Главная » Обработка грибов » Гамма-функцией называется интеграл область определения гамма-функции некоторые свойства гамма-функции бета-функция и ее свойства область определения бета-функции применение интегралов эйлера в вычислении определенных интегралов. Гамма излучение — применен

Гамма-функцией называется интеграл область определения гамма-функции некоторые свойства гамма-функции бета-функция и ее свойства область определения бета-функции применение интегралов эйлера в вычислении определенных интегралов. Гамма излучение — применен

Гамма-излучения представляют собой электромагнитные колебания очень большой частоты, распространяющиеся в пространстве со скоростью света. Эти излучения испускаются ядром в виде отдельных порций, называемых гамма-квантами или фотонами.

Энергия гамма-квантов лежит в пределах от 0,05 до 5 МэВ. Гамма-излучение с энергией менее 1 МэВ условно называют мягким излучением, а с энергией более 1 МэВ - жестким излучением.

Гамма-излучение не является самостоятельным видом излучения. Обычно гамма-излучение сопровождает бета-распад, реже альфа-распад. Выбрасывая альфа- или бета-частицы, ядро освобождается от избытка энергии, но может оставаться еще в возбужденном состоянии. Переход из возбужденного состояния в основное сопровождается излучением гамма-квантов, состав ядра при этом не изменяется.

В воздухе гамма-лучи распространяются на большие расстояния, измеряе­мые десятками и сотнями метров.

Проникающая способность гамма-лучей в 50-100 раз больше проникающей способности бета-частиц и в тысячи раз больше проникающей способности аль­фа-частиц.

Ионизация среды при прохождении через нее гамма-лучей производите: только вторичными электронами, которые возникают в результате взаимодействия гамма-квантов с атомами вещества. Ионизирующая способность гамма квантов определяется их энергией. В общем один гамма-квант дает столько и пар ионов, сколько их образует бета- или альфа- частица той же энергии. Однако вследствие меньшей поглощаемости гамма-лучей образуемые ими ионы распре­деляются на большем расстоянии. Поэтому удельная ионизирующая способ­ность гамма-квантов в сотни раз меньше удельной ионизирующей способности бета-частиц, в тысячи раз меньше удельной ионизирующей способности альфа-частиц и составляет в воздухе несколько пар ионов на 1 см пути.

Вывод . Гамма-излучения обладают наибольшей проникающей способно­стью по сравнению с проникающей способностью остальных видов радиоактив­ных излучений. В то же время гамма-излучения обладают очень малой удельной ионизирующей способностью, составляющей в воздухе несколько пар ионов на 1 см пути гамма-квантов.

Нейтронное излучение и его основные свойства

Нейтронное излучение является корпускулярным излучением, возникаю­щим в процессе деления или синтеза ядер.

Нейтроны оказывают сильное поражающее действие, так как они, не имея электрического заряда, легко проникают в ядра атомов, из которых состоят жи­вые ткани, и захватываются ими.

Более 99% общего количества нейтронов при ядерном взрыве выделяется в течение 10 -14 с. Эти нейтроны называются мгновенными. Остальная часть (около 1%) нейтронов излучается позднее некоторыми осколками деления при их бета-распаде. Эти нейтроны называются запаздывающими.

Скорость распространения нейтронов доходит до 20000 км/ч. Время, необ­ходимое для того, чтобы все нейтроны прошли расстояние от точки взрыва до места, где они представляют угрозу поражения, составляет около одной секунды после момента взрыва.

В зависимости от энергии нейтроны классифицируются следующим обра­зом:

медленные нейтроны 0-0,1 кэВ;

нейтроны промежуточных энергий 0,1-20 кэВ;

быстрые нейтроны 20 кэВ-10 МэВ;

нейтроны высоких энергий свыше 10 МэВ.

Тепловые нейтроны - нейтроны, находящиеся в тепловом равновесии с ок­ружающей средой (с энергией, не превышающей 1 эВ), включены в область мед­ленных нейтронов.

Прохождение нейтронов через вещество сопровождается ослаблением их интенсивности. Это ослабление обусловливается взаимодействием нейтронов с ядрами атомов вещества.

Рентгеновское излучение

Рентгеновские лучи возникают при бомбардировке быстрыми электронами твердых мишеней. Рентгеновская трубка представляет собой эвакуированный баллон с несколькими электродами (рис. 1.2). Нагреваемый током катод К слу­жит источником свободных электронов, испускаемых вследствие термоэлек­тронной эмиссии. Цилиндрический электрод Ц предназначен для фокусировки электронного пучка.

Мишенью является анод А, который называют также антикатодом. Его де­лают из тяжелых металлов (W, Си. Pt и т. д.). Ускорение электронов осуществля­ется высоким напряжением, создаваемым между катодом и антикатодом. Почти вся энергия электронов выделяется на антикатоде в виде теплоты (в излучение превращается лишь 1-3% энергии).

Попав в вещество антикатода, электроны испытывают сильное торможение и становятся источником электромагнитных волн.

При достаточно большой скорости электронов, кроме тормозного излуче­ния (т. е. излучения, обусловленного торможением электронов), возбуждается также характеристическое излучение (вызванное возбуждением внутренних электронных оболочек атомов антикатода).

Интенсивность рентгеновского излученя может быть измерена как по степени фотографического действия, так и по ионизации, производимой им в га­зообразных средах, в частности в воздухе. *М интенсивнее излучение, тем большую ионизацию оно производит. По механизму взаимодействия с вещест­вом рентгеновское излучения аналогично у-излучению. Длина волны рентгенов­ского излучения 10 -10 -10 -6 см, гамма-излучения -10-9 см и ниже.

В настоящее время рентгеновские лучи применяются в качестве контроль­ного средства. С помощью рентгеновских луче» контролируют качество сварки, однородность соответствующих изделий и т. п. В медицине рентгеновские лучи широко применяются для диагностики, а в некоторых случаях и в качестве средства, воздействующего на раковые клетки.

Лекция № 11 (можно сделать 2 лекции)

Каждый человек наверняка слышал о трех типах радиоактивного излучения - альфа, бета и гамма. Все они возникают в процессе радиоактивного распада вещества, и у них есть как общие свойства, так и различия. Наибольшую опасность несет последний тип излучения. Что же он представляет собой?

Природа радиоактивного распада

Чтобы детальнее понять свойства гамма-распада, необходимо рассмотреть природу ионизирующего излучения. Это определение означает, что энергия такого типа излучения очень высока - когда оно попадает в другой атом, называемый «атом-мишень», он выбивает движущийся по его орбите электрон. При этом атом-мишень становится положительно заряженным ионом (поэтому излучение и было названо ионизирующим). От ультрафиолетового или инфракрасного это излучение отличается высокой энергией.

В целом альфа-, бета- и гамма-распады имеют общие свойства. Можно представить себе атом в виде маленького зернышка мака. Тогда орбита электронов будет мыльным пузырем вокруг него. При альфа-, бета- и гамма-распаде из этого зернышка вылетает крошечная частица. При этом заряд ядра меняется, а это означает, что был образован новый химический элемент. Пылинка несется с гигантской скоростью и врезается в электронную оболочку атома-мишени. Потеряв электрон, атом-мишень становится положительно заряженным ионом. Однако при этом химический элемент остается тем же, ведь ядро атома-мишени осталось прежним. Ионизация является процессом химической природы, практически тот же процесс происходит при взаимодействии некоторых металлов, которые растворяются в кислотах.

Где еще происходит γ-распад?

Но ионизирующие излучения происходят не только при радиоактивном распаде. Они также происходят при атомных взрывах и в ядерных реакторах. На Солнце и других звездах, а также в водородной бомбе осуществляется синтез легких ядер, сопровождающийся ионизирующим излучением. В оборудовании для рентгена и тоже происходит этот процесс. Основное свойство, которое имеют альфа-, бета-, гамма-распады - это высочайшая энергия ионизации.

А различия между этими тремя типами излучений определяются их природой. Радиация была открыта в конце XIX столетия. Тогда никто не знал, что представляет собой это явление. Поэтому три типа излучений и были названы буквами латинского алфавита. Гамма-излучение было открыто в 1910 году ученым по имени Генри Грэгг. Гамма-распад имеет такую же природу, как и солнечный свет, инфракрасные лучи, радиоволны. По своим свойствам γ-лучи представляют собой фотонное излучение, однако энергия содержащихся в них фотонов очень высока. Другими словами, это излучение с очень короткой длиной волны.

Свойства гамма-лучей

Это излучение чрезвычайно легко проникает через любые препятствия. Чем более плотный материал стоит на его пути, тем он лучше его задерживает. Чаще всего с этой целью используют свинцовые или бетонные конструкции. В воздухе γ-лучи легко преодолевают десятки и даже тысячи метров.

Гамма-распад очень опасен для человека. При его воздействии могут повреждаться кожа и внутренние органы. Бета-излучение можно сравнить со стрельбой мелкими пулями, а гамма - со стрельбой иглами. Во время ядерной вспышки, помимо гамма-излучения, также происходит образование нейтронных потоков. Гамма-лучи попадают на Землю вместе с Помимо них, оно несет на Землю протоны и другие частицы.

Действие гамма-лучей на живые организмы

Если сравнить альфа-, бета- и гамма-распады, то последний будет наиболее опасным для живых организмов. Скорость распространения этого типа излучения равна скорости света. Именно из-за его высокой скорости оно быстро попадает в живые клетки, вызывая их разрушение. Каким образом?

На пути γ-излучение оставляет большое количество ионизированных атомов, которые в свою очередь ионизируют новую порцию атомов. Клетки, которые подверглись мощному воздействию гамма-излучения, изменяются на различных уровнях своей структуры. Трансформировавшись, они начинают разлагаться и отравлять организм. И самым последним этапом является появление дефектных клеток, которые уже не могут нормально выполнять свои функции.

У человека разные органы имеют разную степень чувствительности к гамма-излучению. Последствия зависят от полученной дозы ионизирующего излучения. В результате этого в организме могут происходить различные физические процессы, нарушаться биохимия. Наиболее уязвимыми являются органы кроветворения, лимфатическая и пищеварительная системы, а также структуры ДНК. Это воздействие опасно для человека и тем, что излучение накапливается в организме. А также оно имеет скрытый период воздействия.

Формула гамма-распада

Чтобы вычислить энергию гамма-излучения, можно воспользоваться следующей формулой:

В этой формуле h - постоянная Планка, v - частота кванта электромагнитной энергии, с - скорость света, λ - длина волны.

Экспериментально установлено, что -излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает - и -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т.д. -Спектр является линейчатым. -Спектр - это распределение числа -квантов по энергиям (такое же толкование -спектра дано в § 258). Дискретность -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

В настоящее время твердо установлено, что -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10 -13 -10 -14 с, значительно меньшее времени жизни возбужденного атома (примерно 10 -8 с), переходит в основное состояние с испусканием -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому -излучение одного и того же радиоактивного изотопа может содержать несколько групп -квантов, отличающихся одна от другой своей энергией.

При -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому -излучение рассматривают как поток частиц - -квантов. При радиоактивных распадах различных ядер -кванты имеют энергии от 10 кэВ до 5 МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии . Само явление называется внутренней конверсией . Внутренняя конверсия - процесс, конкурирующий с -излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е , отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде -кванта, то частота излучения определяется из известного соотношения . Если же испускаются электроны внутренней конверсии, то их энергии равны Е А К , Е A L , ... , где А К , A L , ... - работа выхода электрона из К - и L -оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от { -электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электронами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.


Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении -излучения сквозь вещество они либо поглощаются, либо рассеиваются им. -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом ( и - интенсивности -излучения на входе и выходе слоя поглощающего вещества толщиной х, - коэффициент поглощения). Так как -излучение - самое проникающее излучение, то для многих веществ - очень малая величина; зависит от свойств вещества и от энергии -квантов.

Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение -излучения ,- это процесс, при котором атом поглощает -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий -квантов ( £ 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии -квантов ( » 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия -квантов с веществом является комптоновское рассеяние (см. § 206).

При > 1,02 МэВ = 2 2 ( - масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом . Поэтому при » 10 МэВ основным процессом взаимодействия -излучения в любом веществе является образование электронно-позитронных пар .

Если энергия -кванта превышает энергию связи нуклонов в ядре (7 – 8 МэВ), то в результате поглощения -кванта может наблюдаться ядерный фотоэффект - выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность -излучения используется в гамма-дефектоскопии - методе дефектоскопии, основанном на различном поглощении -излу-чения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения . Различаются:

Поглощенная доза излучения - физическая величина, равная отношению энергии излучения к массе облучаемого вещества. Единица поглощенной дозы излучения - грей (Гр) (С. Грей (1666-1736) - английский физик): 1 Гр = 1 Дж/кг - доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

Экспозиционная доза излучения - физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха. Единица экспозиционной дозы излучения - кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р = 2,58×10 -4 Кл/кг.

Биологическая доза - величина, определяющая воздействие излучения на организм. Единица биологической дозы - биологический эквивалент рентгена (бэр): 1 бэр - доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновского или -излучения в 1 P (1 бэр = 10 -2 Дж/кг).

Мощность дозы излучения - величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица - грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица - ампер на килограмм (А/кг)).

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра)

Как уже указывалось, дискретный спектр -излучения обусловлен дискретностью энергетических уровней ядер атомов. Однако, как следует из соотношения неопределенностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах , где - время жизни ядра в возбужденном состоянии. Следовательно, чем меньше , тем больше неопределенность энергии возбужденного состояния. = 0 только для основного состояния стабильного ядра (для него ). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г ). Например, при времени жизни возбужденного состояния, равного 10 -13 с, естественная ширина энергетического уровня примерно 10 -2 эВ.

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состояний ядра, приводит к немонохроматичности -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии -излучения.

При прохождении -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение -излучения ядрами : ядро поглощает -квант той же частоты, что и частота излучаемого ядром -кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый -квант имеет энергию несколько меньшую, чем Е , из-за отдачи ядра в процессе излучения:

где - кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е -квант должен иметь энергию несколько большую, чем Е , т. е.

где - энергия отдачи, которую -квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг относительно друга на величину 2 (рис.344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы -кванта и ядра должны быть равны, получим

(260.1)

Например, возбужденное состояние изотопа иридия имеет энергию 129 кэВ, а время его жизни порядка 10 -10 с, так что ширина уровня Г » 4×10 -5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5×10 -2 эВ, т.е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.

Резонансное поглощение -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Р. Мёссбауэр (р. 1929) - немецкий физик, Нобелевская премия 1961 г.). Он исследовал излучение и поглощение -излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) -квант, a всей кристаллической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и поглощения -излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) -квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра . При рассмотренных условиях линии излучения и поглощения -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г . Эффект Мёссбауэра был открыт на глубоко охлажденном (с понижением температуры колебания решетки «замораживаются»), а впоследствии обнаружен более чем на 20 стабильных изотопах (например, 57 Fe , 67 Zn и т. д.).

Мёссбауэр вооружил экспериментальную физику новым методом измерений невиданной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/Е = 10 -15 ¸ 10 -17 , поэтому во многих областях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали -линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движении в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезновению эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравитационное красное смещение», предсказанный общей теорией относительности Эйнштейна.

Гамма-излучение и его свойства

Гамма-излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l < 10 -10 м и вследствие этого – ярко выраженными корпускулярными свойствами, т.е. является потоком частиц – g-квантов, или фотонов, с энергией hn (n – частота излучения, h – постоянная Планка). На шкале электромагнитных волн гамма-излучение граничит с жестким рентгеновским излучением, занимая область более высоких частот.

Экспериментально установлено, что g-излучение не является самостоятельным видом радиоактивности. Оно сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т.п.

Сопровождающее распад радиоактивных ядер, гамма-излучение, испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или в основное. Энергия g-кванта равна разности энергий De состояний, между которыми происходит переход.

Возбужденное состояние

Основное состояние ядра Е1

Испускание ядром g-кванта не ведет к изменению атомного номера или массового числа. Ширина линий гамма-излучения очень мала (~10 -2 эВ). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. При помощи исследования спектров гамма-излучения можно установить энергии возбужденных состояний ядер. Гамма-кванты больших энергий испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося p 0 - мезона возникает гамма-излучение с энергией ~70 МэВ. Гамма-излучение при распаде элементарных частиц также обладает линейчатым спектром. Однако распадающиеся элементарные частицы очень часто движутся со скоростями, равными, примерно, скорости света, вследствие чего возникает доплеровское уширение спектральных линий и спектр гамма-излучения оказывается размытым в широком интервале энергий. Возникающее при прохождении быстрых заряженных частиц через вещество, гамма-излучение вызывается их торможением в кулоновском поле атомных ядер вещества. Тормозное гамма-излучение, также как и тормозное рентгеновское излучение, характеризуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма-излучение с максимальной энергией, достигающей несколько десятков ГэВ.

В межзвёздном пространстве гамма-излучение возникает в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

Подобное явление встречается и на Земле при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в g-квант. Можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью (например, проходит через слой свинца толщиной 5 см). Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, – фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. Фотоэффект – это процесс, при котором атом поглощает гамма-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома. То освобождающееся место заполняется электронами из вышележащих оболочек. И фотоэффект сопровождается характеристическим рентгеновским излучением. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии g-квантов (~ 100 кэВ) на тяжелых элементах (Pb, U).

При комптон-эффект происходит рассеяние g-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте g-квант не исчезает, а лишь изменяет энергию (длину волны) и направление распространения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение – более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1 см 3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышающих энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 МэВ. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

При энергии гамма-кванта > 10 МэВ основным процессом взаимодействия гамма-излучения в любом веществе является образование электронно-позитронных пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hn . Поэтому при hn ~10 МэВ основным процессом в любом веществе оказывается образование пар.

0,1 0,5 1 2 5 10 50

Энергия γ-лучей (МэВ)

Обратный процесс аннигиляции электрон-позитронной пары является источником гамма-излучения.

Для характеристики ослабления гамма-излучения в веществе обычно пользуются коэффициентом поглощения, показывающим, на какой толщине Х поглотителя интенсивность I 0 падающего пучка гамма-излучение ослабляется в е раз:

Здесь μ 0 – линейный коэффициент поглощения гамма-излучения. Иногда вводят массовый коэффициент поглощения, равный отношению μ 0 к плотности поглотителя.

Этот закон ослабления гамма-излучения справедлив только для узко направленного пучка гамма-лучей, при котором любой процесс, как поглощения, так и рассеяния, выводит гамма-излучение из состава первичного пучка. Пир высоких же энергиях процесс прохождения гамма-излучения через вещество несколько усложняется. Вторичные электроны и позитроны обладают большой энергией и, значит, могут, в свою очередь, создавать гамма-излучение благодаря процессам торможения и аннигиляции. Таким образом, в веществе возникает ряд чередующихся поколений вторичного гамма-излучения, электронов и позитронов, то есть происходит развитие каскадного ливня. Число вторичных частиц в таком ливне вначале возрастает с ростом толщины вещества, достигая максимума. Однако затем процессы поглощения начинают преобладать над процессами размножения частиц и ливень затухает. Способность гамма-излучения развивать ливни зависит от соотношения между его энергией и так называемой критической энергией, после которой каскадный ливень в данном веществе практически теряет способность развиваться.

В экспериментальной физике для изменения энергии гамма-излучения применяются гамма-спектрометры различных типов, которые основаны, в основном, на измерении энергии вторичных электронов. Типы спектрометров гамма-излучения: магнитные, сцинтиляционные, полупроводниковые и кристалл-дифракционные.

Изучение спектров ядерных гамма-излучений дает важную информацию о структуре ядер. Наблюдение эффектов, связанных с влиянием внешней среды на свойства ядерного гамма-излучения используется для изучения свойств твёрдых тел.

Гамма-излучение широко применяется в технике, например, для обнаружения дефектов в металлах используется гамма-дефектоскопия. Этот метод основан на различном поглощении гамма-излучения при распространении его на одинаковые расстояния в разных средах. Местоположение и размеры дефектов определяются по различию в интенсивностях излучения. Прошедшего через разные участки просвечиваемого изделия.

В радиационной химии гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. В пищевой промышленности гамма-излучение используется для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители.

Воздействие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма-излучения зависит от энергии g-квантов и пространственных особенностей облучения, например, он различен для случая внешнего и внутреннего облучения. Относительная биологическая эффективность гамма-излучения составляет 0,7–0,9. В производственных условиях (хроническое воздействие в малых дозах) относительная биологическая эффективность гамма-излучения принята равной 1.

Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков) и растений.

Возможности лучевой терапии значительно расширились за счёт средств и методов дистанционной гамма-теропии. Успехи дистанционной гамма-терапии достигнуты в результате большой работы в области использования мощных искусственных радиоактивных источников гамма-излучения (кобальт-60, цезий-137), а также новых гамма-препаратов.

Большое значение дистанционной гамма-терапии объясняется также сравнительной доступностью и удобствами использования гамма-аппаратов. Гамма-аппараты, так же как и рентгеновские аппараты, конструируют для статического и подвижного облучения. С помощью подвижного облучения стремятся создать большую дозу в опухоли при рассредоточенном облучении здоровых тканей. Разработаны конструктивные усовершенствования гамма-аппаратов, направленные на уменьшение полутени, улучшение гомогенности полей, использование фильтров типа жалюзи и поиски дополнительных возможностей защиты.

В растениеводстве использование ядерных излучений дает обширные возможности для изменения обмена веществ у сельскохозяйственных растений, повышение их урожайности, ускорения развития и улучшения качества.

Уже в первых исследованиях радиобиологов было установлено, что ионизирующая радиация – мощный фактор воздействия на рост, развитие и обмен веществ в живых организмах. Под влиянием гамма-облучения у растений, животных или микроорганизмов меняется слаженный обмен веществ, ускоряется или замедляется (в зависимости от дозы) течение физиологических процессов, наблюдаются сдвиги в росте, развитии, формировании урожая.

Нужно подчеркнуть, что при гамма-облучении в семена не поступают радиоактивные вещества. Облученные семена, как и выращенный из них урожай, нерадиоактивны. Оптимальные дозы облучения только ускоряют нормальные процессы, происходящие в растении, и поэтому совершенно необоснованны какие-либо опасения и предостережения против использования в пищу урожая, полученного из семян, подвергавшихся предпосевному облучению.

Ионизирующие излучения применяются для повышения сроков хранения сельскохозяйственных продуктов и уничтожения различных насекомых-вредителей. Например, если зерно перед загрузкой в элеватор пропустить через бункер, где установлен мощный источник радиации, то возможность размножения насекомых-вредителей будет исключена и зерно сможет храниться длительное время без каких-либо потерь. Употребление его в качестве корма не вызвало никаких отклонений в росте, способности к размножению и других патологических отклонений от нормы у четырех поколений экспериментальных животных.

Реферат

Целью данной курсовой работы является изучение особых свойств Гамма-функции Эйлера. В ходе работы была изучена Гамма-функция, её основные свойства и составлен алгоритм вычисления с разной степенью точности. Алгоритм был написан на языке высокого уровня - Си. Результат работы программы сверен с табличным. Расхождений в значениях обнаружено не было.

Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.

Для написания курсовой работы было использовано 7 источников.

Введение

Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.

Бета функции представимы интегралом Эйлера первого рода:

Гамма функция представляется интегралом Эйлера второго рода:

Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.

Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.

Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.


1. Бэта-функци я Эйлера

Бэта – функции определяются интегралом Эйлера первого рода:

Он представляет функцию от двух переменных параметров и : функцию B . Если эти параметры удовлетворяют условиям и ,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров и ,причём особыми точками этого интеграла будут точки и

Интеграл (1.1) сходятся при .Полагая получим:

= - =

т.e. аргумент и входят в симметрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем


Откуда получаем

При целом b = n последовательно применяя (1.2)

при целых = m,= n, имеем

но B(1,1) = 1,следовательно:

Положим в (1.1) .Так как график функции симметрична относительно прямой ,то

и в результате подстановки , получаем

полагая в(1.1) ,откуда , получим

разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим

2. Гамма-функция

2.1 Определение

Восклицательный знак в математических трудах обычно означает взятие факториала какого-либо целого неотрицательного числа:

n! = 1·2·3·...·n.

Функцию факториал можно еще записать в виде рекурсионного соотношения:

(n+1)! = (n+1)·n!.

Это соотношение можно рассматривать не только при целых значениях n.

Рассмотрим разностное уравнение

Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.

2.2 Интегральное представление

Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:

В этом случае правая часть уравнения (2.1) может быть записана в виде:

Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p®±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.

Левая часть равенства (2.1) записывается следующим образом:

Тогда уравнение (2.1) для образа гамма-функции имеет вид:

Это уравнение легко решить:

Нетрудно заметить, что найденная функция [(Г)\tilde](p) на самом деле такова, что внеинтегральный член в формуле (2.2) равен нулю.

Зная образ гамма-функции, легко получить и выражение для прообраза:

Это неканоническая формула, для того, чтобы привести ее к виду, полученному Эйлером, надо сделать замену переменной интегрирования: t = exp(-p), тогда интеграл примет вид:

Постоянная C выбирается так, чтобы при целых значениях z гамма-функция совпадала с функцией факториал: Г(n+1) = n!, тогда:

следовательно C = 1. Окончательно, получаем формулу Эйлера для гамма-функции:

Эта функция очень часто встречается в математических текстах. При работе со специальными функциями, пожалуй, даже чаще, чем восклицательный знак.

Проверить, что функция, определенная формулой (2.3), действительно удовлетворяет уравнению (2.1), можно, проинтегрировав интеграл в правой части этой формулы по частям:

2.3 Область определения и полюсы

В подынтегральной функции интеграла (2.3) при экспонента exp(-tz ) при R(z ) > 0 убывает гораздо быстрее, чем растет алгебраическая функция t (z-1) . Особенность в нуле - интегрируемая, поэтому несобственный интеграл в (2.3) сходится абсолютно и равномерно при R (z) > 0. Более того, последовательным дифференцированием по параметру z легко убедиться, что Г(z ) - голоморфная функция при R (z ) > 0. Однако, непригодность интегрального представления (2.3) при R (z ) 0 не означает, что там не определена сама гамма-функция - решение уравнения (2.1).

Рассмотрим поведение Г(z) в окрестности нуля. Для этого представим:

где - голоморфная функция в окрестности z = 0 . Из формулы (2.1) следует:

то есть Г(z) имеет полюс первого порядка при z = 0.

Также легко получить:

то есть в окрестности точки функция Г(z ) также имеет полюс первого порядка.

Таким же образом можно получить формулу:

Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:

2.4 Представление Ганкеля через интеграл по петле

Выясним, имеет ли гамма-функция нули. Для этого рассмотрим функцию

Полюсы этой функции и есть нули функции Г(z).

Разностное уравнение для I(z ) легко получить, воспользовавшись выражением для Г(z ):

Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии теграла будут точки ____________________________________________________________________________

После разделения переменных получим:

Проинтегрировав получаем:

Переход к прообразу Лапласа дает:

В полученном интеграле сделаем замену переменной интегрирования:

Тогда

Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от до 0 и интеграла от 0 до по нижнему берегу разреза. Чтобы интеграл не проходил через точку ветвления, устроим вокруг нее петлю.

Рис1: Петля в интегральном представлении Ганкеля.

В результате получим:

Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:

Интегральное представление

называется представлением Ганкеля по петле.

Легко видеть, что функция 1/Г(z ) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.

С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной , тогда:

2.5 Предельная форма Эйлера

Гамма-функцию можно представить в виде бесконечного произведения. Это можно заметить, если в интеграле (2.3) представить

Тогда интегральное представление гамма-функции:

В этой формуле мы можем поменять пределы - предел интегрирования в несобственном интеграле и предел при внутри интеграла. Приведем результат:

Возьмем по частям этот интеграл:

Если провести эту процедуру n раз, получим:

Переходя к пределу, получим предельную форму Эйлера для гамма-функции:

2.6 Формула для произведения

Ниже понадобится формула, в которой произведение двух гамма-функций представляется через одну гамма-функцию. Выведем эту формулу, используя интегральное представление гамма-функций.

Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:

Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R. В двойном интеграле сделаем замену переменных:

Якобиан этой замены

Пределы интегрирования: u меняется от 0 до ∞, v при этом меняется от 0 до 1. В результате получим:

Перепишем опять этот интеграл как повторный, в результате получим:

где Rp > 0, Rv > 0.

2. Производная гамма функции

Интеграл

сходится при каждом ,поскольку ,и интеграл при сходится.

В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можно применить признак Вейрштраса. Сходящимся при всех значениях является и весь интеграл так как и второе слагаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области где произвольно. Действительно для всех указанных значений и для всех ,и так как сходится, то выполнены условия признака Вейерштрасса. Таким образом, в области интеграл сходится равномерно.

Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при и, и покажем,что интеграл:

сходится равномерно на каждом сегменте , . Выберем число так, чтобы ; тогда при .Поэтому существует число такое, что и на.Но тогда на справедливо неравенство

и так как интеграл сходится, то интеграл сходится равномерно относительно на . Аналогично для существует такое число , что для всех выполняется неравенство . При таких и всех получим , откуда в силу признака сравнения следует, что интеграл сходится равномерно относительно на . Наконец, интеграл

в котором подынтегральная функция непрерывна в области

Очевидно, сходится равномерно относительно на . Таким образом, на интеграл

сходится равномерно, а, следовательно, гамма-функция бесконечно дифференцируема при любом и справедливо равенство

.

Относительно интеграла можно повторить те же рассуждения и заключить, что

По индукции доказывается, что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство

Изучим теперь поведение - функции и построим эскиз ее графика. (см. Приложение 1)

Из выражения для второй производной -функции видно, что для всех . Следовательно, возрастает. Поскольку , то по теореме Роля на сегменте производная при и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее, поскольку , то при . При из формулы следует, что при .

Равенство , справедливое при , можно использовать при распространении - функции на отрицательное значение .

Положим для, что . Правая часть этого равенства определена для из (-1,0) . Получаем, что так продолженная функция принимает на (-1,0) отрицательные значения и при , а также при функция .

Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением окажется функция, принимающая положительные значения и такая, что при и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. Приложение 1.)

Отметим еще раз, что интеграл

определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения .

4. Вычисление некоторых интегралов.

Формула Стирлинга

Применим гамма функцию к вычислению интеграла:

где m > -1,n > -1.Полагая, что ,имеем

и на основании (2.8) имеем

В интеграле

Где k > -1,n > 0,достаточно положить

Интеграл

Где s > 0,разложить в ряд

=

где дзетта функция Римана

Рассмотрим неполные гамма функции (функции Прима)

связанные неравенством

Разлагая, в ряд имеем

Переходя к выводу формулы Стирлинга, дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию

(4.2)

Непрерывна на интервале (-1,) монотонно возрастает от до при изменении от до и обращаются в 0 при u = 0.Так как

И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию

Из предыдущего следует, что существует обратная функция, определенная на интервале непрерывная и монотонно возрастающая в этом интервале,

Обращающаяся в 0 при v=0 и удовлетворяющая условие

Формулу Стирлинга выведем из равенства

полагая ,имеем

,

полагая на конец,,получим

в пределе при т.е. при (см 4.3)

откуда вытекает формула Стирлинга

которую можно взять в виде

где ,при

для достаточно больших полагают

вычисление же производится при помощи логарифмов

если целое положительное число, то и (4.5) превращается в приближенную формулу вычисления факториалов при больших значениях n

приведем без вывода более точную формулу

где в скобках стоит не сходящийся ряд.

5. Примеры вычисления интегралов

Для вычисления необходимы формулы:

Г()

Вычислить интегралы


ПРАКТИЧЕСКАЯ ЧАСТЬ

Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):

Г(z+1)=(z+g+0.5) z+0.5 exp(-(z+g+0.5))

Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности ε не превышает 2*10 -10 . Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.

Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.

Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:

log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+

log(C 0 (C 1 +C 2 /(x+1)+C 3 /(x+2)+...+C 7 /(x+8))/x)

Значения коэффициентов C k - табличные данные (см. в программе).

Сама гамма-функция получается из ее логарифма взятием экспоненты.

Заключение

Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.

Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.

Список литературы

1. Специальные функции и их приложения:

Лебедев И.И.,М.,Гостехтериоиздат,1953

2. Математический анализ часть 2:

Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987

3. Сборник задач по математическому анализу:

Демидович Б.П.,М.,Наука,1966

4. Интегралы и ряды специальные функции:

Прудников А.П., Брычков Ю.А.,М.,Наука,1983

5. Специальные функции:

Кузнецов, М.,”Высшая школа”,1965

6.Асимптотика и специальные функции

Ф.Олвер, М.,Наука,1990.

7.Зоопарк чудовищ или знакомство со спецмальными функциями

О.М.Киселёв,


ПРИЛОЖЕНИЯ

Приложение 1 - График гамма-функции действительного переменного

Приложение 2 – График Гамма-функции

Таблица – таблица значений гамма-функции при некоторых значениях аргумента.

Приложение 3 – листинг программы, рисующий таблицу значений гамма-функции при некоторых значениях аргумента.

Приложение 4 – листинг программы, рисующей график гамма-функции


Реферат............................................................. ...................................3

Введение........................................................... ...................................4

Теоретическая часть…………………………………………………….5

Бета функция Эйлера…………………………………………….5

Гамма функция................................................. ...................................8

2.1. Определение………………………………………………...8

2.2. Интегральное представление………………………………8

2.3. Область определения и полюсы…………………………..10

2.4. Представление Ганкеля через интеграл по петле………..10

2.5. Предельная форма Эйлера………………………………...12

2.6. Формула для произведения………………………………..13

Производная гамма функции........................ ..................................15

Вычисление интегралов. Формула Стирлинга...........................18

Примеры вычислений интегралов................... ..................................23

Практическая часть…………………………………………………….24

Заключение....................................................... ..................................25

Список литературы……………………………………………..............26

Приложения……………………………………………………………..27


ПРИЛОЖЕНИЕ 1

График гамма-функции действительного переменного

ПРИЛОЖЕНИЕ 2

График Гамма-функции

ТАБЛИЦА

х g(x)

ПРИЛОЖЕНИЕ 3

#include

#include

#include

#include

#include

static double cof={

2.5066282746310005,

1.0000000000190015,

76.18009172947146,

86.50532032941677,

24.01409824083091,

1.231739572450155,

0.1208650973866179e-2,

0.5395239384953e-5,

double GammLn(double x) {

lg1=log(cof*(cof+cof/(x+1)+cof/(x+2)+cof/(x+3)+cof/(x+4)+cof/(x+5)+cof/(x+6))/x);

lg=(x+0.5)*log(x+5.5)-(x+5.5)+lg1;

double Gamma(double x) {

return(exp(GammLn(x)));

cout<<"vvedite x";

printf("\n\t\t\t| x |Gamma(x) |");

printf("\n\t\t\t_________________________________________");

for(i=1;i<=8;i++)

x=x[i]+0.5;

g[i]=Gamma(x[i]);

printf("\n\t\t\t| %f | %f |",x[i],g[i]);

printf("\n\t\t\t_________________________________________");

printf("\n Dlia vuhoda iz programmu najmite lybyiy klavishy");


ПРИЛОЖЕНИЕ 4

#include

#include

#include

#include

Double gam(double x, double eps)

Int I, j, n, nb;

Double dze={1.6449340668422643647,

1.20205690315959428540,

1.08232323371113819152,

1.03692775514336992633,

1.01734306198444913971};

Double a=x, y, fc=1.0, s, s1, b;

Printf (“вы ввели неправильные данные, попробуйте снова\n”); return -1.0;

If(a==0) return fc;

For (i=0;i<5;i++)

S=s+b*dze[i]/(i+2.0);

Nb=exp((i.0/6.0)*(7.0*log(a)-log(42/0)-log(eps)))+I;

For (n=1;n<=nb;n++)

For(j=0; j<5; j++)

Si=si+b/(j+1.0);

S=s+si-log(1.0+a/n);

Double dx,dy, xfrom=0,xto=4, yto=5, h, maxy, miny;

Int n=100, I, gdriver=DETECT, gmode, X0, YN0, X, Y, Y0,pr=0;

Initgraph(&gdriver,&gmode, “ ”);

YN0=getmaxy()-20;

Line(30, getmaxy ()-10,30,30);

Line(20, getmaxy ()-30, getmaxx ()-20, getmaxy ()-30);

}while (Y>30);

}while (X<700);

}while (X<=620);

}while (y>=30);

X=30+150.0*0,1845;

For9i=1;i

Dy=gam(dx,1e-3);

X=30+(600/0*i)/n;

If(Y<30) continue;

X=30+150.0*308523;

Line (30,30,30,10);

Line(620,450,640,450);

Line(30,10,25,15);

Line(30,10,25,15);

Line(640,450,635,445);

Line(640,450,635,455);

Line(170,445,170,455);

Line(320,445,320,455);

Line(470,445,470,455);

Line(620,445,620,455);

Line(25,366,35,366);

Line(25,282,35,282);

Line(25,114,35,114);

Line(25,30,35,30);

Outtexty(20,465,"0");

Outtexty(165,465, "1";

Outtexty(315,465, "2";

Outtexty(465,465, "3";

Outtexty(615,465, "4";

Outtexty(630,465, "x";

Outtexty(15,364, "1";

Outtexty(15,280, "2";

Outtexty(15,196, "3";

Outtexty(15,112, "4";

Outtexty(15,30, "5";



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта