Главная » Обработка грибов » Марганец (химический элемент): свойства, применение, обозначение, степень окисления, интересные факты. Применение и свойства марганца

Марганец (химический элемент): свойства, применение, обозначение, степень окисления, интересные факты. Применение и свойства марганца

Марганец - металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций марганца - четыре с кубической и одна с тетрагональной кристаллической решёткой. Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом.

Смотрите так же:

СТРУКТУРА

Марганец имеет 4 полиморфные модификации: α-Мn (кубическая объемноцентрированная решетка с 58 атомами в элементарной ячейке), β-Мn (кубическая объемноцентрированная с 20 атомами в ячейке), γ-Мn (тетрагональная с 4 атомами в ячейке) и δ-Mn (кубическая объемноцентрированная). Температура превращений: α=β 705 °С; β=γ 1090 °С и γ=δ 1133 °С; α-модификация хрупка; γ (и отчасти β) пластична, что имеет важное значение при создании сплавов.

СВОЙСТВА

Серебристо-белый цвет с легким серым налетом выделяет марганец. Он превосходит железо по твердости и хрупкости. Является парамагнетиком. При взаимодействии с воздушной средой происходит окисление марганца. Покрывается оксидной пленкой, защищающей его от последующей окислительной реакции.

Растворяется в воде, полностью поглощает водород, не вступая в реакцию с ним. В процессе нагревания сгорает в кислороде. Активно реагирует с хлором и серой. При взаимодействии с кислотными окислителями образует соли марганца.
Плотность - 7200 кг/м 3 , t плавления - 1247°С, t кипения - 2150 °С. Удельная теплоемкость - 0,478 кДж. Обладает электрической проводимостью. Контактируя с хлором, бромом и йодом образует дигалогениды.

При высоких температурах вступает во взаимодействие с азотом, фосфором, кремнием и бором. Медленно взаимодействует с холодной водой. В процессе нагревания реакционная способность элемента возрастает. На выходе образуется Mn(OH) 2 и водород.

ЗАПАСЫ И ДОБЫЧА

Марганец - 14-й элемент по распространённости на Земле, а после железа - второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Весовое количество марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах, однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах, вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10−7-10−6%), а в глубоких местах океана его концентрация возрастает до 0,3 %.

Промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление).

ПРОИСХОЖДЕНИЕ

Вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO 2 ·xH 2 O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди, никеля, кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.

В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.

ПРИМЕНЕНИЕ

Марганец широко используют в черной металлургии. Добавляют сплав железо марганец (ферромарганец). Доля марганца в нем равна 70-80%, углерода 0,5-7 %, остальная часть приходится на железо и посторонние примеси. Элемент №25 в сталеплавлении соединяет кислород и серу.
Используются смеси хром - марганец, вольфрам-марганец, кремний-марганец. В производстве стали марганцу альтернативной замены нет.

Химический элемент выполняет множество функций, в том числе рафинирует и раскисляет сталь. Широко используется технология цинк марганец. Растворимость Zn в магнии составляет 2 %, а прочность стали, в этом случае, возрастает до 40 %.
В доменной шахте марганец удаляет серный налет из чугуна. В технике применяются тройные сплавы манганины, куда входит марганец медь и никель. Материал характеризуется большим электро-сопротивлением на которое влияет не температура, а сила давления.

Используется для изготовления манометров. Настоящей ценностью для промышленности является сплав медь - марганец. Содержание марганца здесь 70 %, меди 30%. Его применяют для снижения вредных производственных шумов. В изготовлении взрыв-пакетов для праздничных мероприятий используют смесь, куда входят такие элементы, как магний марганец. Магний широко используется в самолетостроении.

Некоторые виды солей марганца, такие как KMnO 4 нашли свое применение в медицинской отрасли. Перманганат калия относится к солям марганцовой кислоты. Имеет вид темно-фиолетовых кристаллов. Растворяется в водной среде, окрашивая её в фиолетовый цвет. Является сильным окислителем. Антисептик, обладает противомикробными свойствами. Марганец в воде легко окисляется, образуя плохо растворимый оксид марганца коричневого цвета. При соприкосновении с белком ткани формирует соединения с выраженными вяжущими качествами. В высоких концентрациях раствор марганца обладает раздражающим и прижигающим действием. Калий марганец используют для лечения некоторых заболеваний и для оказания первой помощи, а пузырек с кристаллами марганцовки находится в каждой аптечки.

Марганец полезен для человеческого здоровья. Участвует в формировании и развитии клеток центрально-нервной системы. Способствует усвоению витамина В1, меди и железа. Регулирует содержание сахара в крови. Задействуется в строительстве костной ткани.
Участвует в образовании жирных кислот. Улучшает рефлекторные способности, память, убирает нервное напряжение, раздражительность. Абсорбируясь в стенках кишечника марганец, витамины В, Е, фосфор, кальций усиливают этот процесс, влияет на организм и обменные процессы в целом.

Марганец (англ. Manganese) — Mn

Марганец является химическим элементом, расположившимся в периодической системе Менделеева под атомным номером 25. Его соседями являются хром и железо, что обуславливает сходство физических и химических свойств этих трех металлов. Его ядро содержит 25 протонов и 30 нейтронов. Атомная масса элемента составляет 54,938.

Свойства марганца

Марганец является переходным металлом из d-семейства. Его электронная формула выглядит следующим образом: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 . Твердость марганца по шкале Мооса оценивается на 4. Металл является достаточно твердым, но, в то же время, хрупким. Его теплопроводность составляет 0,0782 Вт/см*К.. Элемент характеризуется серебристо-белым окрасом.

Существует четыре, известные человеку, модификации металла. Каждой из них присуща термодинамическая устойчивость при определенных температурных условиях. Так, а-марганец обладает достаточно сложной структурой и проявляет свою устойчивость при температуре, ниже 707 0 С, чем и обуславливается его хрупкость. Данная модификация металла в элементарной своей ячейке содержит 58 атомов.

Марганец может иметь совершенно разную степень окисления - от 0 до +7, при этом +1 и +5 встречаются крайне редко. При взаимодействии металла с воздухом, он пассивируется. В кислороде происходит сгорание порошкообразного марганца:

Mn+O2=MnO2

Если воздействовать на металл повышенной температурой, т.е. нагреть, то произойдет его разложение на воду с вытеснением водорода:

Mn+2H0O=Mn(OH)2+H2

Стоит отметить, что гидроксид марганца, слой которого образуется в результате реакции, замедляет процесс реакции.

Водород поглощается металлом. Чем выше повышается температура, тем выше становится его растворимость в марганце. Если превысить температуру в 12000С, то марганец вступает в реакцию с азотом, в результате которой образуются нитриты, имеющие разный состав.

Металл также взаимодействует с углеродом. Результатом данной реакции является образование карбидов, а также силицидов, боридов, фосфидов.

Металл обладает устойчивостью к воздействию на него щелочными растворами.

Он способен образовывать следующие оксиды: MnO, Mn 2 O 3 , MnO 2 , MnO 3 , последний из которых в свободном состоянии не выделен, а также марганцевый ангидрид Mn 2 O 7 . При обычных условиях существования марганцевый ангидрид представляет собой жидкое маслянистое вещество темно-зеленого цвета, не имеющего особой устойчивости. Если температуру повысить до 90 0 С, то разложение ангидрида сопровождается взрывом. Среди оксидов, которые проявляют наибольшую устойчивость, выделяют Mn 2 O 3 и MnO 2 , а также комбинированный оксид Mn 3 O 4 (2MnO·MnO 2 , или соль Mn 2 MnO 4).

Оксиды марганца:

Во время сплавления пиролюзита и щелочей с присутствием кислорода, происходит реакция с образованием манганатов:

2MnO 2 +2KOH+O 2 =2K 2 MnO 4 +2H 2 O

Для раствора манганата характерен темно-зеленый окрас. Если его подкислить, то протекает реакция с подкрашиванием раствора в малиновый цвет. Это происходит по причине образования аниона MnO 4 − , из которого выпадает осадок оксида-гидроксида марганца, имеющего коричневый окрас.

Марганцевая кислота является сильной, однако не проявляет особой устойчивости, в связи с чем, допустимая максимальная ее концентрация составляет не более 20%. Сама же кислота, как и ее соли, выступает сильным окислителем.

Соли марганца не проявляют устойчивости. Для его гидроксидов характерный основный характер. Хлорид марганца разлагается при воздействии него высокими температурами. Именно данную схему применяют для получения хлора.

Применение марганца

Данный металл не является дефицитным - он относится к распространенным элементам: его содержание в земной коре составляет 0,03% от общего количества атомов. Ему принадлежит третье место в рейтинге среди тяжелых металлов, к которым относятся все элементы переходных рядов, пропустив вперед железо и титан. Тяжелыми металлами считаются те, атомный вес которых превышает 40.

Марганец в незначительных количествах можно обнаружить в некоторых горных породах. В основном, встречается локализация его кислородных соединений в виде минерала пиролюзита - MnO 2 .

Марганец имеет множество направлений своего применения. Он необходим для производства многих сплавов и химических веществ. Без марганца невозможно существование живых организмов, так он выступает в качестве активного микроэлемента, а также присутствует практически во всех живых и растительных организмах. Марганец позитивно влияет на процессы кроветворения в живых организмах. Также он содержится во многих пищевых продуктах.

Металл является незаменимым элементом в металлургии. Именно марганец применяется для удаления серы и кислорода из стали во время ее производства. Для данного процесса необходимы большие объемы металла. Но стоит сказать, что в расплав добавляется не чистый марганец, а его сплав с железом, именуемый ферромарганцем. Он получается в процессе восстановительной реакции пиролюзита углем. Также марганец выступает легирующим элементом для сталей. Благодаря добавке марганца к сталям, существенно увеличивается их износостойкость, а также они становятся менее подверженными механическим напряжениям. Присутствие марганца в составе цветных металлов существенно повышает их прочность и устойчивость к коррозии.

Диоксид металла нашел свое применение при окислении аммиака, а также он является участником органических реакций и реакций разложения неорганических солей. В данном случае диоксид марганца выступает катализатором.

Керамическая промышленность также не обходится без использования марганца, где MnO 2 применяется в качестве черного и темно-коричневого красителя для эмалей и глазурей. Оксид марганца является высокодисперсным. Ему присуща хорошая адсорбирующая способность, благодаря которой становится возможным удалять из воздуха вредные примеси.

Марганец вводится в бронзу и латунь. Некоторые соединения металла применяются в тонком органическом синтезе и в промышленном органическом синтезе. Арсениду марганца свойственен гигантский магнитокалорический эффект, который становится существенно сильнее, если воздействовать на него высоким давленим. Теллурид марганца выступает в качестве перспективного термоэлектрического материала.

В медицине также уместно использование марганца, а точнее его солей. Так, водный раствор перманганата калия используется в качестве антисептического средства, а также им можно промывать раны, полоскать горло, смазывать язвы и ожоги. При некоторых отравлениях алкалоидами и цианидами его раствор даже показан для приема во внутрь.

Важно: Не смотря на огромное количество положительных сторон использования марганца, в некоторых случаях его соединения могут пагубно влиять на организм человека и даже оказывать токсичное действие. Так, максимально допустимым значением концентрации марганца в воздухе является 0,3 мг/м 3 . В случае ярко выраженного отравления веществом поражается нервная система человека, для чего характерным является синдром марганцевого паркинсонизма.

Получение марганца

Металл можно получить несколькими способами. Среди наиболее популярных методов выделяют следующие:

  • алюминотермический. Марганец получается из его оксида Mn 2 O 3 путем восстановительной реакции. Оксид, в свою очередь, образуется во время прокаливания пиролюзита:

4MnO 2 = 2Mn 2 O 3 +O 2

Mn 2 O 3 +2Al = 2Mn+Al 2 O 3

  • восстановительный. Марганец получают путем восстановления металла коксом из марганцевых руд, в результате чего образуется ферромарганец (сплав марганца и железа). Данный метод является наиболее распространенным, так как основная масса от общей добычи металла используется во время производства разнообразных сплавов, основным компонентом которых является железо, в связи с этим из руд марганец извлекают не в чистом виде, а в сплаве с ним;
  • электролиза. Металл в чистом виде получают с помощью данного способа из его солей.

Долгое время одно из соединений этого элемента, а именно его двуокись (известна под названием пиролюзит) считалось разновидностью минерала магнитный железняк. Лишь в 1774 году один из шведских химиков выяснил, что в пиролюзите есть неизученный металл. В результате нагревания этого минерала с углем удалось получить тот самый неизвестный металл. Вначале его называли манганум, позже появилось современное название - марганец. Химический элемент обладает многими интересными свойствами, речь о которых пойдет далее.

Расположен в побочной подгруппе седьмой группы периодической таблицы (важно: все элементы побочных подгрупп - металлы). Электронная формула 1s2 2s2 2p6 3s2 3p6 4s2 3d5 (типичная формула d-элемента). Марганец как свободное вещество имеет серебристо-белый цвет. Из-за химической активности в природе встречается лишь в виде соединений, таких как окислы, фосфат и карбонат. Вещество тугоплавкое, температура плавления составляет 1244 градуса по шкале Цельсия.

Интересно! В природе встречается только один изотоп химического элемента, имеющий атомную массу 55. Остальные изотопы получены искусственным путем, и наиболее устойчив радиоактивный изотоп с атомной массой 53 (период полураспада примерно такой же, как у урана).

Степень окисления марганца

У него шесть разных степеней окисления. В нулевой степени окисления элемент способен образовывать комплексные соединения с органическими лигандами (например, P(C5H5)3), а также неорганическими лигандами:

  • окисью углерода (декакарбонил димарганца),
  • азотом,
  • трифторидом фосфора,
  • окисью азота.

Степень окисления +2 типична для солей марганца. Важно: у этих соединений сугубо восстановительные свойства. Наиболее устойчивые соединения, имеющие степень окисления +3, - оксид Mn2O3, а также гидрат этого оксида Mn(OH)3. В +4 наиболее устойчивы MnO2 и амфотерный оксид-гидроксид MnO(OH)2.

Степень окисления марганца +6 типична для существующей только в водном растворе марганцеватой кислоты и ее солей. Степень окисления +7 типична для существующей только в водном растворе марганцевой кислоты, ее ангидрида, а также солей - перманганатов (аналогия с перхлоратами) - сильных окислителей. Интересно, что при восстановлении перманганата калия (в быту называется марганцовкой) возможны три разные реакции:

  • В присутствии серной кислоты анион MnO4- восстанавливается до Mn2+.
  • Если среда нейтральная, ион MnO4- восстанавливается до MnO(OH)2 или MnO2.
  • В присутствии щелочи анион MnO4- восстанавливается до манганат-иона MnO42-.

Марганец как химический элемент

Химические свойства

В обычных условиях малоактивен. Причина - появляющаяся при воздействии кислорода воздуха оксидная пленка. Если же порошок металла слегка нагреть, он сгорает, превращаясь в MnO2.

При нагревании взаимодействует с водой, вытесняя водород. В результате реакции получается практически нерастворимый гидрат закиси Mn(OH)2. Это вещество препятствует дальнейшему взаимодействию с водой.

Интересно! Водород растворим в марганце, и при повышении температуры растворимость увеличивается (получается раствор газа в металле).

При очень сильном нагревании (температура выше 1200 градусов по шкале Цельсия) взаимодействует с азотом, при этом получаются нитриды. Эти соединения могут иметь различный состав, что типично для так называемых бертоллидов. Взаимодействует с бором, фосфором, кремнием, а в расплавленном виде - с углеродом. Последняя реакция протекает при восстановлении марганца коксом.

При взаимодействии с разбавленной серной и соляной кислотами получается соль и выделяется водород. А вот взаимодействие с крепкой серной кислотой иное: продукты реакции - соль, вода и двуокись серы (вначале серная кислота восстанавливается в сернистую; но из-за неустойчивости сернистая кислота распадается на диоксид серы и воду).

При реакции с разбавленной азотной кислотой получается нитрат, вода, окись азота.

Образует шесть оксидов:

  • закись, или MnO,
  • окись, или Mn2O3,
  • закись-окись Mn3O4,
  • двуокись, или MnO2,
  • марганцеватый ангидрид MnO3,
  • марганцевый ангидрид Mn2O7.

Интересно! Закись под воздействием кислорода воздуха постепенно превращается в окись. Ангидрид марганцеватой кислоты не выделен в свободном виде.

Закись-окись - соединение с так называемой дробной степенью окисления. При растворении в кислотах образуются соли двухвалентного марганца (соли с катионом Mn3+ неустойчивы и восстанавливаются до соединений с катионом Mn2+).

Двуокись, окись, закись-окись - наиболее устойчивые оксиды. Марганцевый ангидрид неустойчив. Прослеживаются аналогии с другими химическими элементами:

  • Mn2O3 и Mn3O4 - основные оксиды, и по свойствам похожи на аналогичные соединения железа;
  • MnO2 - амфотерный оксид, по свойствам похож на оксиды алюминия и трехвалентного хрома;
  • Mn2O7 - кислотный оксид, по свойствам весьма похож на высший оксид хлора.

Несложно заметить и аналогию с хлоратами и перхлоратами. Манганаты, подобно хлоратам, получаются косвенным путем. А вот перманганаты можно получить как прямым путем, то есть при взаимодействии ангидрида и оксида/гидроксида металла в присутствии воды, так и косвенным.

В аналитической химии катион Mn2+ попал в пятую аналитическую группу. Есть несколько реакций, позволяющих обнаружить этот катион:

  • При взаимодействии с сульфидом аммония выпадает осадок MnS, его цвет - телесный; при добавлении минеральных кислот наблюдается растворение осадка.
  • При реакции с щелочами получается белый осадок Mn(OH)2; однако при взаимодействии с кислородом воздуха цвет осадка меняется с белого на бурый - получается Mn(OH)3.
  • Если к солям с катионом Mn2+ добавить перекись водорода и раствор щелочи, выпадает темно-бурый осадок MnO(OH)2.
  • При добавлении к солям с катионом Mn2+ окислителя (двуокись свинца, висмутат натрия) и крепкий раствор азотной кислоты, раствор окрашивается в малиновый цвет - это значит, что Mn2+ окислился до HMnO4.

Химические свойства

Валентности марганца

Элемент находится в седьмой группе. Типичные марганца – II, III, IV, VI, VII.

Нулевая валентность типична для свободного вещества. Двухвалентные соединения - соли с катионом Mn2+, трехвалентные – оксид и гидроксид, четырехвалентные – двуокись, а также оксид-гидроксид. Шести- и семивалентные соединения - соли с анионами MnO42- и MnO4-.

Как получить и из чего получают марганец? Из марганцевых и железо-марганцевых руд, а также из растворов солей. Известно три разных способа получения марганца:

  • восстановление коксом,
  • алюмотермия,
  • электролиз.

В первом случае в качестве восстановителя используется кокс, а также окись углерода. Восстанавливается металл из руды, где есть примесь оксидов железа. В результате получается как ферромарганец (сплав с железом), так и карбид (что такое карбид? это соединение металла с углеродом).

Для получения более чистого вещества используется один из способов металлотермии - алюмотермия. Сначала прокаливается пиролюзит, при этом получается Mn2O3. Затем полученный оксид смешивают с порошком алюминия. В ходе реакции выделяется много теплоты, в результате получающийся металл плавится, а оксид алюминия покрывает его шлаковой «шапкой».

Марганец - металл средней активности и стоит в ряду Бекетова левее водорода и правее алюминия. Это значит, что при электролизе водных растворов солей с катионом Mn2+ на катоде восстанавливается катион металла (при электролизе весьма разбавленного раствора на катоде восстанавливается и вода). При электролизе водного раствора MnCl2 протекают реакции:

MnCl2 Mn2+ + 2Cl-

Катод (отрицательно заряженный электрод): Mn2+ + 2e Mn0

Анод (положительно заряженный электрод): 2Cl- — 2e 2Cl0 Cl2

Итоговое уравнение реакции:

MnCl2 (эл-з) Mn + Cl2

При электролизе получается наиболее чистый металлический марганец.

Полезное видео: марганец и его соединения

Применение

Применение марганца довольно широко. Используется как сам металл, так и его различные соединения. В свободном виде используется в металлургии для разных целей:

  • как «раскислитель» при плавке стали (связывается кислород, и образуется Mn2O3);
  • в качестве легирующего элемента: получается прочная сталь с высокими показателями износостойкости и ударопрочности;
  • для выплавки так называемой броневой марки стали;
  • как компонент бронзы и латуни;
  • для создания манганина, сплава с медью и никелем. Из этого сплава делают различные электротехнические устройства, например реостаты

Для изготовления гальванических элементов Zn-Mn используется MnO2. В электротехнике применяются MnTe и MnAs.

Применение марганца

Перманганат калия, часто называемый марганцовкой, широко применяется как в быту (для лечебных ванночек), так и в промышленности и лабораториях. Малиновая окраска перманганата обесцвечивается при пропускании через раствор ненасыщенных углеводородов с двойными и тройными связями. При сильном нагревании перманганаты разлагаются. При этом получаются манганаты, MnO2, а также кислород. Это один из способов получить химически чистый кислород в лабораторных условиях.

Получить соли марганцеватой кислоты можно лишь косвенным путем. Для этого MnO2 смешивают с твердой щелочью и в присутствии кислорода нагревают. Другой способ получения твердых манганатов – прокаливание перманганатов.

Растворы манганатов имеют красивую темно-зеленую окраску. Однако эти растворы неустойчивы и подвергаются реакции диспропорционирования: темно-зеленая окраска меняется на малиновую, также выпадает бурый осадок. В результате реакции получается перманганат и MnO2.

Диоксид марганца применяется в лаборатории как катализатор при разложении хлората калия (бертолетовой соли), а также для получения чистого хлора. Интересно, что в результате взаимодействия MnO2 с хлороводородом получается промежуточный продукт – крайне неустойчивое соединение MnCl4, распадающееся на MnCl2 и хлор. Нейтральные или подкисленные растворы солей с катионом Mn2+ имеют бледно-розовую окраску (Mn2+ создает комплекс с 6 молекулами воды).

Полезное видео: марганец — элемент жизни

Вывод

Такова краткая характеристика марганца и его химические свойства. Это серебристо-белый металл средней активности, взаимодействует с водой лишь при нагревании, в зависимости от степени окисления проявляет как металлические, так и неметаллические свойства. Его соединения используются в промышленности, в быту и в лабораториях для получения чистого кислорода и хлора.


Выполнил : студент первого курса

инженерного факультета

15 б группы

Кошманов В.В.

Проверил: Харченко Н.Т.

Великие Луки 1998г.

Историческая справка. 3

Распространение в природе. 3

Физические и химические свойства. 3

Соединения двухвалентного марганца. 4

Соединения четырёхвалентного марганца. 4

Соединения шестивалентного марганца. 5

Соединения семивалентного марганца. 5

Получение. 6

Применение марганца и его соединений. 6

Литература. 7

Историческая справка.

Минералы Марганца известны издавна. Древнеримский натуралист Плиний упоминает о чёрном камне, который использовали для обесцвечивания жидкой стеклянной массы; речь шла о минерале пиролюзите MnO 2 . В Грузии пиролюзит с древнейших времён служил присадочным материалом при получении железа. Долгое время пиролюзит называли чёрной магнезией и считали разновидностью магнитного железняка. В 1774 году К.Шелле доказал, что это соединение неизвестного металла, а другой шведский учёный Ю.Гаи, сильно нагревая смесь пиролюзита с углём, получил Марганец загрязнённый углеродом. Название Марганец традиционно происходит от немецкого Marganerz- марганцевая руда.

Распространение в природе.

Среднее Содержание Марганца в земной коре 0.1%, в большинстве изверженных пород 0.06-0.2% по массе, где он находится в рассеянном состоянии в форме Mn2+ (аналог Fe 2+). На земной поверхности Mn 2+ легко окисляется, здесь известны также минералы Mn 3+ и Mn 4+ . В биосфере Марганец энергично мигрирует в восстановительных условиях и малоподвижен в окислительных условиях. Наиболее подвижен Марганец в кислых водах тундры и лесных ландшафтах, где он находится в форме Mn 2+ . Содержание Марганца здесь часто повышенно и культурные растения местами страдают от избытка Марганца; в почвах, озёрах, болотах образуются железно марганцовые конкуренции, озёрные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды Марганец малоподвижен. Организмы бедны Марганцем, культурные растения часто нуждаются в марганцовых микро удобрениях. Речные воды бедны Марганцем (10 -6 -10 -5 г/л.), однако суммарный вынос этого элемента огромен, причём основная его масса осаждается в прибрежной зоне.

Физические и химические свойства.

В чистом виде марганец получают либо электролизом раствора сульфата марганца ( II) , либо восстановлением из оксидов кремнием в электрических печках. Элементарный Марганец представляет собой серебристо-белый твердый, но хрупкий металл. Его хрупкость объясняется тем, что при нормальных температурах в элементарную ячейку Mn входит 58 атомов в сложной ажурной структуре, не относящейся к числу плотноупакованных. Плотность Марганца 7.44 г/см 3 , температура плавления 1244 о С, температура кипения 2150 о С. В реакциях проявляет валентность от 2 до 7, наиболее устойчивые степени окисления +2,+4,+7.

Соединения двухвалентного марганца.

Соли двухвалентного марганца можно получить при растворении в разбавленных кислотах: Mn+2HCl MnCl 2 +H2 При растворении в воде образуется гидроксид Mn(II): Mn+2HOH Mn(OH) 2 +H 2 Гидроксид марганца можно получить в виде белого осадка при действии на растворы солей двухвалентного марганца щелочью: MnSO 4 +2NaOH Mn(OH) 2 +NaSO 4

Соединения Mn(II) на воздухе неустойчивы, и Mn(OH) 2 на воздухе быстро буреет, превращаясь в оксид-гидроксид четырёхвалентного марганца.

2 Mn(OH) 2 +O 2 MnO(OH) 2

Гидроксид марганца проявляет только основные свойства и не реагирует со щелочами, а при взаимодействии с кислотами даёт соответствующие соли.

Mn(OH) 2 +2HCl MnCl 2 + 2H 2 O

Оксид марганца может быть получен при разложении карбоната марганца:

MnCO 3 MnO+CO 2

Либо при восстановлении диоксида марганца водородом:

MnO 2 +H 2 MnO+H 2 O

Соединения четырёхвалентного марганца.

Из соединений четырёхвалентного марганца наиболее известен диоксид марганца MnO 2 - пиролюзит. Поскольку валентность IV является промежуточной, соединения Mn (VI) образуются как при окислении двухвалентного марганца. Mn(NO 3) 2 MnO 2 +2NO 2

Так и при восстановлении соединений марганца в щелочной среде:

3K 2 MnO 4 +2H 2 O 2KMnO 4 +MnO 2 +4KOH Последняя реакция является примером реакции самоокисления - самовосстановления, для которых характерно то, что часть атомов одного и того же элемента окисляется, восстанавливая одновременно оставшиеся атомы того же элемента:

Mn 6+ +2e=Mn 4+ 1

Mn 6+ -e=Mn 7+ 2

В свою очередь Mn О 2 может окислять галогениды и галоген водороды, например HCl :

MnO 2 +4HCl MnCl 2 +Cl 2 +2H 2 O

Диоксид марганца - твёрдое порошкообразное вещество. Он проявляет как основные, так и кислотные свойства.

Соединения шестивалентного марганца.

При сплавлении MnO 2 со щелочами в присутствии кислорода, воздуха или окислителей получают соли шестивалентного Марганца , называемые манганатами.

MnO 2 +2KOH+KNO 3 K 2 MnO 2 +KNO 2 +H 2 O

Соединений марганца шестивалентного известно немного, и из них наибольшее значение соли марганцевой кислоты - манганаты.

Сама марганцевая кислота, как и соответствующей ей триоксид марганца MnO 3 , в свободном виде не существует вследствии неустойчивости к процессам окисления - восстановления. Замена протона в кислоте на катион металла приводит к устойчивости манганатов, но их способность к процессам окисления - восствновления сохраняется. Растворы манганатов окрашены в зелёный цвет. При их подкислении образуется марганцеватая кислота,разлагается до соединений марганца четырёхвалентного и семивалентного.

Сильные окислители переводят марганец шестивалентный в семивалентный.

2K 2 MnO 4 +Cl2 2 2KMnO 4 +2KCl

Соединения семивалентного марганца.

В семивалентном состоянии марганец проявляет только окислительные свойства. Среди применяемых в лабораторной практике и в промышленности окислителей широко применяется перманганат калия KMnO 2 , в быту называемый марганцовкой. Перманганат калия представляет собой кристаллы чёрно-фиолетового цвета. Водные растворы окрашены в фиолетовый цвет, характерный для иона MnO 4 - .

Перманганаты являются солями марганцевой кислоты, которая устойчива только в разбавленных растворах (до 20%). Эти растворы могут быть получены действием сильных окислителей на соединения марганца двухвалентного:

2Mn(NO 3 ) 2 +PbO 2 +6HNO 3 2HMnO 4 +5Pb(NO 3 ) 2 + 2H 2 O

Минералы Марганца известны издавна. Древнеримский натуралист Плиний упоминает о черном камне, который использовали для обесцвечивания жидкой стеклянной массы; речь шла о минерале пиролюзите МnО 2 . В Грузии пиролюзит с древнейших времен служил присадочным материалом при получении железа. Долгое время пиролюзит называли черной магнезией и считали разновидностью магнитного железняка (магнетита). В 1774 году К. Шееле показал, что это соединение неизвестного металла, а другой шведский ученый Ю. Ган, сильно нагревая смесь пиролюзита с углем, получил Марганец, загрязненный углеродом. Название Марганец традиционно производят от немецкого Manganerz - марганцевая руда.

Распространение Марганца в природе. Среднее содержание Марганец в земной коре 0,1%, в большинстве изверженных пород 0,06-0,2% по массе, где он находится в рассеянном состоянии в форме Мn 2+ (аналог Fe 2+). На земной поверхности Мn 2+ легко окисляется, здесь известны также минералы Мn 3+ и Мn 4+ . В биосфере Марганец энергично мигрирует в восстановительных условиях и малоподвижен в окислительной среде. Наиболее подвижен Марганец в кислых водах тундры и лесных ландшафтов, где он находится в форме Мn 2+ . Содержание Марганца здесь часто повышено и культурные растения местами страдают от избытка Марганца; в почвах, озерах, болотах образуются железо-марганцевые конкреции, озерные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды Марганец малоподвижен, организмы бедны Марганцем, культурные растения часто нуждаются в марганцевых микроудобрениях. Речные воды бедны Марганцем (10 -6 -10 -5 г/л), однако суммарный вынос этого элемента реками огромен, причем основная его масса осаждается в прибрежной зоне. Еще меньше Марганца в воде озер, морей и океанов; во многих местах океанического дна распространены железо-марганцевые конкреции, образовавшиеся в прошлые геологические периоды.

Физические свойства Марганца. Плотность Марганца 7,2-7,4 г/см 3 ; t пл 1245 °С; t кип 2150 °С. Марганец имеет 4 полиморфные модификации: α-Мn (кубическая объемноцентрированная решетка с 58 атомами в элементарной ячейке), β-Мn (кубическая объемноцентрированная с 20 атомами в ячейке), γ-Мn (тетрагональная с 4 атомами в ячейке) и δ-Mn (кубическая объемноцентрированная). Температура превращений: α=β 705 °С; β=γ 1090 °С и γ=δ 1133 °С; α-модификация хрупка; γ (и отчасти β) пластична, что имеет важное значение при создании сплавов.

Атомный радиус Марганца 1,30 Å. ионные радиусы (в Å): Mn 2+ 0,91, Mn 4+ 0,52; Mn 7+ 0,46. Прочие физические свойства α-Mn: удельная теплоемкость (при 25°С) 0,478 кДж/(кг·К) [т. е. 0.114 ккал/(г·°С)]; температурный коэффициент линейного расширения (при 20°С) 22,3·10 -6 град -1 ; теплопроводность (при 25 °С) 66,57 Вт/(м·К) [т. е. 0,159 кал/(см·сек·°С)]; удельное объемное электрическое сопротивление 1,5-2,6 мком·м (т. е. 150-260 мком·см): температурный коэффициент электрического сопротивления (2-3)·10 -4 град -1 . Марганец парамагнитен.

Химические свойства Марганца. Химически Марганец достаточно активен, при нагревании энергично взаимодействует с неметаллами - кислородом (образуется смесь оксидов Марганца разной валентности), азотом, серой, углеродом, фосфором и другими. При комнатной температуре Марганец на воздухе не изменяется: очень медленно реагирует с водой. В кислотах (соляной, разбавленной серной) легко растворяется, образуя соли двухвалентного Марганца. При нагревании в вакууме Марганец легко испаряется даже из сплавов.

Марганец образует сплавы со многими химическими элементами; большинство металлов растворяется в отдельных его модификациях и стабилизирует их. Так, Cu, Fe, Co, Ni и другие стабилизируют γ-модификацию. Al, Ag и другие расширяют области β- и σ-Mn в двойных сплавах. Это имеет важное значение для получения сплавов на основе Марганца, поддающихся пластической деформации (ковке, прокатке, штамповке).

В соединениях Марганец обычно проявляет валентность от 2 до 7 (наиболее устойчивы степени окисления +2, +4 и +7). С увеличением степени окисления возрастают окислительные и кислотные свойства соединений Марганца.

Соединения Mn(+2)- восстановители. Оксид MnO - порошок серо-зеленого цвета; обладает основными свойствами. нерастворим в воде и щелочах, хорошо растворим в кислотах. Гидрооксид Mn(OH) 3 - белое вещество, нерастворимое в воде. Соединения Mn(+4) могут выступать и как окислители (а) и как восстановители (б):

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O (а)

(по этой редакции в лабораториях получают хлор)

MnO 2 + KClO 3 + 6KOH = 3K 2 MnO 4 + KCl + 3H 2 O (б)

(реакция идет при сплавлении).

Оксид Марганца (II) MnO 2 - черно-бурого цвета, соответствующий гидрооксид Мп(ОН) 4 - темно-бурого цвета. Оба соединения в воде нерастворимы, оба амфотсрны с небольшим преобладанием кислотной функции. Соли типа K 2 MnO 4 называются манганитами.

Из соединений Mn(+6) наиболее характерны марганцовистая кислота и ее соли манганаты. Весьма важны соединения Mn(+7) - марганцовая кислота, марганцовый ангидрид и перманганаты.

Получение Марганца. Наиболее чистый Марганец получают в промышленности по способу советского электрохимика Р. И. Агладзе (1939) электролизом водных растворов с добавкой (NH 4) 2 SO 4 при рН = 8,0-8,5. Процесс ведут с анодами из свинца и катодами из титанового сплава АТ-3 или нержавеющей стали. Чешуйки Марганца снимают с катодов и, если необходимо, переплавляют. Галогенным процессом, например, хлорированием руды Мn, и восстановлением галогенидов получают Марганец с суммой примесей около 0,1%. Менее чистый Марганец получают алюминотермией по реакции:

3Mn 3 O 4 + 8Al = 9Mn + 4Al 2 O 3

а также электротермией.

Применение Марганца. Основной потребитель Марганец - черная металлургия, расходующая в среднем около 8-9 кг Марганца на 1 т выплавляемой стали. Для введения Марганца в сталь применяют чаще всего его сплавы с железом - ферромарганец (70 - 80% Марганец, 0,5 - 7,0% углерода, остальное железо и примеси). Выплавляют его в доменных и электрических печах. Высокоуглеродистый ферромарганец служит для раскисления и десульфурации стали; средне- и малоуглеродистый - для легирования стали. Малолегированная конструкционная и рельсовая сталь содержит 0,9 - 1,6% Mn; высоколегированная, очень износоустойчивая сталь с 15% Mn и 1,25% С (изобретена английским металлургом Р. Гейрилдом в 1883 году) была одной из первых легированных сталей. В СССР производится безникелевая нержавеющая сталь, содержащая 14% Сr и 15% Mn.

Марганец используется также в сплавах на нежелезной основе. Сплавы меди с Марганцем применяют для изготовления турбинных лопаток; марганцовые бронзы - при производстве пропеллеров и других деталей, где необходимо сочетание прочности и коррозионной устойчивости. Почти все промышленные алюминиевые сплавы и магниевые сплавы содержат Марганец. Разработаны деформируемые сплавы на основе Марганца, легированные медью, никелем и других элементами. Гальваническое покрытие Марганца применяется для защиты металлических изделий от коррозии.

Соединения Марганца применяют и при изготовлении гальванических элементов; в производстве стекла и в керамической промышленности; в красильной и полиграфической промышленности, в сельском хозяйстве и т. д.

Марганец в организме. Марганец широко распространен в природе, являясь постоянной составной частью растительных и животных организмов. Содержание Марганца в растениях составляет десятитысячные-сотые, а в животных - стотысячные-тысячные доли процента. Беспозвоночные животные богаче Марганцем, чем позвоночные. Среди растений значительное количество Марганца накапливают некоторые ржавчинные грибы, водяной орех, ряска, бактерии родов Leptothrix, Crenothrix и некоторые диатомовые водоросли (Cocconeis) (до нескольких процентов в золе), среди животных - рыжие муравьи, некоторые моллюски и ракообразные (до сотых долей процента). Марганец - активатор ряда ферментов, участвует в процессах дыхания, фотосинтезе, биосинтезе нуклеиновых кислот и других, усиливает действие инсулина и других гормонов, влияет на кроветворение и минеральный обмен. Недостаток Марганца у растений вызывает некрозы, хлороз яблони и цитрусовых, пятнистость злаков, ожоги у картофеля, ячменя и т. п. Марганец обнаружен во всех органах и тканях человека (наиболее богаты им печень, скелет и щитовидная железа). Суточная потребность животных и человека в Марганце - несколько мг (ежедневно с пищей человек получает 3-8 мг Марганца). Потребность в Марганце повышается при физической нагрузке, при недостатке солнечного света; дети нуждаются в большем количестве Марганца, чем взрослые. Показано, что недостаток Марганца в пище животных отрицательно влияет на их рост и развитие, вызывает анемию, так называемых лактационную тетанию, нарушение минерального обмена костной ткани. Для предотвращения указанных заболеваний в корм вводят соли Марганца.

В медицине некоторые соли Марганца (например, KMnO 4) применяют как дезинфицирующие средства. Соединения Марганца, применяемые во многих отраслях промышленности, могут оказывать токсическое действие на организм. Поступая в организм главным образом через дыхательные пути, Марганец накапливается в паренхиматозных органах (печень, селезенка), костях и мышцах и выводится медленно, в течение многих лет. Предельно допустимая концентрация соединений Марганец в воздухе - 0,3 мг/м 3 . При выраженных отравлениях наблюдается поражение нервной системы с характерным синдромом марганцевого паркинсонизма. Лечение: витаминотерапия, холинолитические средства и другие. Профилактика: соблюдение правил гигиены труда.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта