Главная » Маринование грибов » Закон Ампера. Воздействие магнитного поля на рамку с током

Закон Ампера. Воздействие магнитного поля на рамку с током

Известные с древних времен явления притяжения разноименных и отталкивания одноименных полюсов магнита напоминают явления взаимодействия разноименных и одноименных электрических зарядов. Однако многочисленные попытки ученых установить связь между электрическими и магнитными явлениями на протяжении многих столетий оставались безрезультатными. Об этой связи говорит также замеченный факт намагничивания железных предметов и перемагничивания компаса во время грозы.

Впервые эта связь была обнаружена X. Эрстедом и А. Ампером в 1820 г. А. Ампер показал, что два параллельных проводника с токами притягиваются или отталкиваются в зависимости от направления тока в них (рис. 1, а, б). Это взаимодействие не может быть вызвано электростатическим полем по следующим причинам. Во-первых, при размыкании цепи (на рисунке 1, в перемычка между верхним» клеммами отсоединена) взаимодействие проводников прекращается, хотя заряды на проводниках н их электростатические поля остаются. Во-вторых, одноименные заряды (электроны в проводнике) всегда только отталкиваются.

В опыте X. Эрстеда проводник располагают над магнитной стрелкой (или под ней) параллельно ее оси (рис. 2). При пропускании тока по проводнику стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое первоначальное положение. Этот опыт показывает, что в пространстве, окружающем проводник с током, действуют силы, вызывающие поворот магнитной стрелки, то есть силы, подобные тем, которые действуют на нее вблизи постоянных магнитов.

Действие магнитных сил обнаружено в пространстве вокруг отдельно движущихся заряженных частиц. Так, А.Ф.Иоффе в 1911 г. наблюдал отклонение магнитных стрелок, расположенных вблизи пучка движущихся электронов. Схема его опыта представлена на рисунке 3. Над и под трубкой находились две одинаковые, но противоположно направленные магнитные стрелки, укрепленные на общем кольце, подвешенном на упругой нити. При прохождении в трубке потока электронов магнитные стрелки поворачивались.

Если часть гибкого проводника, присоединенного к одному полюсу источника, а значит, заряженного, поместить вблизи дугообразного магнита (рис. 4, а), то действие поля магнита на проводник не наблюдается. Однако после замыкания цепи (рис. 4, б, в) проводники приходят в движение. Таким образом, магнитные силы действуют только на движущиеся заряды.


2.1. Закон Ампера.

  • 2.1. Закон Ампера.

  • 2.2. Взаимодействие двух параллельных бесконечных проводников с током.

  • 2.3. Воздействие магнитного поля на рамку с током.

  • 2.4. Единицы измерения магнитных величин.

  • 2.5. Сила Лоренца.

  • 2.6. Эффект Холла.

  • 2.7. Циркуляция вектора магнитной индукции.

  • 2.8. Магнитное поле соленоида.

  • 2.9. Магнитное поле тороида.

  • 2.10. Работа по перемещению проводника с током в магнитном поле.


АМПЕР Андре Мари

  • АМПЕР Андре Мари (1775 – 1836) – французский физик математик и химик.

  • Основные физические работы посвящены электродинамике. Сформулировал правило для определения действия магнитного поля тока на магнитную стрелку. Обнаружил влияние магнитного поля Земли на движущиеся проводники с током .


В 1820 г.

  • В 1820 г. А. М. Ампер экспериментально установил, что два проводника с током взаимодействуют друг с другом с силой:

  • (2.1.1)

  • где b – расстояние между проводниками, а k – коэффициент пропорциональности зависящий от системы единиц.

  • В первоначальное выражение закона Ампера не входила никакая величина характеризующая магнитное поле. Потом разобрались, что взаимодействие токов осуществляется через магнитное поле и следовательно в закон должна входить характеристика магнитного поля.


  • В современной записи в системе СИ, закон Ампера выражается формулой:

  • (2.1.2)

  • Это сила с которой магнитное поле действует на бесконечно малый проводник с током I.

  • Модуль силы действующей на проводник

  • (2.1.3)



  • Если магнитное поле однородно и проводник перпендикулярен силовым линиям магнитного поля, то

  • (2.1.4)

  • где – ток через проводник сечением S.




  • Направление силы определяется направлением векторного произведения или правилом левой руки (что одно и тоже). Ориентируем пальцы по направлению первого вектора, второй вектор должен входить в ладонь и большой палец показывает направление векторного произведения.

  • Рис. 2.1



  • Из закона Ампера хорошо виден физический смысл магнитной индукции: В – величина, численно равная силе, с которой магнитное поле действует на проводник единичной длины, по которому течет единичный ток.

  • Размерность индукции


Пусть b I2 I1 находится в этом поле.

  • Пусть b – расстояние между проводниками. Задачу следует решать так: один из проводников I2 создаёт магнитное поле, второй I1 находится в этом поле.

  • Рис. 2.2


I 2 на расстоянии b от него:

  • Магнитная индукция, создаваемая током I 2 на расстоянии b от него:

  • (2.2.1)

  • Если I1 и I2 лежат в одной плоскости, то угол между B2 и I1 прямой, следовательно сила, действующая на элемент тока I1 dl

  • (2.2.2)

  • На каждую единицу длины проводника действует сила:

  • (2.2.3)


  • (разумеется, со стороны первого проводника на второй действует точно такая же сила).

  • Результирующая сила равна одной из этих сил! Если эти два проводника будут воздействовать на третий, тогда их магнитные поля и нужно сложить векторно.

  • Рис. 2.2






Рамка с током I α – правилом буравчика ).

  • Рамка с током I находится в однородном магнитном поле α – угол между и (направление нормали связано с направлением тока правилом буравчика ).


l , равна: ,

  • Сила Ампера, действующая на сторону рамки длиной l , равна: ,

  • здесь

  • На другую сторону длиной l действует такая же сила. Получается «пара сил», или вращающий момент.

  • (2.3.1)

  • где плечо:

  • Так как lb = S – площадь рамки, тогда можно записать:


  • Вот откуда мы писали с вами выражение для магнитной индукции:

  • (2.3.3)

  • M – вращающий

  • момент силы,

  • P – магнитный

  • момент.


  • Итак, под действием этого вращательного момента рамка повернётся так, что

  • На стороны длиной b тоже действует сила Ампера F2 – растягивает рамку и так как силы равны по величине и противоположны по направлению рамка не смещается, в этом случае М = 0, состояние устойчивого равновесия .

  • Рис. 2.4


Когда и антипараллельны, M = 0 неустойчивого равновесия перевернется .

  • Когда и антипараллельны, M = 0 (так как плечо равно нулю), это состояние, неустойчивого равновесия . Рамка сжимается и, если чуть сместится, сразу возникает вращающий момент такой что она перевернется .

  • В неоднородном поле рамка повернется и будет вытягиваться в область более сильного поля.

  • Рис. 2.4


  • Закон Ампера используется для установления единицы силы тока – ампер.

  • (2.4.1)


Итак, Ампер

  • Итак, Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстояние один метр, один от другого в вакууме вызывает между этими проводниками силу


  • Определим отсюда размерность и величину:

  • В СИ:

  • В СГС: μ0 = 1

  • Из закона Био-Савара-Лапласа, для прямолинейного проводника с током можно найти размерность индукции магнитного поля:


1 Тл 2

  • 1 Тл (один тесла равен магнитной индукции однородного магнитного поля, в котором) на плоский контур с током, имеющим магнитный момент 1 А·м 2 действует вращающий момент 1 Н·м.

  • Один тесла 1 Тл = 104 Гс.

  • Гаусс – единица измерения в Гауссовой системе единиц (СГС).


  • ТЕСЛА Никола (1856 - 1943)-сербский ученый в области электротехники, радиотехники

  • Разработал ряд конструкций многофазных генераторов, элек-тродвигателей и трансформа-торов. Сконструировал ряд радио-управляемых самоходных механизмов.

  • Изучал физиологическое действие токов высокой частоты. Построил в 1899 радиостанцию на 200 кВт в Колорадо и радиоантенну высотой 57,6 м в Лонг-Айленде. Изобрел электрический счетчик, частотомер и др.







Другое определение: 2

  • Другое определение: 1 Тл равен магнитной индукции при которой магнитный поток сквозь площадку 1 м 2, перпендикулярную направлению поля равен 1 Вб.

  • Рис. 2.5


  • Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804 – 1891 г.) – профессора университетов в Галле, Геттингене, Лейпциге.

  • Как мы уже говорили, магнитный поток Ф, через поверхность S – одна из характеристик магнитного поля (Рис. 2.5)

  • Рис. 2.5


  • Единица измерения магнитного потока в СИ:

  • Здесь Максвелл (Мкс ) – единица измерения магнитного потока в СГС названа в честь знаменитого ученого Джеймса Максвелла (1831 – 1879 г.), создателя теории электромагнитного поля.

  • Напряженность магнитного поля измеряется А·м-1


  • Таблица основных характеристик магнитного поля




Электрический ток n движущихся со скоростью

  • Электрический ток это совокупность большого числа n движущихся со скоростью

  • зарядов .

  • Найдем силу, действующую на один заряд со стороны магнитного поля.

  • По закону Ампера сила, действующая на проводник с током в магнитном поле (2.5.1)

  • но ток причем, тогда


Т.к. nS dl число зарядов в объёме S dl, тогда для одного заряда

  • Т.к. nS dl число зарядов в объёме S dl, тогда для одного заряда


ЛОРЕНЦ Хендрик Антон

  • ЛОРЕНЦ Хендрик Антон (1853 - 1928) – нидерландский физик-теоретик, создатель классической электронной теории, член Нидерландской АН.

  • Учился в Лейденском ун-те, В 23г. защитил докторскую диссертацию «К теории отражения и преломления света». В 25 профессор Лейденского ун-та и заведующий кафедрой теоретической физики.

  • Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, дал выражение для силы, действующей на движущийся заряд в электромагнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света. Разработал электродинамику движущихся тел. В 1904 вывел формулы, связывающие между собой пространственные координаты и моменты времени одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца).


Модуль лоренцевой силы:

  • Модуль лоренцевой силы:

  • , (2.5.3)

  • где α – угол между и.

  • Из (2.5.4) видно, что на заряд, движущийся вдоль линии, не действует сила ().

  • Направлена сила Лоренца перпендикулярно к плоскости, в которой лежат векторы и. К движущемуся положительному заряду применимо правило левой руки или

  • «правило буравчика »



к .

  • Направление действия силы для отрицательного заряда – противоположно, следовательно, к электронам применимо правило правой руки .

  • Так как сила Лоренца направлена перпендикулярно движущемуся заряду, т.е. перпендикулярно , работа этой силы всегда равна нулю . Следовательно, действуя на заряженную частицу, сила Лоренца не может изменить кинетическую энергию частицы.

  • Часто лоренцевой силой называют сумму электрических и магнитных сил :

    • (2.5.4)
  • здесь электрическая сила ускоряет частицу, изменяет ее энергию.



  • Повседневно действие магнитной силы на движущийся заряд мы наблюдаем на телевизионном экране (рис. 2.7).

  • Движение пучка электронов по плоскости экрана стимулируется магнитным полем отклоняющей катушки. Если поднести постоянный магнит к плоскости экрана, то легко заметить его воздействие на электронный пучок по возникающим в изображении искажениям.












Тема 10. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ДВИЖУЩИЕСЯ ЗАРЯДЫ В МАГНИТНОМ ПОЛЕ.

10.1. Закон Ампера.

10.3. Воздействие магнитного поля на рамку с током. 10.4. Единицы измерения магнитных величин. 10.5. Сила Лоренца.

10.6. Эффект Холла.

10.7. Циркуляция вектора магнитной индукции.

10.8. Магнитное поле соленоида.

10.9. Магнитное поле тороида.

10.10. Работа по перемещению проводника с током в магнитном поле.

10.1. Закон Ампера.

В 1820 г. А. М. Ампер экспериментально установил, что два проводника с током взаимодействуют друг с другом с силой:

F = k

I 1I 2

где b – расстояние между проводниками, аk – коэффициент пропорциональности зависящий от системы единиц.

В первоначальное выражение закона Ампера не входила никакая величина характеризующая магнитное поле. Потом разобрались, что взаимодействие токов осуществляется через магнитное поле и следовательно в закон должна входить характеристика магнитного поля.

В современной записи в системе СИ, закон Ампера выражается формулой:

Если магнитное поле однородно и проводник перпендикулярен силовым линиям магнитного поля, то

где I = qnυ др S – ток через проводник сечениемS.

Направление силы F определяется направлением векторного произведения или правилом левой руки (что одно и тоже).Ориентируем пальцы по направлению первого вектора, второй вектор должен входить в ладонь и большой палец показывает направление векторного произведения.

Закон Ампера – это первое открытие фундаментальных сил зависящих от скоростей. Сила зависящая от движения! Такого еще не было.

10.2. Взаимодействие двух параллельных бесконечных проводников с током.

Пусть b – расстояние между проводниками. Задачу следует решать так: один из проводниковI 2 создаёт магнитное поле, второйI 1 находится в этом поле.

Магнитная индукция, создаваемая током I 2 на расстоянииb от него:

B 2 = µ 2 0 π I b 2 (10.2.1)

Если I 1 иI 2 лежат в одной плоскости, то угол междуB 2 иI 1 прямой, следовательно

sin (l ,B ) =1 тогда, сила, действующая на элемент токаI 1 dl

F21 = B2 I1 dl=

µ0 I1 I2 dl

2 πb

На каждую единицу длины проводника действует сила

F 21 ед=

I1 I2

(разумеется, со стороны первого проводника на второй действует точно такая же сила). Результирующая сила равна одной из этих сил! Если эти два проводника будут

воздействовать на третий, тогда их магнитные поля B 1 иB 2 нужно сложить векторно.

10.3. Воздействие магнитного поля на рамку с током.

Рамка с током I находится в однородном магнитном полеB , α – угол междуn иB (направление нормали связано с направлением тока правилом буравчика).

Сила Ампера действующая на сторону рамки длиной l равна:

F1 = IlB(B l ).

На другую сторону длиной l действует такая же сила. Получается «пара сил» или «вращающий момент».

M = F1 h = IlB bsinα,

где плечо h = bsinα . Так какlb = S – площадь рамки, тогда можно записать

M = IBS sinα = Pm sinα.

Вот откуда мы писали с вами выражение для магнитной индукции:

где M – вращающий момент силы,P – магнитный момент.

Физический смысл магнитной индукции B – величина численно равная силе, с которой магнитное поле действует на проводник единичной длины по которому течет

единичный ток. B = I F l ; Размерность индукции[ B ] = А Н м . .

Итак, под действием этого вращательного момента рамка повернётся так, что n r ||B . На стороны длинойb тоже действует сила АмпераF 2 – растягивает рамку и так

как силы равны по величине и противоположны по направлению рамка не смещается, в этом случае М = 0, состояние устойчивого равновесия

Когда n иB антипараллельны,M = 0 (так как плечо равно нулю), это состояние, неустойчивого равновесия. Рамка сжимается и, если чуть сместится, сразу возникает

вращающий момент такой что она повернется так, что n r ||B (Рис. 10.4).

В неоднородном поле рамка повернется и будет вытягиваться в область более сильного поля.

10.4. Единицы измерения магнитных величин.

Как вы догадываетесь, именно закон Ампера используется для установления единицы силы тока – Ампера.

Итак, Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстояние один метр, один от другого в вакууме

вызывает между этими проводниками силу в 2 10 − 7 Н м .

I1 I2

где dl = 1 м; b = 1 м; I1

I2 = 1 А;

2 10− 7

Определим отсюда размерность и величину µ 0 :

В СИ: 2·10

µ0 = 4π·10

или µ0 = 4π·10

–7 Гн

В СГС: µ 0 = 1

Био-Савара-Лапласа,

прямолинейного

проводника с током

µ0 I

Можно найти размерность индукции магнитного поля:

4 πb

1 Тл

Один тесла 1 Тл = 104 Гс.

Гаусс – единица измерения в Гауссовой системе единиц (СГС).

1 Тл (один тесла равен магнитной индукции однородного магнитного поля, в котором) на плоский контур с током, имеющим магнитный момент 1 А·м2 действует вращающий момент 1 Н·м.

Единица измерения B названа в честь сербского ученого Николы Тесла (1856 – 1943 г.), имевшего огромное количество изобретений.

Другое определение: 1 Тл равен магнитной индукции при которой магнитный поток сквозь площадку 1 м2 , перпендикулярную направлению поля равен 1 Вб.

Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804 – 1891 г.) – профессора университетов в Галле, Геттингеме, Лейпциге.

Как мы уже говорили, магнитный поток Ф, через поверхность S – одна из характеристик магнитного поля(Рис. 10.5)

Андре-Мари Ампер (фр. Andre-Marie Ampere, 1775-1836) – известнейший французский ученый, прославившийся своими открытиями в области физики, математики и естествознания. Был избран членом многих Академий наук, в том числе Парижской и Петербургской. Ампер – автор теории, объясняющей связь электрических и магнитных явлений, выдвинул гипотезу о происхождении магнетизма и ввел в научный оборот термины «электрический ток» и «электродинамика». Ученому принадлежит открытие воздействия магнитного поля Земли на проводники с током, находящиеся в движении.

Андре Мари Ампер был рожден в Лионе 22 января 1775 года. Его родители были потомственными ремесленниками и несмотря на свое рабочее происхождение имели довольно высокий культурный уровень. Отец будущего ученого Жан Жак Ампер имел хорошее образование, говорил на нескольких древних языках, имел богатую библиотеку и увлекался трудами популярных в то время просветителей. Даже воспитание своих детей он выстраивал в духе педагогической теории Жан Жака Руссо.

Накануне Великой французской революции Жан Жак Ампер был назначен на высокую должность королевского прокурора и несмотря на последовавшее вскоре падение Бастилии и начавшееся гонение на роялистов поддержал революцию. Но ему сильно не повезло. Через несколько лет к власти пришли ультрарадикальные якобинцы, которые начали истреблять многих неугодных, в том числе приверженцев умеренных взглядов, коих придерживался и отец Андре Мари. В итоге арест и неутешительный приговор – казнь на гильотине. «Бритва революции» лишила жизни достойного гражданина Франции в ноябре 1793 года, что стало страшным потрясением для юноши и всех членов семьи. Молодой человек впал в уныние и почти 1,5 года не прикасался к книгам.

С раннего детства талантливый мальчик питал огромную тягу к знаниям. Он не посещал школу, однако смог самостоятельно освоить арифметику и чтение. Уже в 12 лет Ампера многие считали математическим гением, а его личный педагог больше ничему не мог его научить. К 14 годам он освоил всю французскую «Энциклопедию», но особый интерес вызывали физические явления. Андре стал завсегдатаем библиотеки лондонского колледжа, где активно осваивал имеющуюся там литературу. Чтобы читать книги Эйлера и Бернулли он специально выучил латынь.

Первые самостоятельные шаги

Из-за полного безденежья, вызванного конфискацией семейного имущества, Ампер приступает к преподаванию математики в частном пансионе Дюпра и Оливье, параллельно устроившись в школу небольшого городка Бурга, расположенного близ Лиона. В 1802 году он успешно прошел собеседование в комиссии, признавшей его годным к проведению занятий.

Убогая жизнь небогатого учителя только обострила тягу Ампера к науке. Именно в этот период молодой ученый высказал гипотезу, объясняющую магнитные и электрические явления схожими принципами. Причем однажды он озвучил свою догадку в присутствии самого на заседании Лионской академии.

Не остается без внимания и любимая математика, где Ампера привлекает теория вероятности. Вскоре он пишет эссе «Размышление на тему математической теории игр». В нём автор доказывает, что игрок всегда уступит сопернику, имеющему больше денег. Андре Мари сразу заметили в Академии наук и пригласили преподавать в Лионском лицее. Карьера шла в гору и в 1804 году Ампер переезжает в Париж в качестве репетитора местной Политехнической школы. До переезда в столицу случилось очередное горькое событие в его жизни – смерть любимой жены и начавшееся одиночество, которое подстегнуло к переезду.

После трех лет занятия репетиторством наступил период самостоятельных занятий, а вскоре Андре Мари становится профессором математического анализа и экзаменатором по механике. Вместе с этим он трудился в Консультативном бюро ремесел и искусств, а в 1808 году приступил к обязанностям главного инспектора университета, что вынуждало ездить в постоянные командировки.

В 1814 году Ампера избирают в члены Парижской Академии в секции геометрия, что вроде бы свидетельствовало о его сформировавшихся научных интересах. Но жизнь внесла в этот расклад свои коррективы.

Открытие электромагнетизма

В 1820 году Андре Мари посетил заседание Французской Академии наук, на котором была озвучена информация об открытии влияния электричества на магнитную стрелку. Большинство академиков восприняло это как рядовое событие, но только не Ампер. Он незамедлительно приступил к экспериментам, превратив свою маленькую комнату в мини-лабораторию, и даже сам смастерил столик, ставший настоящей реликвией. В течение двух недель он сформулировал свои выводы, которые оказали влияние на многие отрасли науки.

Еще со времен Ньютона утвердилось убеждение о параллельности электричества и магнетизма. Многие были уверены, что каждое из этих явлений живет по своим законам. Факты, полученные Эрстедом, трактовались следующим образом – намагничивание провода происходит в результате воздействия электричества, что и вызывало воздействие на стрелку. Ампер не согласился с общепринятой трактовкой и сформулировал смелую и в чем-то вызывающую идею – магнитных зарядов нет вообще, существуют лишь электрические, а явление магнетизма происходит от перемещения электрических зарядов.

По мнению ученого, магнетизм возникает от огромного количества мельчайших электрических атомных контуров. Каждый из них выступает в качестве своеобразного «магнитного листка» – простейшего магнитного двухполюсника. Поэтому становится ясно, почему магнитные монополя в природе не существуют, в отличие от электрических. Версию Ампера в столь смелой формулировке поддерживают не все ученые, но то что она стала важнейшей предпосылкой для утверждения мысли о единстве природы, сомнений не возникает. Это потребовало дать ответ на некоторые актуальные вопросы, в частности, представить законченную теорию взаимодействия токов. С поставленной задачей на отлично справился сам Ампер.

В 1820 году было сформулировано правило Ампера для определения воздействия магнитного поля на магнитную стрелку. Согласно этому выводу северный полюс будет на конце стержня, находящемся слева от человека, который движется по направлению тока и находится лицом к нему. Вскоре автор подтвердил наличие взаимодействия между электрическими токами, названное законом Ампера. Он показывает силу воздействия магнитного поля в отношении находящегося внутри его проводника. Француз эмпирически доказал, что параллельно находящиеся проводники начинают взаимно притягиваться при движении тока в одном направлении и отталкиваются при его пропускании в обратном.

Направление силы Ампера можно узнать согласно правилу левой руки. Размещаем руку таким образом, чтобы перпендикулярный вектор магнитной индукции умещался в ладони, а четыре пальца находились в вытянутом положении по направлению движения заряженных частиц в проводнике. При этом отставленный под углом 90° большой палец обозначает направление силы Ампера.

Правило левой руки

В 1822 году Андре Мари описал магнитный эффект соленоида. Как утверждал сам Ампер, любой электрический проводник создает рядом с собой магнитное поле. Его силовые линии образуют концентричные по отношению к центральной линии проводника круги, которые находятся в плоскостях, нормальных к элементам проводника. Ещё больший магнитный эффект электричества можно наблюдать при условии скручивания проводящей проволоки в ряд параллельных, взаимно изолированных колец.

Подобную форму проводника ученый назвал соленоидом. Проводя опыты со многими материалами, автор убедился, что железо полностью утрачивает магнитные свойства при нулевом токе, а сталь сохраняет магнетизм на протяжении длительного времени. Но самый большой эффект демонстрировали специально сконструированные электромагниты, по сути железные стержни в проволочной обмотке, по которой пропускали электроток.

Все полученные выводы Андре Мари изложил в собственном научном труде, увидевшем свет в 1826 году и названном «Теория электродинамических явлений, выведенная исключительно из опыта».

Телеграф Ампера

Первые осмысленные попытки создать устройство, способное транслировать некие сигналы на расстояние стали предприниматься в конце XVIII века. Первопроходцами в этом деле стал Ален-Рене Лесаж, создавший простейшую конструкцию из двух приемников и 24 изолированных проволок. Внес свой вклад в развитие этого направления и Ампер. В 1829 году он предложил идею телеграфа, которая основывалась на открытии Эрстеда. Ученый разработал передающее устройство, состоящее из полусотни проводов и 25 магнитных стрелок, прикрепленных к осям. Однако этот проект не нашёл широкого применения, так как был довольно непрактичен. Предполагалось, что для каждого знака будет предназначена отдельная проволока и стрелка.

Можно сказать, что Андре Мари смог опередить ход времени. Тогда еще не существовало устройств, которые бы могли распознавать электрический сигнал. Протягивать для каждой буквы, цифры или знака свой провод очень времязатратно и неэкономично. Однако польза от этого изобретения все же была – сегодня по этому принципу функционируют электромагнитные коммутаторы.

Кибернетика и кое-что ещё

В своей фундаментальной работе «Опыт о философии наук» Ампер дал понятие новой науке кибернетике. Он понимал ее как учение об управлении государством для обеспечения всеобщих благ. Её первая часть увидела свет в 1834 году, а вторая была издана уже после кончины автора в 1843 году. Важным элементом кибернетики Андре Мари называл теорию законов. По его мнению, она должна изучать происхождение законов, предвосхищая последствия, порождаемые ими. Автор подчеркивал принципиальное значение личности управленца, поэтому выступал за отбор лучших кандидатов, которым по силам справляться со своими обязанностями.

Также Ампер вывел необходимость существования ещё одного научного направления, как ответвления от кибернетики – ценольбологии, то есть науки об общественном счастье. Он ставил перед ней задачу определить лучшие условия жизни народов, чтобы создать оптимальную для этого экономическую систему. Фактически Андре Мари поднял вопрос о рациональности ведения хозяйства людьми, что должно способствовать всеобщему счастью.

Среди изобретений ученого были и вещи иного характера. Так, Ампер пытался создать новый язык международного общения, оптимизировал конструкции воздушных змеев и планировал написать эпическую поэму. Француз одним из первых стал рассматривать дифференциальные уравнения с частными производными, которые стали называть именем Монжа-Ампера. В химии независимо от Амедео Авогадро Ампер смог вывести закон молярных объемов газов. Кроме того, он предпринимал попытки систематизировать химические элементы по их свойствам.

Андре Мари Ампер скончался от осложнений, связанных с пневмонией 10 июня 1836 года, когда находился в очередной командировке в качестве главного инспектора.

  • Как и многие выдающиеся ученые, Ампер ввел в научный оборот ряд новых терминов, среди которых электродинамика, кибернетика и кинематика.
  • Помимо математики и физики, Андре Мари преуспел и в других научных областях. В частности, его заслуги отмечены в химии, ботанике, лингвистике и даже философии.
  • Во время чтения доклада Ампером о взаимодействии проводников с токами кто-то из ученых воскликнул, что ничего нового не услышал. Ведь если токи влияют на магнитную стрелку, то они способны воздействовать друг на друга. От такого наступления докладчик совсем растерялся, но положение спас его коллега Араго. Он достал из кармана два ключа и сказал, что каждый из них воздействует на стрелку, но не влияет друг на друга.
  • Ампер не учился в школе ни одного дня, но благодаря невероятной тяге к знаниям сумел стать одним из образованнейших людей своего времени.
  • Имя Андре Мари внесено в перечень самых великих ученых Франции, который находится на первом этаже Эйфелевой башни.
  • В 1881 году на первом Международном конгрессе электриков, который состоялся в Париже, в честь Ампера была названа единица силы тока.

Видео

Андре Мари Ампер и электромагнетизм.

Андре Мари Ампер

Ампер (Ampere) Андре Мари (AMPERE Andre-Marie) (1775-1836), французский ученый, иностранный член Петербургской АН (1830), один из основоположников электродинамики. Предложил правило, названное его именем, открыл (1820) механическое взаимодействие токов и установил закон этого взаимодействия (закон Ампера). Построил первую теорию магнетизма.

Ампер (Ampere Andre Marie) - знаменитый математик и естествоиспытатель, родившийся в Лионе 22 янв. 1775 г.; по смерти своего отца, гильотинированного в 1793 г., А. был сперва репетитором в политехнической школе в Париже, затем занимал сначала кафедру физики в Бурге, а с 1805 года кафедру математики в парижской политехнической школе, где он проявил себя и на литературном поприще, впервые выступив с сочинением: "Considerations sur la theorie mathematique dujeu" (Лион, 1802 г.). В 1814 г. он сделался членом академии наук, в 1824 г. - профессором экспериментальной физики в College ае France; умер 10-го июня 1836 г. в Марселе. Математика, механика и физика обязаны А. важными исследованиями; его электродинамическая теория стяжала ему неувядаемую славу. Его взгляд на единую первоначальную сущность электричества и магнетизма, в чем он по существу сходился с датским физиком Эрштедтом, превосходно изложен им в "Recueil d"observations lectrodynamiques" (Париж, 1822), в "Precis de la theorie des phenomenes electrodynamiques" (Париж, 1824 г.) и в "Theorio des phenomenes electrodynamiques". Разносторонний талант А. не остался безучастным и в истории развитая химии, которая отводить ему одну из почетных страниц и считает его, совместно с Авогадро автором важнейшего закона современной химии. В честь этого ученого единица силы гальванического тока названа "ампером", а измерительные приборы-"амперометрами". (Ср. Оствальд, "Klassiker der exacten Wissenschaften ј8". "Die Grnindlagen der Molekulartbeorie", Abhandlangen v. A. Avogadro und Ampere, 1889). Кроме этого Амперу принадлежит еще труд "Essais sui la philosophie des Sciences" (2 т., 1834-43; 2-е издание, 1857). Ср. Бартелеми и Сентилер, "Philosophie ае deux Amperes" (Париж, 1866 г.). .

Ф.А. Брокгауз, И.А. Ефрон Энциклопедический словарь.

Ампер, став позже воистину великим учёным, начинал свою карьеру репетитором. И нет в том ничего зазорного. И не только во времена Ампера, но тем более сегодня. Вообще мы живём во время странных и нездоровых парадоксов. Оказывается, что заказать контрольную у репетитора и сдать её учителю есть зло великое. И это в то самое время, когда на всю Ивановскую провозглашается, что государственные чиновники, медицинские работники и школьные учителя с вузовскими преподавателями - всего лишь работники, так сказать, сферы услуг! И возмущает вовсе тут не то, что это на самом деле не так (особенно, конечно, в части "услужливых" чиновников бюрократического аппарата). Возмущает, что всех нас заставляют поверить в эту ложь. Помогать школьникам и студентам за деньги это, видите ли, плохо. А с высокой трибуны, будучи госчиновником высокого уровня, врать, что "в России олигархов не существует" это нормально. Вот до чего доводит плюрализм в одной голове!

Ампер Андре Мари

Андре Мари Ампер родился 22 января 1775 года. Его отец Жан-Жак Ампер вместе со своими братьями торговал лионскими шелками. Мать Жанна Сарсе - дочь одного из крупных лионских торговцев. Детство Андре прошло в небольшом поместье Полемье, купленном отцом в окрестностях Лиона.

Он никогда не ходил в школу, но чтению и арифметике выучился очень быстро. Уже в 14 лет он прочитал все двадцать восемь томов французской "Энциклопедии". Особый интерес Андре проявлял к физико-математическим наукам. Андре начал посещать библиотеку Лионского колледжа, чтобы читать труды великих математиков.

В возрасте тринадцати лет, он представил в Лионскую академию свои первые работы по математике.

В 1793 году в Лионе вспыхнул мятеж, который вскоре был подавлен. За сочувствие мятежникам был обезглавлен Жан-Жак Ампер. По приговору суда почти все имущество было конфисковано. Ампер решил переселиться в Лион и давать частные уроки математики.

В 1802 году Ампера пригласили преподавать физику и химию в Центральную школу города Бурк-ан-Бреса, в шестидесяти километрах от Лиона.

В конце 1804 года Ампер покинул Лион и переехал в Париж, где он получил должность преподавателя Политехнической школы. Основная задача школы заключалась в подготовке высокообразованных технических специалистов с глубокими знаниями физико-математических наук.

В 1807 году Ампер был назначен профессором Политехнической школы. В 1808 году он получил место главного инспектора университетов. Время расцвета научной деятельности Ампера приходится на 1814-1824 годы и связано с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики.

Практически до 1820 года основные интересы ученого сосредоточивались на проблемах математики, механики и химии. Вопросами физики в то время он занимался очень мало. Ампер всегда рассматривал математику как мощный аппарат для решения разнообразных прикладных задач физики и техники. Не оставляет он и занятий химией. К его достижениям в области химии отнестится открытие, независимо от Авогадро, закона равенства молярных объемов различных газов.

В 1820 году физик Эрстед обнаружил, что вблизи проводника с током отклоняется магнитная стрелка. Так было открыто свойство электрического тока - создавать магнитное поле. Ампер подробно исследовал это явление и открыл взаимодействие токов.

Он установил, что два параллельных провода, по которым течет ток в одинаковом направлении, притягиваются друг к другу, а если направления токов противоположны, провода отталкиваются. Ампер объяснил это явление взаимодействием магнитных полей, которые создают токи. О полученных результатах Ампер сразу же сообщил в Академию. На заседании 25 сентября он развил эти идеи далее, демонстрируя опыты, в которых спирали, обтекаемые током (соленоиды), взаимодействовали друг с другом как магниты.

Ампер решил найти закон взаимодействия токов в виде строгой математической формулы и нашел этот закон, который носит теперь его имя. Так шаг за шагом в работах Ампера вырастала новая наука - электродинамика, основанная на экспериментах и математической теории. С 1820 по 1826 год Ампер публикует ряд теоретических и экспериментальных работ по электродинамике. В 1826 году выходит из печати "Теория электродинамических явлений, выведенная исключительно из опыта".

В 1824 году Ампер был избран на должность профессора Коллеж де Франс. Ему предоставили кафедру общей и экспериментальной физики.

В 1835 году он опубликовал работу, в которой доказал сходство между световым и тепловым излучениями и показал, что все излучения при поглощении превращаются в тепло. Ампер разработал систему классификации наук, которую намеревался изложить в двухтомном сочинении. В 1834 году вышел первый том "Опыты философии наук или аналитического изложения естественной классификации всех человеческих знаний". Ампер ввел такие слова, как "электростатика", "электродинамика", "соленоид". Ампер высказал мысль о том, что, вероятно, возникнет новая наука об общих закономерностях процессов управления. Он предложил именовать ее "кибернетикой".

Ампер умер от воспаления легких 10 июля 1836 года в Марселе во время инспекционной поездки. Там же он и был похоронен.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта