Главная » Заготовка и хранение » Где применяют литий. Литий – металл или неметалл? Свойства и применение лития

Где применяют литий. Литий – металл или неметалл? Свойства и применение лития

Описание и свойства лития

Литий – элемент , с отношением к первой группе, во втором периоде таблицы, его атомный номер – 3. Формула лития — Li 2 O. Элемент открыли в 1817 г., был произведён только 1825 г. Название дословно переводится как «камень».

Литий – это металл, с щелочными свойствами, серебристого цвета, обладающий выраженными пластичными свойствами. Легко поддаётся обработке. Характерен наиболее большой температурой плавления, это 180,54º С, кипения — 1340º С и низкой плотностью по сравнению с остальными металлами щелочного ряда. Его плотность ниже плотности воды. Это позволяет ему оставаться на плаву на водной поверхности и даже в керосине.

Атом лития своими небольшими размерами позволяет металлу выказывать определённые свойства. Смешение с натрием происходит только в определённой температуре,а с цезием, рубидием и кадмием, он не смешиваться вовсе. Остальные металлы этого ряда подобными свойствами не обладают.

Не смотря на то, что литий это металл с щелочных свойств, он наименее активный из всех прочих, и с кислородом не взаимодействует, с сухим тоже. Поэтому хранить его в керосине, защищая от взаимодействия с кислородной средой, как это делается с другим щелочным металлам, нет необходимости.

К тому же это бесполезно – на практике он всё равно всплывёт на поверхность. Поэтому его можно спокойно хранить на открытом воздухе длительное время, не опасаясь, что в нём произойдут нежелательные изменения.

При достаточной влажности происходит реакция с азотом и другими газами, растворёнными в воздухе. Превращения зависят от свойств контактирующего агента (газа). Может образоваться гидроксид, карбонат или нитрит лития . В процессе нагревания в кислородной среде образуется оксид лития Li2O.

Определить литий несложно – оказавшись в открытом пламени, он окрашивает его своеобразными красными оттенками. Самовоспламеняется при 300º С. Следует быть осторожным при этих процессах, так как продукты его горения раздражающе действуют на оболочки дыхательных путей, а также глаза. Также он может вызвать ожоги, попадая на мокрую кожу.

Реакция на воду спокойная, при неё образуется гидроксид лития и водород. Также характерны реакции с этилом, водородом, и аммиаком. Реакция на серу происходит при 130º С, с образованием сульфидов. На углерод реагирует при 200º С, в полном вакууме, во время этого образуется ацетиленид. Растворяясь в аммиаке, образует раствор синеватого цвета.

При необходимости длительного хранения литий хранится в отдельных коробках из жести, погружённый в петролинейный эфир или парафин.

Месторождения и добыча лития

Литий представитель литофильных фрагментов ионного происхождения, из них можно отметить цезий, калий и рубидий. К основным минералам, содержащим литий, относятся пироксен, сподумен, и лепидолит. Помимо его нахождения в самостоятельно образованных минералах, его можно обнаружить на месте калия в сторонних соединениях.

Образование лития происходит на почве редкометальных гранитных интрузий, в литиеносных пегматитах или гидротермальных месторождениях, которые помимо лития, в комплексе с вольфрамом, висмутом, и т.д. Наиболее высокая концентрация лития, присуща породам онгонитам – гранитам, содержащих большое количество воды и фтористых образований.

В определённом количестве литий содержит вода в сильносолёных озёрах. Его месторождения имеются в Бразилии, Аргентине, Чили, Канаде, США, Конго, Швеции, Испании, Афганистане, Китае, и Австралии. А также в России, где половина залежей содержащих этот элемент, находится в Мурманской области.

Применение лития

Литий применяется в изготовлении керамики и стеклянной продукции, источников напряжения, горюче-смазочных материалов и полимеров, а также в металлургической промышленности и фармацевтике.

Нередко для устройства требуется мощный и ёмкий аккумулятор. Литий наиболее подходящая составляющая для его изготовления. Если для начинки используется литий, батарея прослужит гораздо дольше. Можно отметить, например, литий-ионный тип подзаряжающихся батарей.

Купить аккумуляторы литийного типа можно двух типов. Разница заключается в используемых электролитах. Литий-ионный аккумулятор содержит электролит гелевого типа. Модель используется для питания большинства портативной электротехники, в частности, сотовых телефонах, ноутбуках, цифровых фотоаппаратах и видеокамерах.

Литий-полимерный аккумулятор усовершенствованный вариант первого. В виде начинки используется полимер, содержащий литий. Для устройств имеющих большое потребление энергии, более подходит литий-полимерный вариант.

Также литий добавляют в электролиты других типов аккумулирующих устройств, например, щелочного вида. Это значительно повышает их ёмкость и срок эксплуатации.

Литий, в частности, применяется в металлургической промышленности при изготовления различных необходимых сплавов. Изготовляются сплавы с , , кадмием, магнием, и . Эти сплавы нашли своё применение в различных космических и авиационных технологиях.

Для военных нужд, с применением лития, изготовляются керамические элементы для различной техники и особо крепкое . Также он используется в радиотехнических и оптических областях. Литий также применяется в металлогалогеновых лампах.

Идёт этот металл и на медицинские нужды. Доказано, что в небольшом количестве он необходим для нормальной работы организма. Его содержат все внутренние органы. Он участвует во многих обменных процессах и стимулирует иммунитет. Он применяется в препаратах для лечения психологических заболеваний и благотворно сказывается на работе нервной системы.

Цена лития

До 2008 г цена на литий постепенно росли, потом в связи с экономическим кризисом заметно упали. Если в то время цена на килограмм лития составляла порядком 66 долларов, то позже она понизилась с отметки 6,5 тыс. долларов до 5 тыс. долларов за тонну продукта, и после почти не поменялась. Но данные расценки относятся к товару относительно низкого качества.

На более чистый продукт, идущий, например, на изготовление батарей, идёт соответствующая накрутка около 700-800 $. Производители, несмотря на это, предпочитают доплачивать за качество, поэтому доходы от надбавки пока стабильные. Резкого повышения цен в обозримом будущем не ожидается. Чистый литий купить можно будет, приблизительно, за 6 тыс. долларов за тонну.

Прогнозы мирового рынка лития дают определённые надежды на его развитие. Это в основном обусловлено новыми амбициозными проектами в области строения электромобилей, для которых использоваться будут соответственно литиевые аккумуляторы .

С каждым годом этот проект становится всё более реальным, в связи со злободневностью загрязнения окружающей среды выхлопными газами и повышенным спросом на доступные средства передвижения.

Особенно проблема актуальна для развивающихся стран. Но сама технология ещё сырая, в частности, это проблема с хорошими дорогами, и электрическими заправками. Поэтому крупных подвижек на мировом рынке лития в ближайшие годы не предвидится.

Литий

ЛИ́ТИЙ -я; м. [от греч. lithos - камень, минерал] Химический элемент (Li), мягкий, очень лёгкий щелочной металл серебристо-белого цвета (в природе в чистом виде не встречается).

Ли́тиевый, -ая, -ое.

ли́тий

(лат. Lithium), химический элемент I группы периодической системы, относится к щелочным металлам. Название от греч. líthos - камень (открыт в минерале петалите). Серебристо-белый, самый лёгкий из металлов; плотность 0,533 г/см 3 , t пл 180,5°C. Химически очень активен, окисляется при обычной температуре; реагирует с азотом, образуя нитрид Li 3 N. Минералы - сподумен, лепидолит и др. Изотоп Li - единственный промышленный источник для производства трития. Литий используют для раскисления, легирования и модифицирования сплавов (например, аэрона, склерона), как теплоноситель в ядерных реакторах, компонент сплавов на основе Mg и Al, анод в химических источниках тока; некоторые соединения лития входят в состав пластичных смазок, специальных стёкол, термостойкой керамики, используются в медицине.

ЛИТИЙ

ЛИ́ТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента.
Литий встречается в природе в виде двух стабильных нуклидов (см. НУКЛИД) 6 Li (7,52% по массе) и 7 Li (92,48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) . Конфигурация электронной оболочки нейтрального атома лития 1s 2 2s 1 . В соединениях литий всегда проявляет степень окисления +1.
Металлический радиус атома лития 0,152 нм, радиус иона Li + 0,078 нм. Энергии последовательной ионизации атома лития 5,39 и 75,6 эВ. Электроотрицательность по Полингу 0,98, самая большая у щелочных металлов.
В виде простого вещества литий - мягкий, пластичный, легкий, серебристый металл.
История открытия и получение
Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном (см. АРФВЕДСОН Юхан Август) сначала в минерале петалите (Li,Na), а затем в сподумене (см. СПОДУМЕН) LiAl и в лепидолите (см. ЛЕПИДОЛИТ) KLi 1.5 Al 1.5 (F,OH) 2 . Свое название получил из-за того, что был обнаружен в «камнях» (греч. Litos - камень). Характерное для соединений лития красное окрашивание пламени впервые наблюдал немецкий химик Х.Г.Гмелин в 1818 году. В этом же году английский химик Г. Дэви (см. ДЭВИ Гемфри) электролизом расплава гидроксида лития получил кусочек металла. Получить свободный металл в достаточных количествах удалось впервые только в 1855 году путем электролиза расплавленного хлорида:
2LiCl = 2Li + Cl 2
В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции.
Нахождение в природе
Литий довольно широко распространен в земной коре, его содержание в ней составляет 6,5·10 –3 % по массе. Как уже упоминалось, основные минералы, содержащие литий, - это петалит (содержит 3,5-4,9 % Li 2 O), сподумен (6-7 % Li 2 O), лепидолит (4-6 % Li 2, O) и амблигонит (см. АМБЛИГОНИТ) LiAl - 8-10 % Li 2, O. В виде примеси литий содержится в ряде породообразующих минералов, а также присутствует в рапе некоторых озер и в минерализованных водах. В морской воде содержится около 2·10 -5 % лития.
Физические и химические свойства
Из металлов литий самый легкий, его плотность 0,534 г/см 3 . Температура плавления 180,5°C, температура кипения 1326°C. При температурах от –193°C до температуры плавления устойчива кубическая объемно центрированная модификация лития с параметром элементарной ячейки а=0,350 нм.
Из-за небольшого радиуса и маленького ионного заряда литий по своим свойствам больше всего напоминает не другие щелочные металлы, а элемент группы IIA магний (см. МАГНИЙ) . Литий химически очень активен. Он способен взаимодействовать с кислородом и азотом воздуха при обычных условиях, поэтому на воздухе он быстро окисляется с образованием темного налета продуктов взаимодействия:
4Li + O 2 = 2Li 2 O,
6Li + N 2 = 2Li 3 N
При контактах с галогенами литий самовоспламеняется при обычных условиях. Подобно магнию, нагретый литий способен гореть в CO 2:
4Li + CO 2 = C + 2Li 2 O
Стандартный электродный потенциал Li/Li + имеет наибольшее отрицательное значение (E° 298 = –3,05 B) по сравнению со стандартными электродными потенциалами других металлов. Это обусловлено большой энергией гидратации маленького иона Li + , что значительно смещает равновесие в сторону ионизации металла:
Li твердый Li + раствор + e
Для слабо сольватирующих растворителей значение электродного потенциала лития соответствует его меньшей химической активности в ряду щелочных металлов.
Соединения лития - соли - как правило, бесцветные кристаллические вещества. По химическому поведению соли лития несколько напоминают аналогичные соединения магния или кальция. Плохо растворимы в воде фторид LiF, карбонат Li 2 CO 3 , фосфат Li 2 PO 4 , хорошо растворим хлорат лития LiClO 3 - это, пожалуй, одно из самых хорошо растворимых соединения в неорганической химии (при 18°C в 100 г воды растворяется 313,5 г LiClO 3).
Оксид лития Li 2 O - белое твердое вещество - представляет собой типичный щелочной оксид. Li 2 O активно реагирует с водой с образованием гидроксида лития LiOH.
Этот гидроксид получают электролизом водных растворов LiCl:
2LiCl + 2H 2 O = 2LiOH + Cl 2 ­ + H 2 ­
LiOH - сильное основание, но оно отличается по свойствам от гидроксидов других щелочных металлов. Гидроксид лития уступает им в растворимости. При прокаливании гидроксид лития теряет воду:
2LiOH = Li 2 O + H 2 O­
Большое значение в синтезе органических и неорганических соединений имеет гидрид лития LiH, который образуется при взаимодействии расплавленного лития с водородом:
2Li + H 2 = 2LiH
LiH - ионное соединение, строение кристаллической решетки которого похоже на строение кристаллической решетки хлорида натрия NaCl. Гидрид лития можно использовать в качестве источника водорода для наполнения аэростатов и спасательного снаряжения (надувных лодок и т.п.), так как при его гидролизе образуется большое количество водорода (1 кг LiH дает 2,8 м 3 H 2):
LiH + H 2 O = LiOH + H 2 ­
Он также находит применение при синтезе различных гидридов, например, борогидрида лития:
BCl 3 + 4LiH = Li + 3LiCl.
Литий образует соединения с частично ковалентной связью Li-C, т. е. литийорганические соединения. Например, при реакции иодбензола C 6 H 5 I с литием в органических растворителях протекает реакция:
C 6 H 5 I + 2Li = C 6 H 5 Li + LiI.
Литийорганические соединения широко используются в органическом синтезе и в качестве катализаторов.
Применение
Из лития изготовляют аноды химических источников тока, работающих на основе неводных твердых электролитов. Жидкий литий может служить теплоносителем в ядерных реакторах. С использованием нуклида 6 Li получают радиоактивный тритий 3 1 H (Т):
6 3 Li + 1 0 n = 3 1 H + 4 2 He.
Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов), для получения пластичных смазок. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).
Биологическая роль
Литий в незначительных количествах присутствует в живых организмах, но по-видимому, не выполняет никаких биологических функций. Установлено его стимулирующее действие на некоторые процессы в растениях, способность повышать их устойчивость к заболеваниям.
В организме среднего человека (масса 70 кг) содержится около 0,7 мг лития. Токсическая доза 90-200 мг.
Особенности обращения с литием
Как и другие щелочные металлы, металлический литий способен вызывать ожоги кожи и слизистых, особенно в присутствии влаги. Поэтому работать с ним можно только в защитной одежде и очках. Хранят литий в герметичной таре под слоем минерального масла. Отходы лития нельзя выбрасывать в мусор, для уничтожения их следует обработать этиловым спиртом:
2С 2 Н 5 ОН + 2Li = 2С 2 Н 5 ОLi + Н 2
Образовавшийся этилат лития затем разлагают водой до спирта и гидроксида лития LiOH.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "литий" в других словарях:

    - (лат. lithium, от греч. lithos камень). Металл белого цвета, открытый в 1817 г. в петалите; все соли его растворимы в воде. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛИТИЙ белый металл, самый легкий из всех,… … Словарь иностранных слов русского языка

    - (Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941; относится к щелочным металлам, tпл 180,54шC. Литий используют для изготовления анодов для химических источников тока, в производстве меди,… … Современная энциклопедия

    Литий - (Lithium), Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941; относится к щелочным металлам, tпл 180,54°C. Литий используют для изготовления анодов для химических источников тока, в производстве меди,… … Иллюстрированный энциклопедический словарь

    - (лат. Lithium) Li, химический элемент I группы периодической системы, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Название от греч. lithos камень (открыт в минерале петалите). Серибристо белый, самый легкий из металлов;… … Большой Энциклопедический словарь

    Li (от греч. lithos камень * a. lithium; н. Lithium; ф. lithium; и. litio), хим. элемент I группы периодич. системы Менделеева, ат. н. 3, ат. м. 6,941, относится к щелочным металлам. B природе встречаются 2 стабильных изотопа: 6Li (7,42%) … Геологическая энциклопедия

    ЛИТИЙ - ЛИТИЙ, хим. элемент, символ Li, порядков. номер 3, серебристо белый металл, ат. в. 6,940 (изотопы 6 и 7), t° пл. 186°; относится к группе щелочн. металлов, имеет наименьший по сравн. с др. металлами уд. в. (0,59). Открыт Арфедзоном… … Большая медицинская энциклопедия

    ЛИТИЙ - хим. элемент, символ Li (лат. Lithium), ат. н. 3, ат. м. 6,941; серебристо белый, самый лёгкий металл, принадлежит к щелочным металлам, плотность 534 кг/м3, tпл = 180,5°С; легко режется ножом. Л. химически очень активен, взаимодействует с водой и … Большая политехническая энциклопедия

    - (символ Li), редкий серебряного цвета элемент, один из ЩЕЛОЧНЫХ МЕТАЛЛОВ, впервые был обнаружен в 1817 г. Содержится в таких рудах, как лепидолит и сподумен. По химическим свойствам близок к натрию. Самый легкий из всех металлов, используется в… … Научно-технический энциклопедический словарь


Элемент №3, названный литием (от греческого λιτοσ – камень), открыт в 1817 г.

Шведский химик И.А. Арфведсон, ученик знаменитого Берцелиуса, анализировал минерал, найденный в железном руднике Уто. Он быстро установил, что этот минерал – типичный алюмосиликат, и выяснил, сколько в нем кремния, алюминия и кислорода – на долю этих трех распространеннейших элементов приходилось 96% веса минерала.

Теперь оставалось выяснить химическую природу веществ, составляющих оставшиеся 4%. Эти вещества, будучи отделенными от Si, Al, и O 2 и растворенными в воде, придавали раствору щелочные свойства. На этом основании Арфведсон предположил, что в минерале есть некий щелочной металл. Одна из солей этого металла растворялась в воде в шесть раз лучше, чем аналогичные соли калия и натрия. А поскольку в то время были известны лишь два щелочных металла, Арфведсон решил, что открыл новый элемент, подобный натрию и калию.

С виду минерал, в котором нашли новый элемент, был камень как камень, и потому Берцелиус предложил Арфведсону назвать новый элемент литием. Тот, видимо, не стал спорить, ибо это название сохранилось до наших дней. В большинстве европейских языков, как и в латыни, элемент №3 называется Lithium.

На этом история элемента №3 не заканчивается. Это очень своеобразный элемент, и не только потому, что литий – первый среди металлов по легкости и удельной теплоемкости, а также по положению в ряду напряжений металлов. Говорить о том, что история лития продолжается, можно хотя бы потому, что некоторые соединения лития, да и сам металл в последнее время приобрели исключительную важность для судеб всего мира.

Поэтому слово «история» в подзаголовках этой статьи нам кажется оправданным.

Древнейшая история

Когда-то давным-давно, в доисторические времена, происходил синтез элементов Вселенной. Несколько позже, но тоже в неопределенно далеком прошлом шли процессы формирования нашей планеты. На этой стадии литий проник более чем в 150 минералов, из них около 30 стали собственными минералами лития. Промышленное значение приобрели только пять: сподумен LiAl , лепидолит Kli 1,5 Al 1,5 (F, OH) 2 , петалит – минерал, в котором литий обнаружен впервые, LiAl , амблигонит LiAl (F, OH) и циннвальдит KLi (Fe, Mg) Al· (F, OH) 2 .

Географически промышленные запасы элемента №3 распределились довольно равномерно: промышленные месторождения минералов лития есть на всех континентах. Важнейшие из них находятся в Канаде, США, СССР, Испании, Швеции, Бразилии, Австралии, а также в странах Южной Африки.

Древняя история

Слово «древняя» здесь употребляется весьма условно – речь пойдет о временах, не столь отдаленных.

Человечество знакомо с литием чуть больше полутора веков, и этот раздел нашего рассказа охватит годы с 1817 по 1920. Это время познания лития как химического индивидуума, время получения и исследования его многих соединений и не очень широкого применения некоторых из них.

Вскоре после открытия Арфведсона новым элементом заинтересовались многие химики. В 1818 г. немецкий химик Л. Гмелин установил, что соли лития окрашивают бесцветное пламя в карминово-красный цвет. Вскоре сам Арфведсон обнаружил литий в сподумене, позже ставшем важнейшим минералом элемента №3, и в лепидолите. В 1825 г. Йенс Якоб Берцелиус нашел литий в водах германских минеральных источников. Вскоре выяснилось, что этот элемент есть и в морской воде (7·10 6 %).

Металлический литий впервые получил выдающийся английский ученый Хэмфри Дэви в 1818 г. Тогда и выяснилось, что литий очень легок, почти вдвое легче воды, и что он обладает ярким металлическим блеском. Но этот блеск серебристо-белого лития можно увидеть только в том случае, если металл получают в вакууме: как и все щелочные металлы, литий быстро окисляется кислородом воздуха и превращается в окись – бесцветные кристаллы кубической формы. Li 2 O легко, но менее энергично, чем окислы других щелочных металлов, соединяется с водой, превращаясь в щелочь – LiOH. И эти кристаллы бесцветны. В воде гидроокись лития растворяется хуже, чем гидроокиси калия и натрия. Как бесцветные кристаллы, выглядят и литиевые соли галогеноводородных кислот.

Иодид, бромид и хлорид лития весьма гигроскопичны, расплываются на воздухе и очень хорошо растворяются в воде. Фторид лития, в отличие от них, в воде растворяется очень слабо и практически совсем не растворяется в органических растворителях. Еще в прошлом веке это вещество начали применять в металлургии как компонент многих флюсов.

В значительных количествах металлический литий первыми получили в 1855 г. (независимо друг от друга) немецкий химик Р. Бунзен и англичанин О. Матиссен. Как и Дэви, они получали литий электролизом, только электролитом в их опытах служил расплав не гидроокиси, а хлорида лития. Этот способ до сих пор остается главным промышленным способом получения элемента №3. Правда, теперь в электролитическую ванну помещают смесь LiCl и KCl и подбирают такие характеристики тока, чтобы на катоде осаждался только литий. Выделяющийся на аноде хлор – ценный побочный продукт.

Есть и другие способы получения металлического лития, но всерьез конкурировать с электролитическим они пока не могут.

Еще в XIX в. были получены соединения лития с почти всеми элементами периодической системы и с некоторыми органическими веществами. Но практическое применение нашли лишь немногие из них. В 1912...1913 гг. мировое производство лития и его соединений не превышало 40...50 т.

В 1919 г. вышла брошюра В.С. Сырокомского «Применение редких элементов в промышленности». Есть в ней, в частности, и такие строки: «Главнейшее применение литий находит в данный момент в медицине, где углекислый и салицилово-кислый литий служат средством для растворения мочевой кислоты, выделяющейся в организме человека при подагре и некоторых других болезнях...»

История средних веков

«Средние века» истории лития – это всего три десятилетия, 20, 30, 40-е годы нашего века. В эти годы литий и его соединения пришли во многие отрасли промышленности, в первую очередь в металлургию, в органический синтез, в производство силикатов и аккумуляторов.

Литий имеет сродство к кислороду, водороду, азоту. Последнее особенно важно, так как ни один элемент не реагирует с азотом так активно, как литий. Эта реакция, хотя и медленно, идет уже при комнатной температуре, а при 250°C ход ее значительно ускоряется. Литий стал эффективным средством для удаления из расплавленных металлов растворенных в них газов. Небольшими добавками лития легируют чугун, бронзы, монель-металл (монель-металл – «природный» сплав, выплавляемый из медно-никелевых руд), а также сплавы на основе магния, алюминия, цинка, свинца и некоторых других металлов.

Установлено, что литий в принципе улучшает и свойства сталей – уменьшает размеры «зерен», повышает прочность, но трудности введения этой добавки (литий практически нерастворим в железе и к тому же он закипает при температуре 1317°C) помешали широкому внедрению лития в производство легированных сталей.

Соединения лития нужны и в силикатной промышленности. Они делают стеклянную массу более вязкой, что упрощает технологию, и, кроме того, придают стеклу большую прочность и сопротивляемость атмосферной коррозии. Такие стекла, в отличие от обычных, частично пропускают ультрафиолетовые лучи; поэтому их применяют в телевизионной технике. А в производстве оптических приборов довольно широко стали использовать кристаллы фтористого лития, прозрачные для ультракоротких волн длиной до 1000 А.

В химической промышленности стали применять металлический литий и литийорганические соединения. В частности, мелкодисперсный элементарный литий намного ускоряет реакцию полимеризации изопрена, а бутил литий – дивинила.

По химическим свойствам литий напоминает не только (и не столько) другие щелочные металлы, но и магний. Литийорганические соединения применяют там же, где и магнийорганические (в реакциях Гриньяра), но соединения элемента №3 – более активные реагенты, чем соответствующие гриньяровские реактивы.

В годы второй мировой войны стало стратегическим материалом одно соединение лития, известное еще в прошлом веке. Речь идет о гидриде лития – бесцветных кристаллах, приобретающих при хранении голубоватую окраску.

Из всех гидридов щелочных и щелочноземельных металлов гидрид лития – самое устойчивое соединение. Однако, как и прочие гидриды, LiH бурно реагирует с водой. При этом образуются гидроокись лития и газообразный водород. Это соединение стало служить легким (оно действительно очень легкое – плотность 0,776) и портативным источником водорода – для заполнения аэростатов и спасательного снаряжения при авариях самолетов и судов в открытом море. Из килограмма гидрида лития получается 2,8 м 3 водорода...

Примерно в то же время стал быстро расти спрос еще на одно соединение элемента №3 – его гидроокись. Как оказалось, добавка этого вещества к электролиту щелочных аккумуляторов примерно на одну пятую увеличивает их емкость и в 2...3 раза – срок службы.

К началу второй мировой войны производство литиевых концентратов в капиталистических странах достигло 3 тыс. т. Для такого рассеянного элемента, как литий, это много. Но та же цифра покажется до смешного малой, если сравнить ее с данными 1957 г. – 250 тыс. т. (без СССР). Этот бурный рост объясняется прежде всего тем, что в 50-е годы литий стал «атомным» металлом и, если можно так выразиться, разносторонне атомным.

Новая история

К этому времени уже во многих странах работали ядерные реакторы или, как их тогда называли, атомные котлы. Конструкторов этих котлов по многим причинам не устраивала вода, которую приходилось применять в качестве теплоносителя.

Появились реакторы, в которых избыточное тепло отводилось расплавленными металлами, в первую очередь натрием и калием.

Но по сравнению с этими металлами у лития много преимуществ. Во-первых, он легче. Во-вторых, у него больше теплоемкость. В-третьих, меньше вязкость. В-четвертых, диапазон жидкого состояния – разница между температурами плавления и кипения – у лития значительно шире. Наконец, в-пятых, коррозионная активность лития намного меньше, чем натрия и калия.

Одних этих преимуществ было бы вполне достаточно для того, чтобы сделать литий «атомным» элементом. Но оказалось, что ему суждено стать одним из незаменимых участников реакции термоядерного синтеза.

Пожалуй, строительство завода по разделению изотопов лития – единственный в своем роде факт из истории американского предпринимательства. Контракт на строительство этого завода заключил банкрот, и, тем не менее, строительство велось буквально в бешеном темпе. Банкротом был не кто иной, как Комиссия по атомной энергии. Средства, отпущенные на создание «сверх бомбы», были израсходованы полностью, но ничего реального у физиков не получалось. Было это в июле 1951 г. А о том, что при реакции соединения ядер тяжелых изотопов водорода – дейтерия и трития – должна высвободиться энергия, во много раз большая, чем при распаде ядер урана, знали намного раньше. Но на пути этого превращения лежало одно неразрешимое, казалось, противоречие.

Для того чтобы смогли слиться ядра дейтерия и трития, нужна температура порядка 50 млн градусов. Но для того чтобы реакция пошла, нужно еще, чтобы атомы столкнулись. Вероятность такого столкновения (и последующего слияния) тем больше, чем плотнее «упакованы» атомы в веществе. Расчеты показали, что это возможно только в том случае, если вещество находится хотя бы в жидком состоянии. А изотопы водорода становятся жидкостями лишь при температурах, близких к абсолютному нулю.

Итак, с одной стороны, необходимы сверхвысокие температуры, а с другой – сверхнизкие. И это – в одном и том же веществе, в одном и том же физическом теле!

Водородная бомба стала возможной только благодаря разновидности гидрида лития – дейтериду лития- 6. Это соединение тяжелого изотопа водорода – дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 важен по двум причинам: он – твердое вещество и позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах, и, кроме того, второй его компонент – литий-6 – это сырье для получения самого дефицитного изотопа водорода – трития. Собственно, 6 Li – единственный промышленный источник получения трития:

6 3 Li + 1 0 n → 3 1 H + 4 2 He.

Нейтроны, необходимые для этой ядерной реакции, дает взрыв атомного «капсюля» водородной бомбы, он же создает условия (температуру порядка 50 млн градусов) для реакции термоядерного синтеза.

В США идею использовать дейтерид лития-6 первым предложил доктор Э. Теллер. Но, по-видимому, советские ученые пришли к этой идее раньше: ведь не случайно первая термоядерная бомба в Советском Союзе была взорвана почти на полгода раньше, чем в США, и тем самым был положен конец американской политике ядерного и термоядерного шантажа.

Для атомной техники важно еще одно моно изотопное соединение пития – 7 LiF. Оно применяется для растворения соединений урана и тория непосредственно в реакторах.

Кстати, как теплоноситель в реакторах применяется именно литий-7, имеющий малое сечение захвата тепловых нейтронов, а не природная смесь изотопов элемента №3.

Вот уже много лет ученые во всем мире работают над проблемой управляемого, мирного термоядерного синтеза, и рано или поздно эта проблема будет решена. Тогда «демилитаризуется» и литий. (Этот странный оборот – производное заголовка зарубежной статьи, попавшейся несколько лет назад на глаза одному из авторов этого рассказа: статья называлась «Литий милитаризуется».) Но независимо от того, как скоро это произойдет, бесспорна справедливость другого высказывания. Оно заимствовано нами из «Краткой химической энциклопедии»: «По значимости в современной технике литий является одним из важнейших редких элементов».

Надеемся, что в справедливости этого высказывания у вас нет сомнений.

Изотопы лития

Природный литий состоит из двух изотопов с массовыми числами 6 и 7. По способности захватывать тепловые нейтроны (поперечное сечение захвата) ядра этих изотопов отличаются очень сильно. Тяжелый изотоп 7 Li имеет сечение захвата 0,033 барна, он практически прозрачен для нейтронов. Зато литнй-6 активно поглощает тепловые нейтроны, его сечение захвата – около тысячи (точнее, 912) барн. Несмотря на то, что в природе легкого лития в 12 раз меньше, чем тяжелого, сечение захвата природного лития довольно велико – 71 барн. Понятно, что «виновник» этого – изотоп 6 Li. Интересная деталь: стоимость изотопов лития совсем не пропорциональна их распространенности. В начале этого десятилетия в США относительно чистый литий-7 стоил почти в 10 раз дороже лития-6 очень высокой чистоты.

Искусственным путем получены еще два изотопа лития. Время их жизни крайне невелико: у лития-8 период полураспада равен 0,841 секунды, а у лития-9 0,168 секунды.

Как и прочие щелочные металлы, литий активен, мягок (режется ножом), всегда и во всех случаях проявляет строго постоянную валентность 1+. А отличается он тем, что значительно легче остальных щелочных металлов, реагирует с азотом, углеродом, водородом; зато с водой он взаимодействует менее активно: хотя и вытесняет из нее водород, но не воспламеняет его. Не только фторид, о котором рассказано в основной статье, но и карбонат, и ортофосфат лития плохо растворяются в воде – соответствующие соединения прочих щелочным металлов очень хорошо растворимы. И еще: литий – единственный щелочной металл, способный к образованию комплексных соединений.

Окись и перекись

С кислородом литий соединяется даже при обычной температуре, а при нагревании он воспламеняется и горит голубоватым пламенем. И в том и в другом случае образуется окись лития Li 2 O – тугоплавкое вещество, малорастворимое в воде. Другое соединение лития с кислородом – перекись лития Li 2 О 2 – в реакции между этими элементами никогда не образуется, его получают иным способом – при взаимодействии перекиси водорода с насыщенным спиртовым раствором гидрата окиси лития. При этом из раствора выпадает вещество такого состава: Li 2 O 2 ·H 2 O 2 ·3H 2 O. Если этот кристаллогидрат перекисей водорода и лития выдержать в вакууме над фосфорным ангидридом, то образуется свободная перекись лития.

Тот факт, что это соединение получается только «окольными путями», свидетельствует, что образование перекисных соединений для лития нехарактерно.

Для кондиционирования воздуха

Литиевые соли галогеноводородных кислот (кроме LiF) очень хорошо растворяются в воде. Но не это их главное достоинство. Растворы этих солей способны поглощать из воздуха аммиак, амины и другие примеси и, кроме того, при изменении температуры они обратимо поглощают пары воды. Это свойство позволило применить хлорид и бромид лития в установках для кондиционирования воздуха.

Как получают литий

Сказать, что литий получают электролизом – значит, почти ничего не сказать. Электролиз – лишь последняя стадия производства этого рассеянного элемента. Даже в сподумене и амблигоните – самых богатых литием минералах – содержание окиси элемента №3 редко превышает 7%.

Один из распространенных методов извлечения лития из сподумена – обработка раздробленного минерала серной кислотой. При этом образуются окиси кремния и алюминия и растворимый в воде сульфат лития. Его выщелачивают водой и превращают сначала в карбонат, а затем в хлорид, который и идет на электролиз.

Литий и кремний

Силицид лития – соединение, полученное еще в прошлом веке, но его формула, а, следовательно, и состав до сих пор не считаются окончательно установленными. Первым получил это вещество известный французский ученый Анри Муассан . Он нагревал в вакууме до 400...500°C смесь лития и кремния и получал легкие (чуть тяжелее воды) голубоватые кристаллы. Согласно Муассану, формула этого соединения Li 6 Si 2 . Эта формула и вызывает сомнения. Абсолютно достоверного ответа на вопрос, прав Муассан или нет, не получено не только оттого, что силицид лития не нашел пока практического применения, но и потому, что это соединение сложно получать, а исследовать еще сложнее. На воздухе силицид лития быстро разлагается.

Литий в психотерапии

Медики не раз наблюдали, что некоторые соединения лития (в соответствующих дозах, разумеется) оказывают положительное влияние на больных, страдающих маниакальной депрессией. Объясняют этот эффект двояко. С одной стороны, установлено, что литий способен регулировать активность некоторых ферментов, участвующих в переносе из межклеточной жидкости в клетки мозга ионов натрия и калия. С другой стороны, замечено, что ионы лития непосредственно воздействуют на ионный баланс клетки. А от баланса натрия и калия зависит в значительной мере состояние больного: избыток натрия в клетках характерен для депрессивных пациентов, недостаток – для страдающих маниями. Выравнивая натрий калиевый баланс, соли лития оказывают положительное влияние и на тех, и на других.

Свойства лития позволяют использовать его в науке и технике, ядерной энергетике, промышленности и медицине. Вещество распространено во многих минералах земной коры, в морской воде и в составе звезд-гигантов. Человеческий организм тоже с трудом справляется без него. Металл или неметалл литий? Какова его природа и свойства? Давайте выясним это.

Литий - металл или неметалл?

Его название связано с греческим словом "камень" и впервые звучало как "литион". Все из-за того, что обнаружен он был в камнях или же минералах. До XIX века не было известно, металл литий или неметалл. О существовании такого элемента никто и не догадывался, пока швед Иоганн Авфердсон в 1817 году не обнаружил неизвестную щелочь в минералах сподумене и петалите.

Из-за активности вещества ученому не удалось получить из щёлочи элемент. Зато годом позже это сделал англичанин Хэмфпри Дэви посредством электролиза. После этого его можно было изучать, и научный мир смог узнать, что такое литий. Оказалось, что это легкий и мягкий металл с довольно интересными свойствами.

Уже через четверть века его научились получать промышленным путём и сразу нашли ему применение. Литий использовали в медицине, назначая его от головной боли, подагры и ревматизма. Хотя реальная его польза при этих недугах доказана не была. В XX веке на основе карбоната лития появился напиток с лимоном и лаймом. Сейчас он известен как 7Up, но соединения металла в него уже не входят.

На что он способен

Теперь, когда мы знаем металл или неметалл литий, давайте поговорим о его особенностях. Элемент литий с атомным номером 3 обычно обозначается символом Li. Как простое вещество он обладает светлым серебристым цветом и чрезвычайно маленькой массой. Среди всех металлов на планете самый легкий.

Он также обладает самой маленькой плотностью - всего 0,534 г/см³, что почти в два раза меньше, чем у воды. Литий мягче свинца. Приложив немного усилий, его можно разрезать ножом. Он представляет группу щелочных металлов, в которой имеет самую высокую температуру кипения (1339,85 °C) и плавления (180,54 0176 °С).

Важной характеристикой лития является его реакции на воздух. Взаимодействуя с кислородом, он окисляется и покрывается плёнкой оксидов, карбонатов. Это единственный металл, который реагирует с азотом воздуха при комнатной температуре. При этом он покрывается черным налётом нитрида лития. При плавлении с температурой от 100 до 300 градусов он перестает окисляться сразу же после образования оксидной плёнки.

С водой металл реагирует относительно спокойно, выделяя водород и гидроксид лития. Если в ходе реакции поджечь образующийся водород, то ионы металла сделают пламя розово-красным.

Если же просто поджечь литий, то его пламя станет белым. А вот при поджоге на песке он вступит в реакцию с кремнием и окрасит огонь оранжевым цветом. С серой, медным купоросом и деревом литий горит очень активно, взрываясь или образуя множество искр.

В природе

На нашей планете литий встречается только в соединениях. Он содержится в морской воде в количестве примерно 0,17 мг/л и в сильносолёных озёрах. Он также содержится в верхний слоях земной коры в количестве 21 г/т.

Литий в основном содержится в лепидолитах, сподуменах, петалитах, литиофилитах, амблигонитах и циннвальдитах. Встречается вместе с редкими элементами в пегматитах и онгонитах. Он может образовывать самостоятельные минералы, а может замещать в них калий.

Металл присутствует и в космосе, главным образом в звездах-гигантах. Огромное количество лития находится в объекте Торна-Житкова, который состоит из красного гиганта с нейтронной звездой внутри.

Где его добывают

Литиевые месторождения есть на всех материках нашей планеты. Они встречаются в Бразилии, Чили, Аргентине, Конго, Сербии, Китае, Австралии, США. Сам по себе металл не очень редкий, но во многих породах он слишком рассредоточен, и его добыча сопровождается большой стоимостью и усилиями.

Рентабельных месторождений лития немного. Почти половина залежей металла остается неиспользованной до сих пор. Большую долю мировой добычи контролируют всего три предприятия из Австралии, Канады и Зимбабве. А вот крупнейшие месторождения находятся в Южной Америке.

Примерно 60 % мирового лития находится в Боливии на высохшем озере Уюни. Это наибольший солончак на планете. Здесь, среди белоснежного соляного покрова, находятся лужицы, содержащие огромное количество металла.

Применение

Литий не используют в чистом виде, так как он слишком активный. Как правило, его сплавляют с другими металлами, например, с натрием. Свойства лития нашли применения в металлургии - он повышает прочность и пластичность сплавов. В ядерной энергетике его используют в качестве теплоносителя. Из изотопа литий-6 получают гелий-3.

Металл используют при создании керамики, стекла, резины и сверхчистых металлов. Им наполняют щелочные аккумуляторы и газоразрядные лампочки. В текстильной промышленности при помощи лития отбеливают ткани, в фармацевтике он нужен для изготовления косметики.

Биологическая роль

Кроме окружающей среды, литий также содержится в растениях и животных. В организме человека он присутствует в сердце, надпочечниках, крови и плазме, печени, легких и щитовидной железе. Он необходим нам для поддержания иммунитета, защиты от аллергии и расстройств нервной системы, для обмена жиров и углеводов.

В сутки человек нуждается примерно в 100-200 мкг лития. Его содержит картофель, морковь, листья салата, грибы подосиновики, персики, редис, минеральные воды, мясо, рыба, яйца, помидоры, паслёновые и т. д.

Он снижает возбудимость нервной системы, благодаря чему часто используется в медицине. Препараты с литием назначают при депрессии, аффективных расстройствах, болезни Альцгеймера. Но в больших количествах металл вреден для организма. Отравление им приводит к тошноте, жажде, снижении либидо, дерматитов, головокружениям, потере координации, а в отдельных случаях и коме.

Представлены физические свойства лития Li в твердом и жидком состояниях при различных температурах (в интервале от минус 223 до 1227°С). Рассмотрены следующие свойства лития: плотность ρ , удельная теплоемкость C p , кинематическая ν и динамическая μ вязкость, число Прандтля Pr , температуропроводность a и удельное сопротивление лития ρ .

Литий обладает наименьшей плотностью — плотность лития при температуре 27°С равна 536 кг/м 3 . Этот щелочной металл почти в два раза и имеет плотность даже ниже, чем у таких органических растворителей, как и . Плотность лития зависит от температуры — при нагревании литий расширяется и становится менее плотным. Необходимо отметить, что температура плавления лития составляет 180,7°С. При этой температуре плотность лития в расплавленном состоянии имеет величину 513,4 кг/м 3 .

Литий имеет наибольшую массовую удельную теплоемкость, по сравнению с , поскольку имеет наименьшую плотность. Удельная теплоемкость лития при обычных температурах имеет величину 3390 Дж/(кг·град). Теплоемкость твердого лития при нагревании увеличивается. При плавлении лития не происходит существенного изменения его удельной теплоемкости — теплоемкость жидкого лития слабо зависит от температуры.

Такое физическое свойство лития, как теплопроводность, имеет относительно среднюю величину в ряду — литий менее теплопроводный, чем натрий, однако имеет больший коэффициент теплопроводности, чем у калия. Теплопроводность лития при комнатной температуре составляет величину 85 Вт/(м·град). Теплопроводность лития в твердом состоянии снижается при нагревании и по достижении температуры плавления становится равной 42,8 Вт/(м·град). При последующем нагревании расплавленного лития его теплопроводность увеличивается.

Вязкость жидкого лития снижается при росте его температуры. Это справедливо, как для кинематической, так и для динамической вязкости этого металла. Например, нагрев расплава лития с 200 до 700°С приводит почти к двукратному снижению его вязкости — кинематическая вязкость уменьшается с 111·10 -8 до 61,7·10 -8 м 2 /с. Число Прандтля жидкого лития также снижается при нагревании.

Температуропроводность лития при комнатной температуре составляет около 45·10 -6 м 2 /с. Характерной особенностью твердого лития и других щелочных металлов является быстрое уменьшение температуропроводности с повышением температуры. Однако, температуропроводность лития в жидком состоянии увеличивается при нагревании.

Удельное электрическое сопротивление лития увеличивается при росте температуры во всем ее диапазоне. Это справедливо, как для твердого металла, так и для расплавленного.

Литий — металл с минимальной плотностью



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта