Главная » Заготовка и хранение » Измерение электрических величин: единицы и средства, методы измерения. Основные сведения о средствах электрических измерений и электроизмерительных приборах

Измерение электрических величин: единицы и средства, методы измерения. Основные сведения о средствах электрических измерений и электроизмерительных приборах

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

3.1. Роль измерений в электротехнике

В любой области знаний измерения имеют исключительно боль­шое значение, но особенно важны они в электротехнике.

Механические, тепловые, световые явления человек ощущает при помощи своих органов чувств. Мы, хотя и приблизительно, можем оценить размеры предметов, скорость их движения, яркость светящихся тел. Долгое время именно так люди изучали звездное небо.

Но мы с вами совершенно одинаково реагируем на проводник, ток которого равен 10 мА или 1 А (т. е. в 100 раз больше).

Мы видим форму проводника, его цвет, но наши органы чувств не позволяют оценить величину тока. Точно так же мы совершенно равнодушны к магнитному полю, созданному катушкой, электри­ческому полю между обкладками конденсатора. Медицина устано­вила определенное влияние электрических и магнитных полей на организм человека, но это влияние мы не ощущаем, и величину электромагнитного поля оценить не можем.

Исключение составляют только очень сильные поля. Но и здесь неприятное покалывание, которое можно заметить, гуляя око высоковольтной линии передачи, не позволит нам даже приблизительно оценить величину электрического напряжения в линии.

Все это заставило физиков и инженеров с первых шагов исследования и применения электричества пользоваться электроизмерительными приборами.

Приборы - глаза и уши инженера-электрика. Без них он глух и слеп и совершенно беспомощен. Миллионы электроизмерительных приборов установлены на заводах, в научно-исследовательских ла­бораториях. В каждой квартире тоже есть измерительный прибор - электрический счетчик.

Показания (сигналы) электроизмерительных приборов исполь­зуют для оценки работы различных электротехнических устройств и состояния электрооборудования, в частности состояния изоляции. Электроизмерительные приборы отличаются высокой чувствительностью, точностью измерений, надежностью и простотой исполне­ния.

Успехи электроприборостроения привели к тому что его услугами стали пользоваться и другие отрасли. Электрические методы стали при­менять для определения размеров, скоростей, массы, температуры. Появилась даже самостоятельная дисциплина “Электрические изме­рения неэлектрических величин ”.

Показания электроизмерительных приборов можно передавать на дальние расстояния (телеизмерение), они могут использоваться для непосредственного воздействия на производственные процессы (ав­томатическое регулирование); с их помощью регистрируют ход кон­тролируемых процессов, например путем записи на ленте и т.д.

Применение полупроводниковой техники существенно расши­рило применение электроизмерительных приборов.

Измерить какую-либо физическую величину - значит найти ее значение опытным путем с помощью специальных технических средств.

Стендовые испытания новейшего оборудования немыслимы без электрических измерений.Так, при испытании турбогенератора мощностью 1200 МВт на заводе “Электросила” измерения производились в 1500 его точках.

Развитие электроизмерительных приборов привело к использо­ванию в них микроэлектроники, что позволяет измерять физичес­кие величины с погрешностью не более 0,005-0,0005 %.

3.2. Основные понятия, термины и определения

Результаты теоретической деятельности без проверки экспери­ментом недостоверны. Измерительная техника при эксперименте дает результаты, которые указывают на качество и количество про­дукции, правильность ведения технологических процессов, распре­деления, потребления и изготовления. При этом электрические из­мерения за счет малого потребления энергии, возможности передачи измерительных величин на расстояние, большой скорости измере­ний и передачи, а также высокой точности и чувствительности ока­зались предпочтительнее.

Электрические измерения и приборы, методы и средства обес­печения их единства, способы достижения требуемой точности - все это относится к метрологии, а принципы и методы установления оптимальных норм и правил взаимодействия - к стандартизации .

В Российской Федерации стандартизация и метрология объедине­ны в единой государственной службе - Государственном комитете стандартов. В 1963 г. ГОСТ 9867-61 ввел Международную систему единиц (СИ) на базе метра (м ), килограмма (кг ), секунды (с ), ам­пера (А ), кельвина (К ) и канделы (кд ).

Вопросы электрических измерений и приборов проще воспри­нимаются, если известны содержание терминов и определений.

Метрология - наука об измерениях, методах и средствах обеспе­чения их единства, способах достижения требуемой точности.

Измерение - нахождение значения физической величины опыт­ным путем с помощью специальных технических средств.

Результат измерения - значение физической величины, найден­ной путем измерения.

Мера - средство измерений, предназначенное для воспроизве­дения физической величины заданного размера (например, едини­цы измерения света - кд).

Измерительный преобразователь - средство измерений для выра­ботки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки (или хранения), но не поддающейся непосредственному восприятию наблюдателем. Первичный измерительный преобразователь - датчик.

Измерительный прибор - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, дос­тупной для непосредственного восприятия наблюдателем.

3.3. Методы измерений. Погрешность измерений

Для различных измеряемых электрических величин существуют свои средства измерений , так называемые меры. Например, мерами ЭДС служат нормальные элементы, мерами электрического сопротивления - измерительные резисторы, мерами индуктивности измерительные катушки индуктивности, мерами электрической емкости - конденсаторы постоянной емкости и т. д.

На практике для измерения различных физических величин применяют различные методы. Последние в зависимости от способа получения результата делятся на прямые и косвенные . При прямом измерении значение величины получают непосредственно из опыт­ных данных. При косвенном измерении искомое значение величины находят путем подсчета с использованием известной зависимости между этой величиной и величинами, получаемыми на основании прямых измерений. Так, определить сопротивление участка цепи можно путем измерения протекающего по нему тока и приложенно­го напряжения с последующим подсчетом этого сопротивления из закона Ома. Наибольшее распространение в электроизмерительной технике получили методы прямого измерения, так как они обычно проще и требуют меньших затрат времени.

В электроизмерительной технике используют также метод срав­нения , в основе которого лежит сравнение измеряемой величины с воспроизводимой мерой. Метод сравнения может быть компенса­ционным и мостовым. Примером применения компенсационного метода служит измерение напряжения путем сравнения его значе­ния со значением ЭДС нормального элемента. Примером мостово­го метода является измерение сопротивления с помощью четырех-плечной мостовой схемы. Измерения компенсационным и мостовым методами очень точные, но для их проведения требуется более сложная измерительная техника.

В системах электроснабжения измеряют ток (I) , напряжение (U) , активную и реактивную мощности (Р , Q ), электроэнергию (P h , Q h или W a , W p ), активное, реактивное и полное сопротивление (R , X , Z ), частоту (f) , коэффициент мощности (cosφ); при энергоснабжении измеряют температуру (G) , давление (p) , расход энергоносителя (G) , тепловую энергию (Е) , перемещение (X) и др.


В условиях эксплуатации обычно используют методы непосредственной оценки для измерения электрических величин и нулевой - для неэлектрических.


Электрические величины определяют электроизмерительными приборами, представляющими собой устройство (прибор), предназначенное для измерения, например, напряжения, тока, сопротивления, мощности и т. д.


По принципу действия и конструктивным особенностям приборы бывают: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, индукционные, вибрационные и др. Электроизмерительные приборы классифицируются также по степени защищенности измерительного механизма от влияния внешних магнитных и электрических полей на точность его показаний, способу создания противодействующего момента, характеру шкалы, конструкции отсчетного устройства, положению нулевой отметки на шкале и другим признакам.


На шкалу электроизмерительных приборов нанесены условные обозначения, определяющие систему прибора, его техническую характеристику.


Электрическая энергия, вырабатываемая генераторами или потребляемая потребителями, измеряется счетчиками.


Для определения электрической энергии переменного тока в основном применяют счетчики с измерительным механизмом индукционной системы и электронные. Отклонение результата измерения от истинного значения величины называют погрешностью измерения.


Точность измерения - это его качество, отражающее близость результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малой погрешности.


Погрешность измерительного прибора - это разность между показаниями прибора и истинным значением измеряемой величины.


Результат измерения - это значение величины, найденное путем ее измерения.


При однократном измерении показание прибора является результатом измерения, а при многократном результат измерения находят путем статистической обработки итогов каждого наблюдения. По точности результатов измерения подразделяют на три вида: точные (прецизионные), результат которых должен иметь минимальную погрешность; контрольно-поверочные, погрешность которых не должна превышать заданного значения; технические, результат которых содержит погрешность, определяемую погрешностью измерительного прибора. Как правило, точные и контрольно-поверочные измерения требуют многократных наблюдений.


По способу выражения погрешности средств измерений разделяют на абсолютные, относительные и приведенные.


Абсолютная погрешность АА - это разность между показанием прибора А и действительным значением измеряемой величины А д:


АА = А А д.


Относительная погрешность bА - это отношение абсолютной погрешности АА к значению измеряемой величины А , выраженное в процентах:



Приведенная погрешность g (в процентах) - это отношение абсолютной погрешности АА к нормирующему значению A ном:



Для приборов с нулевой отметкой на краю или вне шкалы нормирующее значение равно конечному значению диапазона измерений. Для приборов с двухсторонней шкалой, то есть с отметками шкалы, расположенными по обе стороны от нуля, оно равно арифметической сумме конечных значений диапазона измерений.


Для приборов с логарифмической или гиперболической шкалой нормирующее значение равно длине всей шкалы.


В табл. 1 приведены сведения о классах точности измерительных приборов. Класс точности численно равен наибольшей допустимой приведенной основной погрешности, выраженной в процентах.


Таблица 1. Классы точности средств измерений



* Допускается 1,0 .


** Допускается 3,0 .


Средства измерений электрических величин должны удовлетворять следующим основным требованиям (ПУЭ):


Класс точности измерительных приборов должен быть не ниже 2,5;


Классы точности измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не ниже приведенных в табл. 1;


Пределы измерения приборов должны выбираться с учетом возможных наибольших длительных отклонений измеряемых величин от номинальных значений.


Учет активной электрической энергии должен обеспечивать определение количества энергии: выработанной генераторами ЭС; потребленной на собственные и хозяйственные нужды (раздельно) ЭС и ПС; отпущенной потребителям по линиям, отходящим от шин ЭС непосредственно к потребителям; переданной в другие энергосистемы или полученной от них; отпущенной потребителям из электрической сети. Кроме того, учет активной электрической энергии должен обеспечивать возможность определения поступления электрической энергии в электрические сети разных классов напряжений энергосистемы, составления балансов электрической энергии для хозрасчетных подразделений энергосистемы, контроля за соблюдением потребителями заданных им режимов потребления и баланса электрической энергии.


Учет реактивной электрической энергии должен обеспечивать возможность определения количества реактивной электрической энергии, полученной потребителем от электроснабжающей организации или переданной ей, только если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.


Ток должен измеряться в цепях всех напряжений, где это необходимо для систематического контроля технологического процесса или оборудования.


Постоянный ток измеряется в цепях: генераторов постоянного тока и силовых преобразователей; АБ, зарядных, подзарядных и разрядных устройств; возбуждения СГ, СК, а также электродвигателей с регулируемым возбуждением.


Амперметры постоянного тока должны иметь двухсторонние шкалы, если возможно изменение направления тока.


В цепях трехфазного тока следует, как правило, измерять ток одной фазы. Ток каждой фазы должен измеряться:


Для ТГ 12 МВт и более;


Для ВЛ с пофазным управлением, линий с продольной компенсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме;


В обоснованных случаях можно предусмотреть измерение тока каждой фазы ВЛ 220 кВ и выше с трехфазным управлением; для дуговых электропечей.


Напряжение должно измеряться:


На секциях сборных шин постоянного и переменного тока, которые могут работать раздельно; допускается установка одного прибора с переключением на несколько точек измерения; на ПС напряжение допускается измерять только на стороне НН, если установка ТН на стороне ВН не требуется для других целей;


В цепях генераторов постоянного и переменного тока, СК, а также в отдельных случаях в цепях агрегатов специального назначения;


При автоматизированном пуске генераторов или других агрегатов установка на них приборов для непрерывного измерения напряжения необязательна;


В цепях возбуждения СМ от 1 МВт и более;


В цепях силовых преобразователей, АБ, зарядных и подзарядных устройств;


В цепях дугогасящих катушек.


В трехфазных сетях измеряется, как правило, одно междуфазное напряжение. В сетях выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжения одним прибором (с переключением) .


Необходимо регистрировать значения одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) ЭС и подстанций, по напряжению на которых ведется режим энергосистемы.


В сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, сетях переменного тока до 1 кВ с изолированной нейтралью и сетях постоянного тока с изолированными полюсами или изолированной средней точкой, как правило, должен выполняться автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции одной из фаз (или полюса) ниже заданного значения с последующим контролем асимметрии напряжения с помощью показывающего прибора (с переключением) . Допускается контроль изоляции путем периодических измерений напряжений с целью визуального контроля асимметрии напряжения.


Измерение мощности генераторов активной и реактивной мощности: при установке на ТГ 100 МВт и более щитовых показывающих приборов их класс точности должен быть не ниже 1,0 . Производится регистрация:


На ЭС 200 МВт и более - суммарной активной мощности;


Конденсаторных батарей 25 Мвар и более и СК реактивной мощности;


Трансформаторов и линий, питающих собственные нужды 6 кВ и выше ЭС, активной мощности;


Повышающих двухобмоточных трансформаторов ЭС - активной и реактивной мощности; в цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки НН) измерение активной и реактивной мощности должно производиться со стороны СН и НН; для трансформатора, работающего в блоке с генератором, мощность со стороны НН следует измерять в цепи генератора;


Понижающих трансформаторов 220 кВ и выше - активной и реактивной, 110–150 кВ - активной мощности; в цепях понижающих двухобмоточых трансформаторов измерение мощности должно производиться со стороны НН, а в цепях понижающих трехобмоточных трансформаторов - со стороны СН и НН; на ПС 110–220 кВ без выключателей на стороне ВН мощность допускается не измерять;


Линий 110 кВ и выше с двусторонним питанием, а также обходных выключателей - активной и реактивной мощности;


На других элементах ПС, на которых для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.


Обязательна регистрация активной мощности ТГ 60 МВт и более, суммарной мощности ЭС (200 МВт и более) .


Частота измеряется:


На каждой секции шин генераторного напряжения; на каждом ТГ блочной ЭС или АЭС;


На каждой системе (секции) шин ВН ЭС;


В узлах возможного деления энергосистемы на несинхронно работающие части.


Частота или ее отклонения от заданного значения должны регистрироваться на ЭС 200 МВт и более; на ЭС 6 МВт и более, работающих изолированно.


Абсолютная погрешность регистрирующих частотомеров на ЭС, участвующих в регулировании мощности, должна быть не более ±0,1 Гц.


Для измерения при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы - два вольтметра (или двойной вольтметр), два частотомера (или двойной частотомер), синхроноскоп.


Для автоматической регистрации аварийных процессов в электрической части энергосистем должны предусматриваться автоматические осциллографы. Расстановка автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров производятся по указаниям ПУЭ.


Для определения мест повреждений на ВЛ 110 кВ и выше длиной более 20 км должны предусматриваться фиксирующие приборы.


Краткая характеристика измерительных приборов: современные промышленные предприятия и жилищно-коммунальные хозяйства характеризуются потреблением различных видов энергии - электроэнергии, тепла, газа, сжатого воздуха и др.; для наблюдения за режимом потребления энергии необходимо измерять и регистрировать электрические и неэлектрические величины с целью дальнейшей обработки информации.


Номенклатура приборов, используемых в энергоснабжении для измерения электрических и неэлектрических величин, весьма разнообразна как по методам измерений, так и по сложности преобразователей. Наряду со способом непосредственной оценки часто используют нулевой и дифференциальный методы, повышающие точность.


Ниже приведены краткая характеристика измерительных приборов по принципу действия.


Магнитоэлектрические приборы обладают высокой чувствительностью, малым потреблением тока, плохой перегрузочной способностью и высокой точностью измерений. Их показания зависят от температуры окружающей среды. Амперметры и вольтметры имеют линейные шкалы и используются часто как образцовые приборы, имеют малую чувствительность к внешним магнитным полям, однако чувствительны к ударам и вибрации.


Электромагнитные приборы имеют невысокую чувствительность, значительное потребление тока, хорошую перегрузочную способность и невысокую точность измерений. Шкалы нелинейны и линеаризуются в верхней части специальным выполнением механизма. Чаще используются как щитовые технические приборы, просты и надежны в эксплуатации, чувствительны к внешним магнитным полям. Электромагнитные приборы могут измерять как постоянные, так и переменные токи и напряжение. При этом они реагируют на среднее квадратическое (действующее) значение переменного сигнала вне зависимости от формы сигнала (в пределах сравнительно неширокого частотного диапазона) .


Электродинамические и ферродинамические приборы обладают невысокой чувствительностью, большим потреблением тока, чувствительностью к перегрузкам и высокой точностью. У амперметров и вольтметров нелинейные шкалы. Серьезным преимуществом являются одинаковые показания на постоянном и переменном токах, что позволяет поверять их на постоянном токе.


Приборы индукционной системы характеризуются невысокой чувствительностью, существенным потреблением тока и нечувствительностью к перегрузкам. В основном они служат счетчиками энергии переменного тока. Такие приборы выпускаются одно-, двухи трехэлементными для работы в однофазных, трехфазных трехпроводных и трехфазных четырехпроводных цепях. Для расширения пределов используются трансформаторы тока и напряжения.


Электростатические приборы имеют невысокую чувствительность, но чувствительны к перегрузкам и служат для измерения напряжения на постоянном и переменном токах. Для расширения пределов используются емкостные и резистивные делители. Электростатические вольтметры имеют малое потребление и широкий диапазон частот измерения, они просты и надежны.


Термоэлектрические приборы характеризуются низкой чувствительностью, большим потреблением тока, низкой перегрузочной способностью, невысокой точностью и нелинейностью шкалы, а также невысоким быстродействием. Однако их показания не зависят от формы тока в широком диапазоне частот. Для расширения пределов амперметров используют высокочастотные трансформаторы тока. Приборы могут работать как с постоянными, так и с переменными токами и напряжениями.


Выпрямительные приборы обладают высокой чувствительностью, малым потреблением тока, небольшой перегрузочной способностью и линейностью шкалы. Показания приборов зависят от формы тока. Они используются в качестве амперметров и вольтметров, которые реагируют на среднее выпрямленное значение переменного сигнала, а не на действующее (которое требуется чаще всего) . Градуируются они обычно в действующих значениях для частного случая синусоидального сигнала. При работе с несинусоидальными сигналами возможны большие погрешности измерения.


Цифровые электронные измерительные приборы преобразуют аналоговый входной сигнал в дискретный, представляя его в цифровой форме с помощью цифрового отсчетного устройства (ЦОУ) и могут выводить информацию на внешнее устройство - дисплей, цифропечать. Преимуществами цифровых измерительных приборов (ЦИП) являются автоматический выбор диапазона измерения, автоматический процесс измерения, вывод информации в коде на внешние устройства и представление результата измерений с высокой точностью.

Энергосбережение и энергоэффективность промышленности невозможно представить без электрических измерений, так как невозможно экономить то, чему не знаешь счета.

Электрические измерения выполняются по одному из следующих видов: прямой, косвенный, совокупный и совместный. Название прямого вида говорит само за себя, значение нужной величины определяется непосредственно прибором. Примером таких измерений может служить определение мощности ваттметром, силы тока амперметром и т. д.


Косвенный вид заключается в нахождении величины на основании известной зависимости этой величины и величины, найденной прямым методом. Примером может служить определение мощности без ваттметра. Прямым методом находят I, U, фазу и по формуле вычисляют мощность.


Совокупный и совместный виды измерений заключаются в одновременном измерении нескольких одноименных (совокупный) или не одноимённых (совместный) величин. Нахождение искомых величин осуществляется решением систем уравнений с коэффициентами, полученными в результате прямых измерений. Число уравнений в такой системе должно равняться числу искомых величин.

Прямые измерения как самый распространенный вид измерений могут производиться двумя основными методами:

  • метод непосредственной оценки
  • метод сравнения с мерой .

Первый метод является самым простым, так как значение нужной величины определяют по шкале прибора.

Таким методом определяется сила тока амперметром, напряжение вольтметров и т. д. Достоинством данного способа можно назвать простоту, а недостатком невысокую точность.

Измерения сравнением с мерой выполняется по одной из следующих методик: замещения, противопоставления, совпадения, дифференциальной и нулевой. Мера является своего рода эталонным значением некоторой величины.

Дифференциальный и нулевой методы – заложены в основе работы измерительных мостов. При дифференциальном методе делают неуравновешенно-показывающие мосты, а при нулевом – уравновешенные или нулевые.

В уравновешенных мостах сравнение происходит при помощи двух или более вспомогательных сопротивлений, подбираемых таким образом, чтобы со сравниваемыми сопротивлениями они составляли замкнутый контур (четырехполюсник), питаемый от одного источника и имеющий равнопотенциальные точки, обнаруживаемые индикатором равновесия.

Отношение между вспомогательными сопротивлениями является мерой отношения между сравниваемыми величинами. Индикатором равновесия в цепях постоянного тока выступает гальванометр, а в цепях переменного тока милливольтметр.

Дифференциальный метод иначе называют разностным, так как на средство измерения воздействует именно разность известной и искомой величины тока. Нулевой метод является предельным случаем дифференциального метода. Так например, в указанной мостовой схеме гальванометр показывает ноль, если соблюдается равенство:

R1*R3 = R2*R4;

Из этого выражения следует:

Rx=R1=R2*R4/R3.

Таким образом, можно вычислить сопротивление любого неизвестного элемента, при условии, что остальные 3 являются образцовыми. Образцовым также должен быть и источник постоянного тока.

Метод противопоставления – иначе этот метод называют компенсационным и используют для непосредственного сравнения напряжения или ЭДС, тока и косвенно для измерений других величин, преобразуемых в электрические.

Две встречно направленные ЭДС, не связанные между собой включаются на прибор, по которому уравновешивают ветви схемы. На рисунке: требуется найти Ux. С помощью образцового регулируемого сопротивления Rk добиваются такого падения напряжения Uk, чтобы численно оно было равноUx.

Судить об их равенстве можно по показаниям гальванометра. При равенстве Uки Uх ток в цепи гальванометра протекать не будет, так как они противоположно направлены. Зная сопротивление и величину тока по формуле определяем Uх.


Метод замещения – метод, при котором искомую величину замещают или совмещают с известной образцовой величиной, по значению равной замещенной. Такой способ применяется для определения индуктивности или емкости неизвестной величины. Выражение, определяющее зависимость частоты от параметров цепи:

fо=1/(√LC)


Слева, частота f0 задаваемая генератором ВЧ, в правой части значения индуктивности и емкости измеряемой цепи. Подбирая резонанс частоты можно определить неизвестные значения в правой части выражения.

Индикатором резонанса является электронный вольтметр с большим входным сопротивлением, показания которого в момент резонанса будут наибольшими. Если измеряемую катушку индуктивности включить параллельно образцовому конденсатору и измерять резонансную частоту, то значение Lx можно найти по вышеуказанному выражению. Аналогично находится неизвестная емкость.

Вначале резонансный контур, состоящий из индуктивности Lи образцового конденсатора емкости Co, настраивают в резонанс на частоту fo; при этом фиксируют значения fo и емкости конденсатора Co1.

Затем, параллельно образцовому конденсатору Co подключают конденсатор Cхи изменением емкости образцового конденсатора добиваются резонанса при той же частоте fo; соответственно искомая величина равна Co2.


Метод совпадений – метод, при котором разность между искомой и известной величиной определяется по совпадению отметок шкал или периодических сигналов. Ярким примером применения этого способа в жизни является измерение угловой скорости вращения различных деталей.

Для этого на измеряемом объекте наносят метку, например мелком. При вращении детали с меткой, на нее направляют стробоскоп, частота мигания которого известна изначально. Регулированием частоты стробоскопа добиваются, чтобы метка стояла на месте. При этом частоту вращения детали принимают равной частоте мигания стробоскопа.

НА ТЕМУ:

«ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ»

Введение

Развитие науки и техники всегда было тесно связано с прогрессом в области измерений. Большое значение измерений для науки подчёркивали некоторые учёные.

Г. Галилей: «Измеряй всё доступное измерению и делай доступное всё недоступное ему».

Д.И. Менделеев: «Наука начинается с тех пор, как начинают измерять, точная наука немыслима без меры».

Кельвин: «Каждая вещь известна лишь в той степени, в какой её можно измерить».

Измерения являются одним из основных способов познания природы, её явлений и законов. Каждому, новому открытию в области естественных и технических наук предшествует большое число различных измерений. (Г. Ом – закон Ома; П. Лебедев – давление света).

Важную роль играют измерения в создании новых машин, сооружений, повышении качества продукции. Например, во время испытания стендового крупнейшего в мире турбогенератора 1200 МВт, созданного на Ленинградском объединении «Электросила», измерения производились в 1500 различных его точках.

Особо важную роль играют электрические измерения как электрических так и не электрических величин.

Первый в мире электроизмерительный прибор «указатель электрической силы» был создан в 1745 году, академиком Г.В. Рохманом, соратником М.В. Ломоносова.

Это был электрометр – прибор для измерения разности потенциалов. Однако только со второй половины XIX века в связи с созданием генераторов электрической энергии остро встал вопрос о разработке различных электроизмерительных приборов.

Вторая половина XIX века, начало XX века, – русский электротехник М.О. Доливо-добровольский разработал амперметр и вольтметр, электромагнитный системы; индукционный измерительный механизм; основы ферродинамических приборов.

Тогда же – русский физик А.Г. Столетов – закон изменения магнитной проницаемости, её измерение.

Тогда же – академик Б.С. Якоби – приборы для измерения сопротивления электрической цепи.

Тогда же – Д.И. Менделеев – точная теория весов, введение в России метрической системы мер, организация отделения по проверке электроизмерительных приборов.

1927 год – Ленинград построен первый отечественный приборостроительный завод «Электроприбор» (сейчас – Вибратор выпуск счётчиков).

30 годы – построены приборостроительные заводы в Харькове, Ленинграде, Москве, Киеве и в других городах.

С 1948 по 1967 год объём продукции приборостроения возрос в 200 раз.

В последующих пятилетках развитие приборостроения идёт неизменно опережающими темпами.

Основные достижения:

– Аналоговые приборы непосредственной оценки улучшенных свойств;

– Узко профильные аналоговые сигнализирующие контрольные приборы;

– Прецизионные полуавтоматические конденсаторы, мосты, делители напряжения, другие установки;

– Цифровые измерительные приборы;

– Применение микропроцессоров;

– Измерительный компьютер.

Современное производство немыслимо без современных средств измерений. Электроизмерительная техника постоянно совершенствуется.

В приборостроении широко используется достижения радиоэлектроники, вычислительной техники, и другие достижения науки и техники. Всё чаще применяют микропроцессоры и микро ЭВМ.

Изучение курса «Электрических измерений» ставит цель:

– Изучение устройства и принцип действия электроизмерительных приборов;

– Классификация измерительных приборов, знакомство с условными обозначениями на шкалах приборов;

– Основные методики измерений, подбор тех или иных измерительных приборов в зависимости от измеряемой величины и требования к измерению;

– Ознакомление с основными направлениями современного приборостроения.

1 . Основные понятия, методы измерений и погрешностей

Измерением называется нахождение значений физической величины опытным путём с помощью специальных технических средств.

Измерения должны выполняться в общепринятых единицах.

Средствами электрических измерений называются технические средства, использующиеся при электрических измерениях.

Различают следующие виды средств электрических измерений:

– Электроизмерительные приборы;

– Измерительные преобразователи;

– Электроизмерительные установки;

– Измерительные информационные системы.

Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Электроизмерительным прибором называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме доступной непосредственного восприятия наблюдателя.

Измерительным преобразователем называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме удобной для передачи, дальнейшего преобразования, хранения, но не поддающейся непосредственному восприятию.

Электроизмерительная установка состоит из ряда средств измерений и вспомогательных устройств. С её помощью можно производить более точные и сложные измерения, поверку и градуировку приборов и т.д.

Измерительные информационные системы представляют собой совокупность средств измерений и вспомогательных устройств. Предназначены для автоматического получения измерительной информации от ряда её источников, для её передачи и обработки.

Классификация измерений :

а). В зависимости от способа получения результата прямые и косвенные :

Прямыми называются измерения, результат которых получается непосредственно из опытных данных (измерение тока амперметром).

Косвенные называются измерения, при которых искомая величина непосредственно не измеряется, а находится в результате расчёта по известным формулам. Например: P=U·I, где U и I измерены приборами.

б). В зависимости от совокупности приёмов использования принципов и средств измерений все методы делятся на методы непосредственной оценки и методы сравнения .

Метод непосредственной оценки – измеряемая величина определяется непосредственно по отсчётному устройству измерительного прибора прямого действия (измерение тока амперметром). Этот метод прост, но отличается низкой точностью.

Метод сравнения – измеряемая величина сравнивается с известной (например: измерение сопротивления путём сравнения его с мерой сопротивления – образцовой катушкой сопротивления). Метод сравнения подразделяют на нулевой, дифференциальный и замещения .

Нулевой – измеряемая и известная величина одновременно воздействуют на прибор сравнения, доводя его показания до нуля (например: измерение электрического сопротивления уравновешенным мостом).

Дифференциальный – прибор сравнения измеряет разность между измеряемой и известной величиной.

Метод замещения – измеряемая величина заменяется в измерительной установке известной величиной.

Этот метод наиболее точен.

Погрешности измерений

Результаты измерения физической величины дают лишь приближённое её значение вследствие целого ряда причин. Отклонение результата измерения от истинного значения измеряемой величины называется погрешностью измерения.

Различают абсолютную и относительную погрешность.

Абсолютная погрешность измерения равна разности между результатом измерения Аи и истинным значением измеряемой величины А:

Поправка: дА=А–Аи

Таким образом, Истинное значение величины равно: А=Аи+дА.

О погрешности можно узнать, сравнивая показания прибора с показаниями образцового прибора.

Относительная погрешность измерения г А представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины, выраженное в %:

%

Пример: Прибор показывает U=9,7 В. Действительное значение U=10 В определить ДU и г U:

ДU=9,7–10=–0,3 В г U =

%=3%.

Погрешности измерений имеют систематическую и случайную составляющие. Первые остаются постоянными при повторных измерениях, они определяются, и влияние её на результат измерения устраняется введением поправки . Вторые изменяются случайным образом, и их нельзя определить или устранить .

В практике электроизмерений чаще всего пользуются понятием приведённой погрешности г п:

Это отношение абсолютной погрешности к номинальному значению измеряемой величины или к последней цифре по шкале прибора:

%

Пример: ДU=0,3 В. Вольтметр рассчитан на 100 В. г п =?

г п =0,3/100·100%=0,3%

Погрешности в измерениях могут быть в следствии :

а). Неправильной установки прибора (горизонтальная, вместо вертикальной);

б). Неправильного учёта среды (внешней влажности, tє).

в). Влияние внешних электромагнитных полей.

г). Неточный отсчёт показаний и т.д.

При изготовлении электроизмерительных приборов применены те или иные технические средства, обеспечивающие тот или иной уровень точности.

Погрешность, обусловленная качеством изготовления прибора, называется – основной погрешностью .

В соответствии с качеством изготовления все приборы подразделяются на классы точности : 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Класс точности указывается на шкалах измерительных приборов. Он обозначает Основную наибольшую допустимую приведённую погрешность прибора:

%.

Исходя из класса точности при поверке прибора, определяют, пригоден ли он к дальнейшей эксплуатации, т.е. соответствует ли своему классу точности.

ЛЕКЦИЯ № 1

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

Таблица 1.1

Наименование

единицы измерения

Условное обозначение

Наименование

единицы измерения

Условное обозначение

Миллиампер

Микроампер

Милливольт

Киловатт

Коэффициент мощности

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.

Таблица 1.2

Тип прибора

Условное обозначение

Род измеряемого тока

Достоинства

Недостатки

электрический

Постоянный

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

магнитный

Переменный

постоянный

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

динамический

Переменный

постоянный

Высокая точность

Низкая чувствительность,

чувствителен к помехам

Индукционный

Переменный

Высокая надежность, к перегрузкам устойчив

Низкая точность

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров - приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно - и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи .

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения - электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры - параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

https://pandia.ru/text/78/613/images/image013_9.gif" width="296" height="325">

https://pandia.ru/text/78/613/images/image016_8.gif" width="393" height="313 src=">

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

П" в старшем разряде) и изменить полярность входного сигнала при мигании знака "-" в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux - показание прибора;

зн. - единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений - понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.

Класс точности – относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения - это разность между измеренным значением х и ее истинным значением хи:

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность https://pandia.ru/text/78/613/images/image020_7.gif" width="99" height="45"> (1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1..gif" width="15" height="19 src="> тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G - обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее - рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

https://pandia.ru/text/78/613/images/image019_7.gif" width="15 height=19" height="19"> с классом точности прибора G выражается формулой:

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

где А - результат измерения;

Абсолютная погрешность прибора;

Р - вероятность, при статистической обработке данных.

При этом А и https://pandia.ru/text/78/613/images/image023_5.gif" width="15" height="17"> не должна иметь более двух значащих цифр.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта