Главная » Заготовка и хранение » В чем заключается красное смещение. Красное смещение и закон хаббла

В чем заключается красное смещение. Красное смещение и закон хаббла

Красное смещение - сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. - Сдвиг спектральных линий в фиолетовую (коротковолновую) сторону называется синим смещением.

Красное смещение может возникнуть в следствие одной из следующих причин или их комбинацией:

Для электромагнитных волн, излучаемых на расстоянии r от центра масс массивного тела и принимаемых на бесконечности (R=∞), гравитационное красное смещение приблизительно равно:

Существенных вопросов к гравитационному красному смещению, в общем нет. - Тут все по науке.

Красное смещение и старение света

Старение света (англ. tired light) - гипотеза, выдвинутая сторонниками стационарной Вселенной , в качестве альтернативного объяснения обнаруженной зависимости красного смещения от расстояния до объекта. Данная гипотеза не предполагает расширения Вселенной.

Концепция впервые была предложена Фрицем Цвикки в 1929 году, который предположил, что фотоны теряют энергию в столкновениях с другими частицами пространства.

Некоторые физики поторопились похоронить эту гипотезу, не зная реального строения элементарных частиц и подлинной картины их взаимодействий , Но полевая теория элементарных частиц позволяет по новому взглянуть на данную гипотезу и установить, как фотоны теряют часть своей энергии при прохождении через вселенную. Более того полевая теория нашла кандидатов на "темную материю " и "темных" переносчиков энергии (взамен "темной энергии "). Рассмотрим это более подробно.

Фотон-нейтринные взаимодействия

Согласно современным экспериментальным данным наше солнце ежесекундно испускает порядка 2×10 38 нейтрино (в основном электронных). С помощью полевой теории элементарных частиц и экспериментального значения верхнего предела массы покоя электронного нейтрино можно определить его минимальный объем как 10 -20 м 3 . Перемножив две цифры, мы сможем оценить минимальный объем всех нейтрино , испускаемых нашим солнцем за 1 секунду как 2×10 18 м 3 . Получился куб с размером грани более 1200 км. И это в каждую секунду работы нашего солнца. А если умножить на предполагаемое время горения нашего солнца 4,57×10 9 ×365×24×60×60=1,38×10 16 сек мы получим 2,76×10 54 нейтрино и объем 2,76×10 34 м 3 . Для сравнения объем пространства занимаемый нашей солнечной системой (рассчитанный по радиусу орбиты Плутона) 9×10 38 м 3 . Как видим это сопоставимые величины. Если вычислить среднее количество нейтрино ежесекундно испускаемых звездами а затем умножить на число звезд в галактике (в нашей это 10 11), число видимых галактик и на предполагаемый возраст Вселенной (12,07×10 9 лет) мы получим фактор воздействия не только на энергию фотонов при их движении по вселенной но и на сами галактики а также и на Вселенную в целом. А игнорировать влияние нейтрино на мега мир как это пыталась делать стандартная модель нельзя.

Но возникает еще один вопрос: а из чего следует, что возраст Вселенной равен именно 12,07×10 9 лет. Ведь возраст самых старых шаровых скоплений звезд позволяющий оценить возраст Вселенной указывает что возраст Вселенной больше, чем 12,07×10 9 лет. А определение возраста Вселенной по красному смещению (13,7×10 9 лет) вообще нельзя считать достоверным, поскольку при этом игнорировались фотон-нейтринные взаимодействия. Но если какая-то часть красного смещения обусловлена этими взаимодействиями, то возраст вселенной автоматически увеличивается. А это ведет в свою очередь к увеличению числа нейтрино во Вселенной и как следствие к увеличению части красного смещения вызванной фотон-нейтринными взаимодействиями. А значит, возраст вселенной придется снова двигать и снова и... .

Взаимодействия нейтрино

Согласно экспериментальным данным нейтрино покидают солнце с релятивистскими скоростями (и соответственно энергиями). А такое нейтрино , если оно ни с кем не столкнется, с легкостью преодолеет гравитационное поле и выйдет за пределы галактики. Но вероятность столкновения с нейтрино от других звезд (и звезд других галактик) достаточно высока. Такие столкновения могут произойти как внутри галактики, так и за ее пределами. При столкновении нейтрино они перейдут в возбужденные состояния . Затем из этих состояний произойдет переход в состояния с меньшей энергией и испусканием фотонов либо рождением нейтрино-антинейтрино или электрон-позитронных пар, если на это было достаточно энергии. И создается иллюзия образования из ничего пар частица-античастица, а также возникновение электромагнитного излучения, которое может быть приписано "реликтовому". Столкнувшиеся нейтрино будут пополнять собой невидимую массу во вселенной - темную материю (хотя возможно у "темной" материи имеются и другие компоненты, кроме нейтрино). Кроме того возможны аннигиляции пар нейтрино-антинейтрино с испусканием электромагнитного излучения.

Красное смещение и эффект Доплера

Параметр смещения определяется как:

,
где λ и λ 0 - значения длины волны в точках наблюдения и испускания излучения соответственно.

Доплеровское смещение длины волны в спектре источника, движущегося с лучевой скоростью и полной скоростью , равно:

,
При движении к источнику излучения длина волны будет уменьшаться, а при движении от источника излучения длина волны будет увеличиваться, и будет наблюдаться красное смещение.

Исходя из наблюдения красного смещения в спектрах галактик и эффекта Доплера делается вывод, что все галактики разбегаются и следовательно вселенная расширяется.

Никаких прямых доказательств того, что галактики разбегаются, в физике в настоящий момент нет. Никто не измерял напрямую расстояния до галактик и не обнаружил, что за некоторый интервал времени они выросли. Таким образом, факт разбегания галактик физикой в настоящий момент не установлен. Это всего лишь не доказанные предположения, основанные на наличии красного смещения в спектрах галактик и толковании его в пользу эффекта Доплера. Таким образом "теория Большого взрыва " продолжает оставаться недоказанной гипотезой.

Красное смещение и расширение Вселенной

Красное смещение, вызванное эффектом Доплера, если оно имеет место в природе, должно вызвать расширение космического пространства в масштабах всей Вселенной. Считается, что такое расширение Вселенной должно быть почти однородным и изотропным (расширение происходит почти равномерно в каждой точке Вселенной).

Утверждается, что экспериментально расширение Вселенной наблюдается в виде выполнения закона Хаббла. Предполагается, что началом расширения Вселенной является так называемый "Большой взрыв ". Теоретически явление было предсказано и обосновано А. Фридманом на раннем этапе разработки общей теорией относительности.

Возникает вопрос: если Вселенная, как предполагается, расширяется, то увеличиваются и линейные размеры внутри нашей солнечной системы. Следовательно, увеличивается и длина эталона длины - 1 метра. Отсюда мы получаем невозможность определения расширения Вселенной - число метров от нас до удаленной галактики будет оставаться прежним. Число метров будет изменяться, в соответствии с законами механики и будет зависеть от направления и реальной величины линейной скорости галактики (относительно нашей планеты - "центра мироздания") - что не связанно с предполагаемым расширением Вселенной.

Таким образом наличие расширения Вселенной физикой не доказано - это всего-лишь одна из гипотез объясняющих красное смещение.

Итог

Гипотеза Большого взрыва по-прежнему остается не доказанным предположением (или просто говоря - является сказкой), а идея Стационарной Вселенной нуждается в дальнейшем исследовании. Какая теория возникнет потом - время покажет.

Вселенная не так пуста, как кажется. В ней идут процессы преобразования и переноса энергии (в том числе и теми же нейтрино - не видимыми переносчиками энергии) и физике предстоит понять, описать и объяснить все это, а не выдумывать всякие правдоподобные математические сказки.

Сейчас физика не может однозначно сказать, каков реальный возраст Вселенной и можно ли его как-то измерить. - Но теперь совершенно ясно, что 13,7 млрд. лет назад вселенная была, в ней были галактики со звездами, у звезд были планеты, на части планет была жизнь, на некоторых разумная и тогда мыслящие существа тоже задавались вопросом каков реальный возраст Вселенной и также не могли дать точного ответа, поскольку за тем сроком, который проглядывался в прошлое, Вселенная уже была и в ней тоже были галактики и... .

Горунович В.А. Роль нейтрино в красном смещении и в микроволновом фоновом космическом излучении

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффект а. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин «К. с.» используется для обозначения двух явлений - космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик (См. Галактики), квазаров (См. Квазары)) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912-14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (ν 0 - ν)/ν 0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (ν 0 - частота некоторой линии спектра источника, ν - частота той же линии, регистрируемая приёмником; ν). Такое изменение частоты - характерное свойство доплеровского смещения и фактически исключает все др. истолкования К. с.

В относительности теории (См. Относительности теория) доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет υ (в случае метагалактич. К. с. υ - это Лучевая скорость), то

(c - скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: v приближается к скорости света, оставаясь всегда меньше её (v v, намного меньшей скорости света (υ), формула упрощается: υ cz. Закон Хаббла в этом случае записывается в форме υ = cz = Hr (r - расстояние, Н - постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии (См. Космология): с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ± 5 (км/сек )/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z ≈ 0,2, соответствующие скорости υ ≈ 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10%, т. е. такая же, как погрешность определения Н ). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z ≈ 2 и больше. При смещениях z = 2 скорость υ ≈ 0,8․с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты - нестационарность и кривизна пространства - времени (См. Кривизна пространства-времени); в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний - расстояние по К. с. - составляет здесь, очевидно, r= υlH = 4,5 млрд. пс ). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейн ом в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью υ, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца υ = 0,6 км/сек, для плотной звезды Сириус В υ = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: υ = 7,5․10 -5 см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном (См. Коллапс гравитационный)) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, § 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Красное смещение" в других словарях:

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Современная энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. красное смещение возникает, когда расстояние между источником излучения и его приемником… … Большой Энциклопедический словарь

    Красное смещение - КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и… … Иллюстрированный энциклопедический словарь

    Увеличение длин волн (l) линий в эл. магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн lисп)/lисп, где lисп и lприн… … Физическая энциклопедия

    - (обозначение z), увеличение длины волны видимого света или в другом диапазоне ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вызванное либо удалением источника (эффект ДОПЛЕРА), либо расширением Вселенной (см. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ). Определяется как изменение… … Научно-технический энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приёмником… … Энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником… … Астрономический словарь

    красное смещение - raudonasis poslinkis statusas T sritis fizika atitikmenys: angl. red shift vok. Rotverschiebung, f rus. красное смещение, n pranc. décalage vers le rouge, m; déplacement vers le rouge, m … Fizikos terminų žodynas

Большинство квазаров интенсивно излучают радиоволны . Когда астрономы точно определили положения этих радиоисточников на фотографиях, полученных в видимом свете, они обнаружили звездообразные объекты.

Чтобы установить природу странных небесных тел, сфотографировали их спектр. И увидели совсем неожиданное! Эти “звезды” имели спектр, резко отличающийся от всех других звезд. Спектры были совершенно незнакомыми. У большинства квазаров они не содержали не только хорошо известных и характерных для обычных звезд линий водорода, в них вообще с первого взгляда нельзя было обнаружить ни одной линии даже какого-либо другого химического элемента. Работавший в США молодой голландский астрофизик М.Шмидт выяснил, что линии в спектрах странных источников неузнаваемы лишь потому, что они сильно смещены в красную область спектра, а на самом деле это линии хорошо известных химических элементов (прежде всего водорода).

Причина смещения спектральных линий квазаров была предметом больших научных дискуссий, в итоге которых подавляющее большинство астрофизиков пришли к выводу, что красное смещение спектральных линий связано с общим расширением Метагалактики.

В спектре объектов 3С273 и 3С48 красное смещение достигает небывалой величины. Смещение линий к красному концу спектра может быть признаком удаления источника от наблюдателя. Чем быстрее удаляется источник света, тем больше красное смещение в его спектре.

Характерно, что в спектре практически всех галактик (а для далеких галактик это правило не имеет ни одного исключения) линии в спектре всегда смещены к его красному концу. Грубо говоря, красное смещение пропорционально расстоянию до галактики. Именно в этом выражается ЗАКОН КРАСНОГО СМЕЩЕНИЯ , объясняемый ныне как результат стремительного расширения всей наблюдаемой совокупности галактик.

Скорость удаления

У наиболее далеких из известных до сих галактик красное смещение весьма велико. Соответствующие ему скорости удаления измеряются десятками тысяч километров в секунду. Но у объекта 3С48 красное смещение превзошло все рекорды. Получилось, что он уносится от Земли со скоростью только примерно вдвое меньше скорости света! Если считать, что этот объект подчиняется общему закону красного смещения, легко вычислить, что расстояние от Земли до объекта 3С48 равно 3,78 млрд. световых лет! К примеру, за 8 1/3 минут луч света долетит до Солнца, за 4 года - до ближайшей звезды. А здесь почти 4 млрд.лет непрерывного сверхстремительного полета - время, сравнимое с продолжительностью жизни нашей планеты.

Для объекта 3С196 расстояние, также найденное по красному смещению, получилось равным 12 млрд. световых лет, т.е. мы уловили луч света, который был послан к нам еще тогда, когда ни Земли, ни Солнца не существовало! Объект 3С196 очень быстрый - его скорость удаления по лучу зрения достигает 200 тысяч километров в секунду.

Возраст квазаров

По современным оценкам, возрасты квазаров измеряются миллиардами лет. За это время каждый квазар излучает огромную энергию. Нам неизвестны процессы, которые могли бы служить причиной такого энерговыделения. Если предположить, что перед нами сверхзвезда, в которой “сгорает” водород, то ее масса должна в миллиард раз превышать массу Солнца. Между тем современная теоретическая астрофизика доказывает, что при массе более чем в 100 раз превышающей солнечную, звезда неизбежно теряет устойчивость и распадается на ряд фрагментов.

Из известных ныне квазаров, общее число которых более 10 000, самый близкий удален на 260 000 000 световых лет, самый далекий - на 15 млрд. световых лет. Квазары, пожалуй, наиболее старые из объектов, наблюдаемых нами, т.к. с расстояния в миллиарды световых лет обычные галактики не видны ни в один телескоп. Однако это “живое прошлое” пока что совершенно непонятно нам. Природа квазаров до сих пор полностью не выяснена.

Свет, излучаемый звездой, при глобальном рассмот­рении является электромагнитным колебанием. При ло­кальном рассмотрении это излучение состоит из квантов света - фотонов, являющихся переносчиками энергии в пространстве. Мы теперь знаем, что излучаемый квант света возбуждает ближайшую элементарную частицу пространства, которая передает возбуждение соседней частице. Исходя из закона сохранения энергии, в этом случае скорость света должна быть ограниченной. От­сюда видно различие распространения света и информа­ции, которую (информацию) рассмотрели в п. 3.4. Такое представление о свете, пространстве и природе взаимо­действий привело к изменению представления о миро­здании. Поэтому представления о красном смещении как об увеличении длин волн в спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров следует пересмотреть и установить природу возникновения данного эффекта (см. Введение, п. 7 и ).

Красное смещение обусловлено двумя причинами. Во -первых, известно , что красное смещение, обуслов­ленное эффектом Доплера, возникает в том случае, когда движение источника света относительно наблюдателя приводит к увеличению расстояния между ними.

Во-вторых, с позиции фрактальной физики, красное смещение возникает, когда излучатель помещен в об­ласть большого электрического поля звезды. Тогда в новой интерпретации этого эффекта кванты света - фотоны - будут генерировать при рождении несколько

иную частоту колебаний по сравнению с земным этало -ном, у которого электрическое поле незначительно. Это влияние электрического поля звезды на излучение при­водит как к уменьшению энергии нарождающегося кванта, так и к уменьшению характеризующей квант частоты ; соответственно длина волны излучения = C/ (С - скорость света, примерно равная 3 10 8 м/с). Так как электрическое поле звезды также определяет гравитацию звезды, то эффект увеличения длины волны излучения назовем старым термином «гравитационное красное смещение».

Примером гравитационного красного смещения мо­жет служить наблюдаемое смещение линий в спектрах Солнца и белых карликов. Именно эффект красного гравитационного смещения сейчас надежно установлен для белых карликов и для Солнца. Гравитационное крас -ное смещение, эквивалентное скорости, для белых кар­ликов составляет 30 км/с, а для Солнца - около 250 м/с . Различие красных смещений Солнца и белых кар­ликов на два порядка обусловлено различным электри­ческим полем этих физических объектов. Рассмотрим более подробно данный вопрос.

Как указывалось выше, фотон, испускаемый в элек­трическом поле звезды, будет иметь измененную частоту колебаний. Для вывода формулы красного смещения воспользуемся соотношением (3.7) для массы фотона: m ν = h /C 2 = Е/С 2 , где Е - энергия фотона, пропорцио­нальная его частоте ν. Отсюда видим, что относительные изменения массы и частоты фотона равны, поэтому их представим в таком виде: m ν /m ν = / = Е/С 2 .


Изменение энергии АЕ нарождающегося фотона вы­зывается электрическим потенциалом звезды. Элек­трический потенциал Земли из-за своей малости в дан­ном случае не учитывается. Тогда относительное красное смещение фотона, излучаемого звездой с электрическим потенциалом φ и радиусом R, в системе СИ равно.

Что, по вашему мнению, означает термин Расширение Вселенной, в чем суть данного явления.

Как вы догадались, основа лежит в понятии красного смещения. Оно обрело свои очертания ещё в 1870 году, когда было замечено английским математиком и философом Уильямом Клиффордом. Он пришел к выводу, что пространство неодинаково в разных точках, то есть искривлено, а также то, что оно со временем может изменяться. Расстояние между галактиками увеличивается, но координаты остаются прежними. Также его допущения сводились к тому, что это явление каким-то образом относиться к сдвигу материи. Выводы Клиффорда не остались не замеченными и спустя некоторое время легли в основу труда Альберта Эйнштейна под названием « «.

Первые обоснованные идеи

Впервые же точные сведения о расширении Вселенной были представлены с помощью астроспектрографии. Когда в Англии, в 1886 году, астрономом-любителем Уильямом Хаггинсом было отмечено, что длины волн звёздного света сдвинуты в сравнении с такими же земными волнами. Такое измерение стало возможным при использовании оптической интерпретации эффекта Доплера, суть которого в том, что скорость звуковых волн постоянна в однородной среде и зависит лишь от свойств самой среды, в таком случае можно вычислить величину вращения звезды. Все эти действия позволяют нам негласно определить движение космического объекта.

Практика измерения скоростей

Буквально через 26 лет в Флагстаффе (США, Аризона) член национальной академии наук Весто Слайфер, изучая спектр спиральных туманностей через телескоп со спектрографом, первым обозначил разности скоростей скоплений, то есть Галактик, по интегральным спектрам. Учитывая, что скорость изучения была мала, ему все-таки удалось рассчитать, что туманность с каждой секундой на 300 км ближе к нашей планете. Уже в 1917 году им было доказано красное смещение более чем 25 туманностей, в направлении которых проглядывалась значительная асимметрия. Лишь четыре из них шли к направлению Земли, остальные же отдалялись, причем с довольно внушающей скоростью.

Формирование закона

Спустя десятилетие известный астроном Эдвин Хаббл доказал, что у дальних галактик красное смещение больше чем у более близко расположенных, и что оно растет пропорционально расстоянию до них. Им также была получена постоянная величина, называемая постоянной Хаббла, которая используется для нахождения лучевых скоростей любых галактик. Закон Хаббла как никто связывает красное смещение электромагнитных квантов. Учитывая это явление, он представлен не только в классической, но и в квантовой форме.

Популярные способы нахождения

На сегодня одним из основополагающих способов нахождения межгалактических расстояний это метод «стандартной свечи», суть которого в ослаблении потока обратно пропорционально квадрату его расстояния. Эдвин обычно пользовался цефеидами (переменными звездами) яркость коих тем больше чем больше их периодичность изменения свечения. Ими пользуются и в данный момент, хотя и видны они лишь на расстоянии меньше 100 млн. св. лет. Так же большим успехом пользуются сверхновые типа la характеризуемые одинаковым свечением около 10 млрд. таких звезд как наше Солнце.

Последние прорывы



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта