Главная » Ядовитые грибы » Зачем адронный коллайдер? Зачем нужен большой адронный коллайдер.

Зачем адронный коллайдер? Зачем нужен большой адронный коллайдер.

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!

Самый мощный в мире ускоритель заряженных частиц на встречных пучках

Самый мощный в мире ускоритель заряженных частиц на встречных пучках, построенный Европейским центром по ядерным исследованиям (CERN) в подземном тоннеле протяженностью 27 километров на глубине 50-175 метров на границе Швейцарии и Франции. БАК был запущен осенью 2008 года, однако из-за аварии эксперименты на нем начались только в ноябре 2009 года, а на проектную мощность он вышел в марте 2010 года. Запуск коллайдера привлек внимание не только физиков, но и простых обывателей, поскольку в СМИ высказывались опасения по поводу того, что эксперименты на коллайдере могут привести к концу света. В июле 2012 года было объявлено об обнаружении при помощи БАК частицы, которая с высокой вероятностью представляла собой бозон Хиггса - его существование подтверждало правильность Стандартной модели строения вещества.

Предыстория

Впервые ускорители частиц стали использоваться в науке в конце 20-х годов XX века для исследования свойств материи. Первый кольцевой ускоритель, циклотрон, был создан в 1931 году американским физиком Эрнестом Лоуренсом (Ernest Lawrence). В 1932 году англичанин Джон Кокрофт (John Cockcroft) и ирландец Эрнест Уолтон (Ernest Walton) при помощи умножителя напряжения и первого в мире ускорителя протонов сумели впервые осуществить искусственное расщепление ядра атома: при бомбардировке лития протонами был получен гелий. Ускорители частиц работают за счет электрических полей, которые используются для ускорения (во многих случаях до скоростей, приближенных к скорости света) и удержания на заданной траектории заряженных частиц (например, электронов, протонов или более тяжелых ионов). Простейший бытовой пример ускорителей - это телевизоры с электронной лучевой трубкой , , , , .

Ускорители используются для разнообразных экспериментов, в том числе для получения сверхтяжелых элементов . Для исследования элементарных частиц также используются коллайдеры (от collide - "столкновение") - ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. Ученые придают пучкам большие кинетические энергии. При столкновениях могут образоваться новые, ранее неизвестные частицы. Специальные детекторы призваны уловить их появление . На начало 1990-х годов наиболее мощные коллайдеры действовали в США и Швейцарии . В 1987 году в США недалеко от Чикаго был запущен коллайдер Тэватрон (Tevatron) с максимальной энергией пучка 980 гигаэлектронвольт (ГэВ). Он представляет собой подземное кольцо длиной 6,3 километра , , . В 1989 году в Швейцарии под эгидой Европейского центра по ядерным исследованиям (CERN) был введен в эксплуатацию Большой электрон-позитронный коллайдер (LEP). Для него на глубине 50-175 метров в долине Женевского озера был построен кольцевой тоннель длинной 26,7 километра, в 2000 году на нем удалось добиться энергии пучка в 209 ГэВ , , , .

В СССР в 1980-е годы был создан проект Ускорительно-накопительного комплекса (УНК) - сверхпроводящего протон-протонного коллайдера в Институте физики высоких энергий (ИФВЭ) в Протвино. Он превосходил бы по большинству параметров LEP и Тэватрон и должен был позволить разгонять пучки элементарных частиц с энергией 3 тераэлектронвольта (ТэВ). Его основное кольцо длиной 21 километр был построено под землей в 1994 году, однако из-за нехватки средств проект в 1998 году был заморожен, построенный в Протвино тоннель - законсервирован (были достроены только элементы разгонного комплекса), а главный инженер проекта Геннадий Дуров уехал на работу в США , , , , , , , . По мнению некоторых российских ученых, если бы УНК был достроен и введен в строй, не было бы необходимости в создании более мощных коллайдеров , , : высказывалось предположение, что для получения новых данных о физических основах мироустройства достаточно было преодолеть на ускорителях порог энергии в 1 ТэВ , . Заместитель директора НИИ ядерной физики МГУ и координатор участия российских институтов в проекте создания Большого адронного коллайдера Виктор Саврин, вспоминая об УНК, утверждал: "Ну три тераэлектронвольта или семь. А там три тераэлектронвольта можно было довести до пяти потом" . Впрочем, США тоже отказались от строительства собственного Сверхпроводимого суперколлайдера (SSC) в 1993 году, причем по финансовым соображениям , , .

Вместо строительства собственных коллайдеров физики разных стран решили объединиться в рамках международного проекта, идея создания которого зародилась еще в 1980-х годах , . После окончания экспериментов на швейцарском LEP его оборудование было демонтировано, и на его месте начато строительство Большого адронного коллайдера (БАК, Large Hadron Collider, LHC) - самого мощного в мире кольцевого ускорителя заряженных частиц на встречных пучках, на котором будут сталкиваться пучки протонов с энергиями столкновения до 14 ТэВ и ионы свинца с энергиями столкновения до 1150 ТэВ , , , , , .

Цели эксперимента

Основной целью строительства БАК было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, описывающей элементарные частицы и три из четырех фундаментальных взаимодействия: сильное, слабое и электромагнитное, за исключением гравитационного , . Формирование Стандартной модели было завершено в 1960-1970-х годах, и все сделанные с тех пор открытия, по мнению ученых, описывались естественными расширениями этой теории , . При этом Стандартная модель объясняла, каким образом взаимодействуют элементарные частицы, но не отвечала на вопрос, почему именно так, а не иначе .

Ученые отмечали, что если бы на БАК не удалось добиться открытия бозона Хиггса (в прессе его иногда называли "частицей бога" , , ) - это поставило бы под вопрос всю Стандартную модель, что потребовало бы полного пересмотра существующих представлений об элементарных частицах , , , , . В то же время в случае подтверждения Стандартной модели некоторые области физики требовали дальнейшей экспериментальной проверки: в частности, нужно было доказать существование "гравитонов" - гипотетических частиц, отвечавших за гравитацию , , .

Технические особенности

БАК располагается в тоннеле, построенном для LEP. Большая его часть лежит под территорией Франции . Тоннель содержит две трубы, которые почти на всей своей протяженности идут параллельно и пересекаются в местах расположения детекторов, в которых будут осуществляться столкновения адронов - частиц, состоящих из кварков (для столкновений будут использоваться ионы свинца и протоны). Разгоняться протоны начинают не в самом БАК, а во вспомогательных ускорителях. Пучки протонов "стартуют" в линейном ускорителе LINAC2, затем в ускорителе PS, после чего они попадают в кольцо супер протонного синхротрона (SPS) длинной 6,9 километра и уже после этого оказываются в одной из труб БАК, где еще в течение 20 минут им будет придана энергия до 7 ТэВ. Эксперименты с ионами свинца будут начинаться в линейном ускорителе LINAC3. Пучки удерживаются на траектории 1600 сверхпроводящими магнитами, многие из которых весят до 27 тонн. Эти магниты охлаждаются жидким гелием до сверхнизкой температуры: 1,9 градуса выше абсолютного нуля, холоднее открытого космоса , , , , , , , .

На скорости в 99,9999991 процента скорости света, совершая более 11 тысяч кругов по кольцу коллайдера в секунду, протоны будут сталкиваться в одном из четырех детекторов - наиболее сложных систем БАК , , , , , . Детектор ATLAS предназначен для поиска новых неизвестных частиц, которые могут подсказать ученым пути поиска "новой физики", отличной от Стандартной модели. Детектор CMS предназначен для получения бозона Хиггса и исследования темной материи. Детектор ALICE предназначен для исследований материи после Большого Взрыва и поиска кварк-глюонной плазмы, а детектор LHCb будет исследовать причину превалирования материи над антиматерией и исследовать физику b-кварков , . В будущем планируется ввести в строй еще три детектора: TOTEM, LHCf и MoEDAL , .

Для обработки результатов экспериментов на БАК будет использоваться выделенная распределенная компьютерная сеть GRID, способная передавать до 10 гигабит информации в секунду в 11 вычислительных центров по всему миру. Каждый год с детекторов будет считываться более 15 петабайт (15 тысяч терабайт) информации: суммарный поток данных четырех экспериментов может достигать 700 мегабайт в секунду , , , , . В сентябре 2008 года хакерам удалось взломать веб-страницу CERN и, по их заявлениям, получить доступ к управлению коллайдером. Однако сотрудники CERN объяснили, что система управления БАК изолирована от интернета . В октябре 2009 года по подозрению в сотрудничестве с террористами был арестован Адлен Ишор , который был одним из ученых работавших над экспериментом LHCb на БАК. Впрочем, как сообщило руководство CERN, Ишор не имел доступа к подземным помещениям коллайдера и не занимался ничем, что могло было заинтересовать террористов , . В мае 2012 года Ишор был осужден на пять лет тюрьмы .

Стоимость и история строительства

В 1995 году стоимость создания БАК оценивалась в 2,6 миллиарда швейцарских франков без учета стоимости проведения экспериментов . Планировалось, что эксперименты должны будут начаться через 10 лет - в 2005 году . В 2001 году бюджет CERN был сокращен, а к стоимости строительства было добавлено 480 миллионов франков (общая стоимость проекта к тому времени составляла около 3 миллиардов франков), и это привело к тому, что пуск коллайдера был отложен до 2007 года . В 2005 году при строительстве БАК погиб инженер: причиной трагедии стало падение груза с крана .

Запуск БАК переносился не только из-за проблем с финансированием. В 2007 году выяснилось, что поставленные Fermilab детали для сверхпроводящих магнитов не удовлетворяли конструкционным требованиям, из-за чего запуск коллайдера был перенесен на год .

10 сентября 2008 года в БАК был запущен первый пучок протонов . Планировалось, что через несколько месяцев на коллайдере будут осуществлены первые столкновения , однако 19 сентября из-за дефектного соединения двух сверхпроводящих магнитов на БАК произошла авария: магниты были выведены из строя, в тоннель вылилось более 6 тонн жидкого гелия, в трубах ускорителя был нарушен вакуум. Коллайдер пришлось закрыть на ремонт. Несмотря на аварию 21 сентября 2008 года состоялась торжественная церемония введения БАК в строй. Первоначально опыты собирались возобновить уже в декабре 2008 года, однако затем дата повторного запуска была перенесена на сентябрь, а после - на середину ноября 2009 года, при этом первые столкновения планировалось провести лишь в 2010 году , , , . Первые после аварии тестовые запуски пучков ионов свинца и протонов по части кольца БАК были произведены 23 октября 2009 года , . 23 ноября в детекторе ATLAS были произведены первые столкновения пучков , а 31 марта 2010 года коллайдер заработал на полную мощность: в тот день было зарегистрировано столкновение пучков протонов на рекордной энергии в 7 ТэВ . В апреле 2012 года была зафиксирована еще большая энергия столкновений протонов - 8 ТэВ .

В 2009 году стоимость БАК оценивалась от 3,2 до 6,4 миллиарда евро, что делало его самым дорогим научным экспериментом в истории человечества .

Международное сотрудничество

Отмечалось, что проект масштаба БАК не под силу создать одной стране . Он создавался усилиями не только 20 государств-участников CERN: в его разработке принимали участие более 10 тысяч ученых из более чем ста стран земного шара , , . С 2009 года проектом БАК руководит генеральный директор CERN Рольф-Дитер Хойер (Rolf-Dieter Heuer) . В создании БАК принимает участие и Россия как член-наблюдатель CERN : в 2008 году на Большом адронном коллайдере работало около 700 российских ученых, в их числе были сотрудники ИФВЭ , .

Между тем, ученые одной из европейских стран едва не лишились возможности принять участие в экспериментах на БАК. В мае 2009 года министр науки Австрии Йоханнес Хан (Johannes Hahn) заявил о выходе страны из CERN с 2010 года, объяснив это тем, что членство в CERN и участие в программе создания БАК слишком затратно и не приносит ощутимой отдачи науке и университетам Австрии. Речь шла о возможной ежегодной экономии примерно 20 миллионов евро, составлявших 2,2 процента бюджета CERN и около 70 процентов средств, выделяемых на австрийским правительством на участие в международных исследовательских организациях. Окончательное решение о выходе Австрия пообещала принять осенью 2009 года . Впрочем, впоследствии австрийский канцлер Вернер Файман (Werner Faymann) заявил, что его страна не собирается уходить из проекта и CERN .

Слухи об опасности

В прессе циркулировали слухи о том, что БАК представляет опасность для человечества, поскольку его запуск может привести к концу света. Поводом стали заявления ученых о том, что в результате столкновений в коллайдере могут образоваться микроскопические черные дыры: сразу появились мнения о том, что в них может "засосать" всю Землю, и потому БАК является настоящим "ящиком Пандоры" , , , , . Также высказывались мнения о том, что обнаружение бозона Хиггса приведет к бесконтрольному росту массы во Вселенной, а эксперименты по поиску "темной материи" могут привести к появлению "страпелек" (strangelets, перевод термина на русский язык принадлежит астроному Сергею Попову ) - "странной материи", которая при соприкосновении с обычной материей может превратить ее в "страпельку". При этом приводилось сравнение с романом Курта Воннегута (Kurt Vonnegut) "Колыбель для кошки", где вымышленный материал "лед-девять" уничтожил жизнь на планете , . Некоторые издания, ссылаясь на мнения отдельных ученых, заявляли также о том, что эксперименты на БАК могут привести к появлениям "чревоточин" (wormholes) во времени, через которые в наш мир из будущего могут перенестись частицы или даже живые существа , . Впрочем, оказалось, что слова ученых были искажены и неверно интерпретированы журналистами: изначально речь шла "о микроскопических машинах времени, при помощи которых путешествовать в прошлое смогут только отдельные элементарные частицы" , .

Ученые неоднократно заявляли о том, что вероятность подобных событий ничтожно мала. Была даже собрана специальная Группа оценки безопасности БАК, которая провела анализ и выступила с отчетом о вероятности катастроф, к которым могут привести эксперименты на БАК. Как сообщили ученые, столкновения протонов на БАК будут не опаснее, чем столкновения космических лучей со скафандрами космонавтов: они имеют иногда даже большую энергию, чем та, что может быть достигнута в БАК. А что касается гипотетических черных дыр, то они "рассосутся", не долетев даже до стенок коллайдера , , , , , .

Впрочем, слухи о возможных катастрофах все равно держали общественность в напряжении. На создателей коллайдера даже подавали в суд: самые известные иски принадлежали американскому юристу и врачу Вальтеру Вагнеру (Walter Wagner) и профессору химии из Германии Отто Ресслеру (Otto Rossler). Они обвиняли CERN в том, что своим экспериментом организация подвергают опасности человечество и нарушают гарантированное Конвенцией по правам человека "право на жизнь", однако иски были отклонены , , , , . Пресса сообщала, что из-за слухов о скором конце света после запуска БАК в Индии покончила с собой 16-летняя девушка .

В русской блогосфере появился мем "скорее бы коллайдер", который можно перевести как "скорее бы конец света, невозможно больше смотреть на это безобразие" . Популярностью пользовался анекдот "У физиков есть традиция - один раз в 14 миллиардов лет собираться и запускать коллайдер" .

Научные результаты

Первые данные экспериментов на БАК были опубликованы в декабре 2009 года . 13 декабря 2011 года специалисты CERN заявили, что в результате исследований на БАК им удалось сузить границы вероятной массы бозона Хиггса до 115,5-127 ГэВ и обнаружить признаки существования искомой частицы с массой около 126 ГэВ , . В том же месяце было впервые объявлено об открытии в ходе экспериментов на БАК новой частицы, не являвшейся бозоном Хиггса и получившей название χb (3P) , .

4 июля 2012 года руководство CERN официально заявило об обнаружении с вероятностью 99,99995 процента новой частицы в области масс около 126 ГэВ, которая, по предположениям ученых, скорее всего и была бозоном Хиггса. Этот результат руководитель одной из двух научных коллабораций, работавших на БАК, Джо Инкандела (Joe Incandela) назвал "одним из величайших наблюдений в этой области науки за последние 30-40 лет", а сам Питер Хиггс объявил обнаружение частицы "концом целой эры в физике" , , .

Будущие проекты

В 2013 году CERN планирует модернизировать БАК, установив на него более мощные детекторы и увеличив общую мощность коллайдера. Проект модернизации называют Супер большим адронным коллайдером (Super Large Hadron Collider, SLHC) . Также планируется строительство Международного линейного коллайдера (International Linear Collider, ILC). Его труба будет длиной в несколько десятков километров, и он должен быть дешевле БАК за счет того, что в его конструкции не требуется применять дорогостоящие сверхпроводящие магниты. Строить ILC, возможно, будут в Дубне , , .

Также некоторые специалисты CERN и ученые США и Японии предлагали после окончания работы БАК начать работу над новым Очень большим адронным коллайдером (Very Large Hadron Collider, VLHC) , .

Использованные материалы

Chris Wickham, Robert Evans . "It"s a boson:" Higgs quest bears new particle. - Reuters , 05.07.2012

Lucy Christie, Marie Noelle Blessig . Physique: decouverte de la "particule de Dieu"? - Agence France-Presse , 04.07.2012

Dennis Overbye . Physicists Find Elusive Particle Seen as Key to Universe. - The New York Times , 04.07.2012

Adlene Hicheur condamne a cinq ans de prison, dont un avec sursis. - L"Express , 04.05.2012

Particle collider escalates quest to explore universe. - Agence France-Presse , 06.04.2012

Jonathan Amos . LHC reports discovery of its first new particle. - BBC News , 22.12.2011

Леонид Попов . На БАК поймана первая новая частица. - Membrana , 22.12.2011

Stephen Shankland . CERN physicists find hint of Higgs boson. - CNET , 13.12.2011

Paul Rincon . LHC: Higgs boson "may have been glimpsed". - BBC News , 13.12.2011

Yes, we did it! - CERN Bulletin , 31.03.2010

Richard Webb . Physicists race to publish first results from LHC. - New Scientist , 21.12.2009

Press Release . Two circulating beams bring first collisions in the LHC. - CERN (cern.ch) , 23.11.2009

Particles are back in the LHC! - CERN (cern.ch) , 26.10.2009

First lead ions in LHC. - LHC Injection Tests (lhc-injection-test.web.cern.ch) , 26.10.2009

Charles Bremner, Adam Sage . Hadron Collider physicist Adlene Hicheur charged with terrorism. - The Times , 13.10.2009

Dennis Overbye . French Investigate Scientist in Formal Terrorism Inquiry. - The New York Times , 13.10.2009

What"s left of the Superconducting Super Collider? - The Physics Today , 06.10.2009

LHC to run at 3.5 TeV for early part of 2009-2010 run rising later. - CERN (cern.ch) , 06.08.2009

LHC Experiments Committee. - CERN (cern.ch) , 30.06.2009

В этом вопросе (и ему подобных) любопытно появление слов «на самом деле» – как будто есть некая скрытая от непосвящённых суть, охраняемая «жрецами науки» от обывателей, тайна, которую нужно раскрыть. Однако при взгляде изнутри науки тайна исчезает и места этим словам нет – вопрос «зачем нужен адронный коллайдер» ничем принципиально не отличается от вопроса «зачем нужна линейка (или весы, или часы и т.д.)». То, что коллайдер – штука большая, дорогая и по любым меркам сложная – дела не меняет.

Наиболее близкой аналогией, позволяющей понять, «зачем это нужно», является, на мой взгляд, линза. Человечество знакомо со свойствами линз с незапамятных времён, однако только в середине прошлого тысячелетия было понято, что определённые комбинации линз могут быть использованы как приборы, позволяющие рассматривать очень маленькие либо очень далёкие объекты – речь идёт, конечно, о микроскопе и телескопе. Нет никаких сомнений, что вопрос, зачем всё это нужно, неоднократно задавался при появлении этих новых для современников конструкций. Однако он снялся с повестки дня сам собой, по мере того, как ширились области научного и прикладного применения и того, и другого устройства. Заметим, что, вообще говоря, это разные приборы – рассматривать звёзды в перевёрнутый микроскоп не получится. Большой адронный коллайдер же, парадоксальным образом, объединяет их в себе, и может с полным основанием рассматриваться как высшая достигнутая человечеством точка эволюции как микроскопов, так и телескопов за прошедшие века. Это утверждение может показаться странным, и, разумеется, его не следует понимать буквально – в ускорителе нет линз (по крайней мере, оптических). Но по сути дела это именно так. В своей «микроскопной» ипостаси коллайдер позволяет изучать структуру и свойства объектов на уровне 10-19 метров (напомню, что размер атома водорода – примерно 10-10 метра). Ещё интереснее обстоит дело в «телескопной» части. Каждый телескоп – самая настоящая машина времени, так как наблюдаемая в нём картина соответствует тому, каким был объект наблюдения в прошлом, а именно то время назад, которое необходимо электромагнитному излучению, чтобы дойти от этого объекта до наблюдателя. Это время может составлять восемь с небольшим минут в случае наблюдения Солнца с Земли и до миллиардов лет при наблюдении далёких квазаров. Внутри Большого адронного коллайдера создаются условия, которые существовали во Вселенной через ничтожную долю секунды после Большого взрыва. Таким образом, мы получаем возможность заглянуть в прошлое почти на 14 миллиардов лет, к самому началу нашего мира. Обычные земные и орбитальные телескопы (по крайней мере, те, которые регистрируют электромагнитное излучение), обретают «зрение» лишь после эры рекомбинации, когда Вселенная стала оптически прозрачной – это произошло по современным представлениям через 380 тысяч лет после Большого взрыва.

Дальше нам предстоит решать – что делать с этим знанием: как об устройстве материи на малых масштабах, так и об её свойствах при рождении Вселенной, и именно это в конечном итоге вернёт тайну, о которой шла речь в начале, и определит, зачем же коллайдер был нужен «на самом деле». Но это решение человека, коллайдер же, с помощью которого было получено это знание, останется всего лишь прибором – возможно, самой изощрённой системой «линз», которую когда-либо видел мир.

Карта с нанесённым на неё расположением Коллайдера

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн , получившая своё развитие в М-теории (теории бран), теория супергравитации , петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии » - например, теория струн , которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

История строительства

27-километровый подземный туннель, предназначенный для размещения ускорителя LHC

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году , после окончания работы предыдущего ускорителя - Большого электрон-позитронного коллайдера .

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·10 12 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·10 9 электронвольт) на каждую пару сталкивающихся нуклонов . Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов - протон-антипротонный коллайдер Тэватрон , который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии . Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита , общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года . Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

Технические характеристики

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме . Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт . Предположительные энергозатраты всего кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы .

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид . Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home .

Неконтролируемые физические процессы

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте. Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр , а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными. Английский физик-теоретик Эдриан Кент опубликовал научную статью с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10 -31 .

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля , Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене . Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи (США) был подан иск Уолтера Вагнера (англ. Walter L. Wagner ) и Луиса Санчо (англ. Luis Sancho ), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Сравнение с природными скоростями и энергиями

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах . Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности , являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени .

Примечания

  1. The ultimate guide to the LHC (англ.) P. 30.
  2. LHC: ключевые факты . «Элементы большой науки». Проверено 15 сентября 2008.
  3. Tevatron Electroweak Working Group, Top Subgroup
  4. LHC synchronization test successful (англ.)
  5. Второй тест системы инжекции прошёл с перебоями, но цели достиг . «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
  6. LHC milestone day gets off to fast start
  7. First beam in the LHC - accelerating science .
  8. Mission complete for LHC team . physicsworld.com. Проверено 12 сентября 2008.
  9. На LHC запущен стабильно циркулирующий пучок . «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
  10. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок . «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
  11. Большой адронный коллайдер возобновит работу не раньше весны - ЦЕРН . РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
  12. http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
  13. https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
  14. https://lhc2008.web.cern.ch/LHC2008/inauguration/index.html
  15. Ремонт поврежденных магнитов будет более объемным, чем казалось ранее . «Элементы большой науки» (09 ноября 2008). Проверено 12 ноября 2008.
  16. Расписание на 2009 год . «Элементы большой науки» (18 января 2009). Проверено 18 января 2009.
  17. Пресс-релиз ЦЕРН
  18. Утверждён план работы Большого адронного коллайдера на 2009-2010 годы . «Элементы большой науки» (6 февраля 2009). Проверено 5 апреля 2009.
  19. The LHC experiments .
  20. «Ящик Пандоры» открывается . Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
  21. The Potential for Danger in Particle Collider Experiments (англ.)
  22. Dimopoulos S., Landsberg G. Black Holes at the Large Hadron Collider (англ.) Phys. Rev. Lett. 87 (2001)
  23. Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
  24. Review of the Safety of LHC Collisions LHC Safety Assessment Group
  25. Критический обзор рисков ускорителей . Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
  26. Какова вероятность катастрофы на LHC?
  27. Судный день
  28. Asking a Judge to Save the World, and Maybe a Whole Lot More (англ.)
  29. Объяснение того, почему БАК будет безопасным (англ.)
  30. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-es.pdf (исп.)
  31. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-de.pdf (нем.)
  32. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-fr.pdf (фр.)
  33. H. Heiselberg. Screening in quark droplets // Physical Review D. - 1993. - Т. 48. - № 3. - С. 1418-1423. DOI :10.1103/PhysRevD.48.1418
  34. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. - 2006. - Т. 73, 114016.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта