) Разрядная трубка, углеродная Дуга ФотохимическиеЛечение заболеваний кожи, уничтожение бактерий, сторожевые устройства Рентгеновс- кое излучение 5 нм– 10^ –2 нм (610^ 16 – 310 ^19 Гц) Рентгеновская трубка Проникающая способность Дифракция Рентгенография, радиология, обнаружение подделок произведений искусства - излучение 510^ ^-15 м Циклотрон Кобальт - 60 Порождаются космически ми объектами Стерилизация, Медицина, лечение рака Проверьте свои ответы

Земцова Екатерина.

Исследовательская работа.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« Шкала электромагнитных излучений.» Работу выполнила ученица 11 класса: Земцова Екатерина Руководитель: Фирсова Наталья Евгеньевна Волгоград 2016

Содержание Введение Электромагнитное излучение Шкала электромагнитных излучений Радиоволны Влияние радиоволн на организм человека Как можно защититься от радиоволн? Инфракрасное излучение Влияние инфракрасного излучения организм Ультрафиолетовое излучение Рентгеновское излучение Влияние рентгена на человека Воздействие ультрафиолетового излучения Гамма-излучение Воздействие радиационного излучения на живой организм Выводы

Введение Электромагнитные волны – неизбежные спутники бытового комфорта. Они пронизывают пространство вокруг нас и наши тела: источники ЭМ-излучения согревают и освещают дома, служат для приготовления пищи, обеспечивают мгновенную связь с любым уголком мира.

Актуальность Влияние электромагнитных волн на организм человека сегодня – предмет частых споров. Однако, опасны не сами электромагнитные волны, без которых действительно ни один аппарат не смог бы работать, а их информационная составляющая, которую нельзя обнаружить обычными осциллографами.* Осциллограф - прибор, предназначенный для исследования амплитудных параметров электрического сигнала *

Задачи: Рассмотреть каждый вид электромагнитного излучения подробно Выявить, какое влияние он оказывает на здоровье человека

Электромагнитное излучение - это распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. Электромагнитное излучение подразделяется на: радиоволны (начиная со сверхдлинных), инфракрасное излучение, ультрафиолетовое излучение, рентгеновское излучение гамма излучение (жёсткое)

Шкала электромагнитных излучений - совокупность всех диапазонов частот электромагнитного излучения. В качестве спектральной характеристики электромагнитного излучения используют следующие величины: Длину волны Частоту колебаний Энергию фотона (кванта электромагнитного поля)

Радиоволны - электромагнитное излучение с длинами волн в электромагнитном спектре длиннее инфракрасного света. Радиоволны имеют частоту от 3 кГц до 300 ГГц, и соответствующую длину волны от 1 миллиметра до 100 километров. Как и все другие электромагнитные волны, радиоволны распространяются со скоростью света. Естественными источниками радиоволн являются молнии и астрономические объекты. Искусственно созданные радиоволны используются для стационарной и мобильной радиосвязи, радиовещания, радиолокации и других навигационных систем, спутников связи, компьютерных сетей и других бесчисленных приложений.

Радиоволны делятся на частотные диапазоны это: длинные волны, средние волны, короткие волны, и ультракороткие волны. Волны этого диапазона называются длинными, поскольку их низкой частоте соответствует большая длина волны. Они могут распространяться на тысячи километров, так как способны огибать земную поверхность. Поэтому многие международные радиостанции вещают на длинных волнах. Длинные волны.

Распространяются не на очень большие расстояния, поскольку могут отражаться только от ионосферы (одного из слоев атмосферы Земли). Передачи на средних волнах лучше принимают ночью, когда повышается отражательная способность ионосферного слоя. Средние волны

Короткие волны -многократно отражаются от поверхности Земли и от ионосферы, благодаря чему распространяются на очень большие расстояния. Передачи радиостанции, работающей на коротких волнах, можно принимать на другой стороне земного шара. -могут отражаться только, от поверхности Земли и потому пригодны для вещания лишь на очень малые расстояния. На волнах УКВ-диапазона часто передают стереозвук, так как на них слабее помехи. Ультракороткие волны (УКВ)

Влияние радиоволн на организм человека По каким параметрам различается воздействие радиоволн на организм? Термическое действие можно объяснить на примере человеческого тела: встречая на пути препятствие – тело человека, волны проникают в него. У человека они поглощаются верхним слоем кожи. При этом, образуется тепловая энергия, которая выводится системой кровообращения. 2. Нетермическое действие радиоволн. Типичный пример – волны, исходящие от антенны мобильного телефона. Здесь можно обратить внимание на опыты, проводимые учеными с грызунами. Они смогли доказать воздействие на них нетермических радиоволн. Однако, не сумели доказать их вред на организм человека. Чем успешно и пользуются и сторонники, и противники мобильной связи, манипулируя сознанием людей.

Кожный покров человека, точнее, его внешние слои, абсорбирует (поглощает) радиоволны, вследствие чего выделяется тепло, которое абсолютно точно можно зафиксировать экспериментально. Максимально допустимое повышение температуры для человеческого организма составляет 4 градуса. Из этого следует, что для серьёзных последствий человек должен подвергаться продолжительному воздействию довольно мощных радиоволн, что маловероятно в повседневных бытовых условиях. Широко известно, что электромагнитное излучение препятствует качественному приёму телесигнала. Смертельно опасны радиоволны для владельцев электрических кардиостимуляторов – последние имеют чёткий пороговый уровень, выше которого электромагнитное излучение, окружающее человека, подниматься не должно.

Приборы, с которыми человек сталкивается в процессе своей жизнедеятельности мобильные телефоны; радиопередающие антенны; радиотелефоны системы DECT; сетевые беспроводные устройства; Bluetooth -устройства; сканеры тела; бебифоны; бытовые электроприборы; высоковольтные линии электропередач.

Как можно защититься от радиоволн? Единственный действенный метод – находиться от них дальше. Доза излучения снижается пропорционально расстоянию: тем меньше, чем дальше от излучателя находится человек. Бытовые приборы (дрели, пылесосы) образуют эл.магнитные поля вокруг шнура питания при условии неграмотно установленной электропроводки. Чем больше мощность прибора, тем больше его воздействие. Защититься можно их расположением как можно более дальше от людей. Неиспользуемые приборы должны отключаться от сети.

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы. Инфракрасное излучение

Глубина проникновения и соответственно прогрева организма инфракрасным излучением зависит от длины волны. Коротковолновое излучение способно проникать в организм на глубину нескольких сантиметров и нагревает внутренние органы, в то время как длинноволновое излучение задерживается влагой, содержащейся в тканях, и повышает температуру покровов тела. Особенно опасно воздействие интенсивного инфракрасного излучения на мозг - оно может вызвать тепловой удар. В отличие от других видов излучений, например рентгеновского, СВЧ и ультрафиолета, инфракрасное излучение нормальной интенсивности не оказывает негативного влияния на организм. Влияние инфракрасного излучения организм

Ультрафиолетовое излучение – это невидимое глазом электромагнитное излучение, располагающееся на спектре между видимым и рентгеновским излучениями. Ультрафиолетовое излучение Диапазон ультрафиолетового излучения, доходящий до поверхности Земли, составляет 400 – 280 нм, а более короткие волны, исходящие от Солнца поглощаются ещё в стратосфере при помощи озонового слоя.

Свойства УФ излучения химическая активность (ускоряет протекание химических реакций и биологических процессов) проникающая способность уничтожение микроорганизмов, благотворное влияние на организм человека (в небольших дозах) способностью вызывать люминесценцию веществ (их свечение с различной окраской испускаемого света)

Воздействие ультрафиолетового излучения Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам разной степени. Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и её преждевременное старение. Эффективным средством защиты от ультрафиолетового излучения служит одежда и специальные кремы от загара c числом «SPF» больше 10. Ультрафиолетовое излучение средневолнового диапазона (280-315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение - ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы Для защиты глаз используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику - вогнутые зеркала.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением Применение рентгеновского излучения в медицине Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей.

Рентгеноскопия После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Недостатки этого метода – недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры. Флюорография Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения. Рентгенография Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Рентгеновские фотографии содержат больше деталей и потому они являются более информативными. Могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Влияние рентгена на организм Рентгеновские лучи обладают большой проникающей способностью, т.е. они способны беспрепятственно проникать сквозь изучаемые органы и ткани. Влияние рентгена на организм проявляется также тем, что рентгеновское излучение ионизирует молекулы веществ, что приводит к нарушению первоначальной структуры молекулярного строения клеток. Тем самым формируются ионы (положительно или отрицательно заряженные частицы), а также молекулы, которая становятся активными. Эти изменения в той или иной мере могут быть причиной развития лучевых ожогов кожи и слизистых, лучевой болезни, а также мутаций, что приводит к формированию опухоли, в том числе и злокачественной. Однако эти изменения могут возникнуть только в том случае, если продолжительность и частота воздействия рентгена на организм значительная. Чем мощнее рентгеновский луч и чем длительнее воздействие, тем выше риск получения негативных эффектов.

В современной рентгенологии используются приборы, которые обладают очень маленькой энергией луча. Считается, что риск развития онкологических заболеваний после проведения одного стандартного рентгеновского исследования крайне мал и не превышает 1 тысячной процента. В клинической практике применяется весьма короткий промежуток времени при условии, что потенциальная польза от получения данных о состоянии организма, значительно выше его потенциальной опасности. Врачи-рентгенологи, а также техники и лаборанты, должны придерживаться обязательных мер защиты. Врач, производящий манипуляцию облачается в специальный защитный фартук, который представляет собой защитные свинцовые пластины. Кроме того, врачи-рентгенологи имеют индивидуальный дозиметр, и как только он зафиксирует, что доза облучения велика, врач отстраняется от работы с рентгеном. Таким образом, рентгеновское излучение, хоть и обладает потенциально опасными эффектами в отношении организма, на практике безопасно.

Гамма-излучение - вид электромагнитного излучения с чрезвычайно малой длиной волны - менее 2·10−10 м имеет самую высокую проникающую способность. Такой вид излучения может задержать толстая свинцовая или бетонная плита. Опасность радиации состоит в ее ионизирующем излучении, взаимодействующим с атомами и молекулами, которые это воздействие превращает в положительное заряженные ионы, тем самым разрывая химические связи молекул, составляющих живые организмы, и вызывая биологически важные изменения.

Мощность дозы - показывает какую дозу облучения за промежуток времени получит предмет, либо живой организм. Единица измерения - Зиверт /час. Годовые эффективные эквивалентные дозы, мкЗв /год Космическое излучение 32 Облучение от стройматериалов и на местности 37 Внутреннее облучение 37 Радон-222, радон-220 126 Медицинские процедуры 169 Испытания ядерного оружия 1,5 Ядерная энергетика 0,01 Всего 400

Таблица результатов однократного воздействия гамма-излучений на организм человека, измеряемое в зивертах.

Воздействие радиационного излучения на живой организм вызывает в нем различные обратимые и необратимые биологические изменения. И эти изменения делятся на две категории - соматические изменения, вызываемые непосредственно у человека, и генетические, возникающие у потомков. Тяжесть воздействия радиации на человека зависит от того, как происходит это воздействие - сразу или порциями. Большинство органов успевает восстановиться в той или и ной степени от радиации, поэтому они лучше переносят серию кратковременных доз, по сравнению с той же суммарной дозой облучения, получаемой за один раз. Красный костный мозг и органы кроветворной системы, репродуктивные органы и органы зрения наиболее сильно подвержены воздействию радиации Дети сильнее подвержены воздействию радиации, чем взрослый человек. Большинство органов взрослого человека не так подвержены радиации - это почки, печень, мочевой пузырь, хрящевые ткани.

Выводы Подробно рассмотрены виды электромагнитного излучения Выявлено, что инфракрасное излучение при нормальной интенсивности не оказывает негативного влияния на организм рентгеновское излучение может быть причиной лучевых ожогов и злокачественных опухолей гамма излучение вызывает биологически важные изменения в организме

Спасибо за внимание

Цели урока:

Тип урока:

Форма проведения: лекция с презентацией

Карасёва Ирина Дмитриевна, 17.12.2017

2492 287

Содержимое разработки

Конспект урока на тему:

Виды излучений. Шкала электромагнитных волн

Урок разработан

учителем ГУ ЛНР «ЛОУСОШ № 18»

Карасёвой И.Д.

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

Тип урока: урок формирования новых знаний.

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Виды излучений.

Шкала электромагнитных волн»

Ход урока

    Организационный момент.

    Мотивация учебной и познавательной деятельности.

Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Н о знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

    Постановка темы и целей урока.

Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Виды излучений. Шкала электромагнитных волн» (Слайд 1)

Каждое излучение мы будем изучать по следующему обобщенному плану (Слайд 2) .Обобщенный план для изучения излучения:

1. Название диапазона

2. Длина волны

3. Частота

4. Кем был открыт

5. Источник

6. Приёмник (индикатор)

7. Применение

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

Таблица "Шкала электромагнитных излучений"

Название излучения

Длина волны

Частота

Кем было

открыто

Источник

Приёмник

Применение

Действие на человека

    Изложение нового материала.

(Слайд 3)

Длина электромагнитных волн бывает самой различной: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м ( -лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

(Слайд 4)

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

Количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

(Слайд 5)

Низкочастотное излучение возникает в диапазоне частот от 3 · 10 -3 до 3 10 5 Гц. Этому излучению соответствует длина волны от 10 13 - 10 5 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

(Слайд 6)

Радиоволны занимают диапазон частот 3·10 5 - 3·10 11 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

(Слайд 7)

Инфракрасное излучение занимает диапазон частот 3 · 10 11 - 3,85 · 10 14 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

(Слайд 8)

Видимое излучение - единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 - 670 нм ( = 3,85 10 14 - 8 10 14 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет - не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

(Слайд 9)

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределахдлин волн 3,8 ∙10 -7 - 3∙10 -9 м. (=8*10 14 - 3*10 16 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения - валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

 = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники,использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды,ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез вит амина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

(Слайд 10)

Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -12 - 1 0 -8 м (частот 3*10 16 - 3-10 20 Гц ). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изоб ражения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

(Слайд 11)

Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙10 14 - 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7 - 3∙10 -9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году.

Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названогамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

(Слайд 12)

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

(Слайд 13)

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

    физическая природа всех излучений одинакова

    все излучения распространяются в вакууме с одинаковой скоростью, равной 3*10 8 м/с

    все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

5. Подведение итогов урока

В заключение урока учащиеся заканчивают работу над таблицей.

(Слайд 14)

Вывод:

    Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

    Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.

    Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.

    Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

    Конспект (выучить), заполнить в таблице

последний столбец (действие ЭМИ на человека) и

подготовить сообщение о применении ЭМИ

Содержимое разработки


ГУ ЛНР «ЛОУСОШ № 18»

г. Луганска

Карасёва И.Д.


ОБОБЩЁННЫЙ ПЛАН ИЗУЧЕНИЯ ИЗЛУЧЕНИЯ

1. Название диапазона.

2. Длина волны

3. Частота

4. Кем был открыт

5. Источник

6. Приёмник (индикатор)

7. Применение

8. Действие на человека

ТАБЛИЦА «ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН»

Название излучения

Длина волны

Частота

Кем открыт

Источник

Приёмник

Применение

Действие на человека



Излучения отличаются друг от друга:

  • по способу получения;
  • по методу регистрации.

Количественные различия в длинах волн приводят к существенным качественным различиям, по-разному поглощаются веществом (коротковолновые излучения – рентгеновское и гамма-излучения) – поглощаются слабо.

Коротковолновое излучение обнаруживает свойства частиц.


Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

Частота(Гц)

10 5 - 10 -3

Источник

3 · 10 5 - 3 · 10 11

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

История открытия

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп.


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


  • Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.
  • Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.
  • Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.
  • Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

  • § 68 (читать)
  • заполнить последний столбец таблицы (действие ЭМИ на человека)
  • подготовить сообщение о применении ЭМИ

По мере развития науки и техники были обнаружены различные виды излучений: радиоволны, видимый свет, рентгеновские лучи, гамма- излучение. Все эти излучения имеют одну и ту же природу. Они являются электромагнитными волнами . Разнообразие свойств этих излучений обусловлено их частотой (или длиной волны). Между отдельными видами излучений нет резкой границы, один вид излучения плавно переходит в другой. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.

Для систематизации всех видов излучений составлена единая шкала электромагнитных волн:

Шкала электромаг­нитных волн это непрерывная после­довательность частот (длин волн) электромагнитных излучений. Разбиение шкалы ЭМВ на диапазоны весьма условное.


Известные электромагнитные волны охватывают огромный диапазон длин волн от 10 4 до 10 -10 м . По способу получения можно выделить следующие области длин волн:

1. Низкочастотные волны более 100 км (10 5 м). Источник излучения - генераторы переменного тока

2. Радиоволны от 10 5 м до 1 мм. Источник излучения - открытый колебательный контур (антенна) Выделяются области радиоволн:

ДВ длинные волны - более 10 3 м,

СВ средние - от 10 3 до 100 м,

КВ короткие - от 100 м до 10 м,

УКВ ультракороткие - от 10 м до 1 мм;

3 Инфракрасное излучении (ИК) 10 –3 -10 –6 м. Область ультракоротких радиоволн смыкается с участком инфракрасных лучей. Граница между ними условная и определяется способом их получения: ультракороткие радиоволны получают с помощью генераторов (радиотехнические методы), а инфракрасные лучи излучаются нагретыми телами в результате атомных переходов с одного энергетического уровня на другой.

4. Видимый свет 770-390 нм Источник излучения – электронные переходы в атомах. Порядок цветов в видимой части спектра, начиная с длинноволновой области КОЖЗГСФ. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

5 . Ультрафиолетовое излучение (УФ) от 400 нм до 1 нм. Ультрафиолетовые лучи получают с помощью тлеющего разряда, обычно в парах ртути. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

6 . Рентгеновские лучи от 1 нм до 0,01 нм . Излучаются в результате атомных переходов с одного внутреннего энергетического уровня на другой.

7. За рентгеновскими лучами идет область гамма-лучей (γ) с длинами волн менее 0,1 нм. Излучаются при ядерных реакциях.

Область рентгеновских и гамма-лучей частично перекрывается, и различать эти волны можно не по свойствам, а по методу получения: рентгеновские лучи возникают в специальных трубках, а гамма-лучи испускаются при радиоактивном распаде ядер некоторых элементов.



По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению веществом. Коэффициент отражения веществом электромагнитных волн также зависит от длины волны.

Электромагнитные волны отражаются и преломляются согласно законам отражения и преломления.

Для электромагнитных волн можно наблюдать волновые явления - интерференции, дифракции, поляризации, дисперсии.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта