Главная » Обработка грибов » Школьная энциклопедия.

Школьная энциклопедия.

Ртуть является чрезвычайно важным металлом, который используется практически во всех производственных отраслях. Поэтому многие страны стремительно развивают ртутную промышленность и расширяют поиски ее месторождений. Какое место занимает применение ртути в современной промышленности - попробуем разобраться в этой статье.

Что представляет собой ртуть

Это химический элемент и единственный металл, который находится в жидком состоянии при нормальной температуре. серого цвета - вот как выглядит ртуть, фото которой приведено ниже.

Затвердеть ртуть может только при очень низкой температуре. Средневековые алхимики никак не могли добиться отвердения этого металла. И только в 1759 году российские академики М. В. Ломоносов и И. А. Браун сумели сделать это. Дело в том, что в тот год в России были сильные морозы, и с помощью специальных смесей ученые понизили температуру до -56ºС. В таких условиях ртуть замерзла и стала похожа на металл. Спустя длительное время другие алхимики обнаружили у ртути сверхпроводимый эффект, когда понизили температуру до -270ºС.

Ртуть в истории человечества

Ртуть известна человеку еще с древних времен. Первые упоминания о ней встречаются в записях V века до н. э. Очень много исследовали ртуть в Индии и Китае. Самая древняя индийская школа по алхимии известна как «расаяна» или «путь ртути». Она занималась разработками лечебных препаратов и разных снадобий.

Древние люди находили ртуть в природе в виде киновари. Они использовали ее в качестве красного красителя. Название «киноварь» связано с древней легендой и переводится как «кровь дракона». Такая характеристика ртути связана с религиозными верованиями. В то время люди верили, что это кровь убитого в горах священного существа - дракона. Поэтому ртуть считали целебным веществом, способным лечить больных. Одним из таких лечебных средств была ртутная мазь.

Древние алхимики считали ртуть основой всех металлов и их жизненной силой. Они были убеждены, что из ртути и серы можно получить золото. Но после многочисленных опытов и экспериментов стало понятно, что ничего из этой идеи не выйдет. Сколько ученых погибло, пытаясь открыть формулу создания золота. И эти исследования продолжались до 30-х годов XX века, пока наука не начала стремительно развиваться. В результате применения радиоактивного распада, ученые получили из ртути стабильные изотопы золота, но их было очень мало. И цена такого металла очень высока.

Как добывают ртуть

Основным и практически единственным промышленным источником ртути является минерал киноварь. Он состоит на 86% из остальные составляющие - примеси других минералов. Обычно киноварь имеет вид сплошных выделений, богатых примесями, и внешне напоминает зерна неправильной формы. Редко встречаются сформированные кристаллы ромбоэдрического, бипирамидального облика. Иногда обнаруживаются двойники.

Металлическую ртуть из киновари получают путем нагрева в открытой трубке, которая обеспечивает контакт с кислородом. Во время нагревания маленькие капельки ртути стекают по холодным стенкам. Обычно рудные тела залегают на небольших глубинах и приурочены к кварцитам, известнякам, доломитам и сланцам. Самые крупные в мире месторождения ртути находятся в Испании, США, Югославии, Словении, Таджикистане, Кыргызстане. Большие кристаллы ртутной руды добывают в южной части Китая.

Основные свойства ртути

Этот минерал имеет уникальные свойства, которые сделали применение ртути в современной промышленности важным ее элементом. Ртуть считается ядовитым и опасным металлом. Но его физические и химические свойства во многих сферах человеческой деятельности незаменимы.

Физические свойства

Ртуть относится к диамагнетикам, так как может образовывать твердые сплавы с другими металлами и жидкие соединения - амальгамы. Температура затвердевания ртути составляет -38,83ºС, а кипит металл при 356,73 ºС. Испаряется она при Еще одна важная характеристика ртути - она диамагнитна. Это значит, что собрать жидкие шарики металла обычным магнитом невозможно.

Химические свойства

Как и благородные металлы, ртуть устойчива в сухом воздухе. Она взаимодействует с кислотами, солями, неметаллами. С водой, щелочами и неокисляющими кислотами ртуть не реагирует. При температуре выше 300ºС она вступает в реакцию с кислородом, образуя оксид ртути.

Применение ртути в современной промышленности

Еще в средние века активно применяли в медицине для амальгамирования и изготовления разных приборов. В наше время невозможно найти отрасль народного хозяйства, которая не использует ртуть. Свойства и применение этого минерала описаны учеными со всего мира в многочисленных научных трудах.

Так, ртуть используется в сельском хозяйстве для протравы семян. В химической промышленности ее применяют в качестве катализатора для получения из ацетилена Использование ртутных катодов позволяет выделить из поваренной соли едкий натр и хлор.

Ртуть является незаменимым компонентом в производстве красок для подводной части морских судов. Дело в том, что обитающие в морской воде микроорганизмы прикрепляются к днищам судов и способствуют коррозии и износу металлических деталей. Содержащая в краске ртуть под воздействием морского хлора образует сулему, которая отравляет вредные бактерии.

Ртуть применяют даже в производстве фетра. Имеющиеся в ее составе соли отлично обезжиривают пух. Более безопасных заменителей, которые бы давали такой же эффект, пока не нашли. Также ртуть служит катализатором во время органического синтеза в процессе дубления кожи.

Как уже упоминалось, ртуть всегда использовалась в медицине. В наши дни на ее основе выпускают антисептические и мочегонные препараты. А ртутная мазь готовилась еще в древней Индии, рецепт которой сохранился до наших дней. Из-за свойства растворять другие металлы ртуть используют для изготовления зубных пломб.

Применение ртути в промышленности связано также с ее способностью испаряться при комнатной температуре. Например, для очистки нефти. Так, выпаривание металла способствует регулировке температуры нефтеперерабатывающих процессов.

Ртутные приборы

Физико-химические свойства являются главной причиной, по которой происходит применение ртути в разных приборах и машинах. Пары металла используются в ртутных турбинах. Такие установки особенно выгодны, когда в агрегате мало воды и охлаждение механизма происходит исключительно воздухом.

В электротехнике применяют выпрямители с жидким ртутным катодом. Они позволяют преобразовать трехфазный электрический ток в постоянный. Даже в астрономических целях применяют ртутные приборы - горизонты. Они имеют специальный сосуд с жидким металлом, поверхность которого служит зеркалом во время наблюдений за космосом. Также применение ртути в современной промышленности проявляется в производстве разных прерывателей, термометров.

Во многих отраслях медицины используют ртутно-кварцевые лампы, которые облучают ультрафиолетовыми лучами. Также незаменимым медицинским инструментом является всем известный градусник для измерения температуры тела.

Сколько стоит ртуть: цена на мировом рынке

Цена на ртуть формируется по тому же принципу, что и на другие металлы. Так, стоимость этого минерала зависит от объема поставок и чистоты предлагаемой ртути. На цена на ртуть за последние полгода значительно упала. Так, если ее средняя цена в конце 2014 года составляла 75 долларов США/кг, то в марте 2015 года - 55 долларов США/кг. Но свободно купить жидкий металл практически невозможно, поскольку ртуть относится к химически-опасным веществам. Даже за утилизацию разлитой ртути необходимо заплатить определенную сумму.

Что касается изделий, которые содержат ртуть, их стоимость зависит от количества используемого металла и от других производственных издержек. Например, очень дешево стоит градусник ртутный. Цена в аптеках колеблется от 25 до 50 рублей.

Опасность ртути для здоровья

Несмотря на широкое применение ртути в промышленности, она считаются довольно опасным химическим веществом. По критериям вреда для жизни и здоровья ртуть относится к первому классу опасности. Обычно ртуть попадает в организм путем вдыхания ее паров, которые не имеют запаха. Именно ртутные испарения представляют наибольшую опасность.

Чтобы вызвать тяжелое отравление и проблемы со здоровьем, достаточно воздействия небольшого количества минерала. Во время токсикации в наибольшей степени поражаются легкие, почки, иммунная, нервная, пищеварительная системы, глаза и кожа.

В зависимости от причин и характера отравления различают легкую, острую и хроническую формы. Легкая токсикация возникает при пищевом отравлении. После аварий на предприятиях химической промышленности или вследствие нарушения техники безопасности проявляется острая форма отравления. В этом случае у больного наблюдается снижение умственной активности, истощение, могут появляться судороги, потеря зрения, облысение и даже полный паралич. В тяжелых случаях острое отравление может привести к летальному исходу. Хроническое отравление развивается в результате постоянного контакта с ртутью и может проявляться долгое время после прекращения работы с ней. У людей с этой формой патологии повышается риск развития гипертонии, туберкулеза и атеросклероза. Бывают случаи, когда хроническая токсикация вызывает психические отклонения.

Особенно внимательно с ртутными приборами следует обращаться беременным женщинам. Пары ртути представляют большую угрозу для развития плода. Если в доме есть дети, лучше обычные ртутные термометры заменить электронными.

Утилизация ртутьсодержащих отходов

Широкое применение ртути способствует высокой концентрации ее паров в атмосфере крупных городов. Сейчас повсюду используют люминесцентные лампы, которые содержат от 30 до 300 мг жидкого металла. А в некоторых лампах его в несколько раз больше. Согласно статистике, ежегодно около 100 млн. таких ламп становятся непригодными и требуют переработки. Лишь небольшая их часть проходит специальную утилизацию, а остальные сразу отправляются на свалку, где из-за разрушения целостности стекла ртуть попадает в атмосферу.

Кроме того, ртуть применяется в производстве аккумуляторов и батарей, которые в основном никак не перерабатываются. Таким путем за год на свалку попадает около 40 тонн ртути. Эта цифра очень большая, поэтому проблема утилизации ртутьсодержащих предметов стоит очень остро. Бесконтрольное обращение с ртутными отходами, безответственное отношение к приборам, содержащим этот жидкий металл, создает угрозу здоровью и жизни людей. Всем известно, какие неприятности может принести обычный градусник ртутный. Цена неумелого обращения с ним может стоить даже жизни.

Сейчас правительства всех стран работают над вопросом переработки ртутьсодержащих отходов. С этой целью создаются специальные компании, которые занимаются сбором непригодных к использованию приборов и ртутных предметов. Они разделяют их на компоненты (цоколи, стекло, металл) и перерабатывают. Из каждого вида отходов формируются блоки, которые упаковываются в специальную тару (чехлы, полиэтиленовые пакеты, канистры) и доставляются на место переработки.

Сверхпроводимость

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик , переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление . Оно характеризуется также эффектом Мейснера , заключающимся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес . Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий . Позднее ему удалось довести его температуру до 1 Кельвина . Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов , в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера , открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году .

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока . Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb 3 Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл , пропускать ток плотностью до 100 кА/см².

Свойства сверхпроводников

Нулевое электрическое сопротивление

Сверхпроводники в высокочастотном поле

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока . В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 10 11 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов .

Фазовый переход в сверхпроводящее состояние

Характер изменения теплоемкости (c v , синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Т с - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода . Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Т с изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb 3 Ge, в плёнке) и 39 К у диборида магния ( 2) у низкотемпературных сверхпроводников (Т с ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т c теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость , что характерно для фазового перехода ΙΙ рода . Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера , заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Изотопический эффект

Изотопический эффект у сверхпроводников заключается в том, что температуры Т с обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего элемента .

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле , точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B », где измерялись магнитные поля четырёх сверхпроводящих гироскопов , чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы , использование момента Лондона было одним из немногих способов определить их ось вращения .

Теоретическое объяснение эффекта сверхпроводимости

Уже на относительно ранней стадии изучения сверхпроводимости, во всяком случае после создания теории Гинзбурга - Ландау , стало очевидно, что сверхпроводимость является следствием объединения макроскопического числа электронов проводимости в единое квантово-механическое состояние. Особенностью связанных в такой ансамбль электронов является то, что они не могут обмениваться энергией с решёткой малыми порциями, меньшими, чем их энергия связи в ансамбле. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов, и вещество ведёт себя как сверхпроводник с нулевым сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления. Такое объединение частиц невозможно в ансамбле фермионов. Оно характерно для ансамбля тождественных бозонов. То, что электроны в сверхпроводниках объединены в бозонные пары, следует из экспериментов по измерению величины кванта магнитного потока, который «замораживается» в полых сверхпроводящих цилиндрах. Поэтому уже в середине прошлого века основной задачей создания теории сверхпроводимости стала разработка механизма спаривания электронов. Первой теорией, претендующей на микроскопическое объяснение причин возникновения сверхпроводимости, была теория Бардина - Купера - Шриффера , созданная ими в 50-е годы прошлого столетия. Эта теория получила под именем БКШ всеобщее признание и была удостоена в 1972 году Нобелевской премии . При создании своей теории авторы опирались на изотопический эффект, то есть влияние массы изотопа на критическую температуру сверхпроводника. Считалось, что его существование прямо указывает на формирование сверхпроводящего состояния за счет работы фононного механизма.

Теория БКШ оставила без ответа некоторые вопросы. На её основе оказалось невозможно решить главную задачу - объяснить, почему конкретные сверхпроводники имеют ту или иную критическую температуру. К тому же дальнейшие эксперименты с изотопическими замещениями показали, что из-за ангармоничности нулевых колебаний ионов в металлах существует прямое воздействие массы иона на межионные расстояния в решетке, а значит и прямо на значение энергии Ферми металла. Поэтому стало понятно, что существование изотопического эффекта не является доказательством фононного механизма, как единственно возможного ответственного за спаривание электронов и возникновение сверхпроводимости. Неудовлетворенность теорией БКШ в более поздние годы привела к попыткам создать другие модели, например, модель спиновых флуктуаций и биполяронную модель. Однако, хотя в них рассматривались различные механизмы объединения электронов в пары, к прогрессу в понимании явления сверхпроводимости эти разработки тоже не привели.

Сравнение вычисленных значений критических температур сверхпроводников с данными измерений.

Согласно одной из последних теорий, предложенной Б. В. Васильевым, спаривание электронов является необходимым, но недостаточным условием для существования сверхпроводящего состояния. Более того, какой конкретно механизм приводит к такому спариванию - не так уж важно. Важно, чтобы такой механизм существовал и был работоспособным во всем диапазоне температуры, где существует сверхпроводящее состояние.

Причина этого объясняется следующим образом: объединившись в пары, электроны создают бозоны, не объединенные в единый тождественный ансамбль. Их различают некоррелированные нулевые колебания. Для перехода бозонов в тождественное состояние необходимо упорядочить их нулевые колебания. По этой причине параметры, характеризующие механизм упорядочения нулевых колебаний в электронном газе, оказываются определяющими для свойств сверхпроводников.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости . На базе металлокерамики, например, состава YBa 2 Cu 3 O x , получены вещества, для которых температура Т c перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля H c 2 . В технике применяются, в основном, следующие сверхпроводники:

См. также

  • Сверхпроводимость и нулевые колебания

Примечания

  1. Dirk van Delft and Peter Kes The discovery of superconductivity (англ.) // Physics Today . - 2010. - Vol. 63. - С. 38-43.
  2. Алексей Левин Сверхпроводимость отмечает столетний юбилей . Элементы.ру (8 апреля 2011). Архивировано из первоисточника 23 августа 2011. Проверено 8 апреля 2011.
  3. В. Л. Гинзбург , Е. А. Андрюшин Глава 1. Открытие сверхпроводимости // Сверхпроводимость ISBN 5-98281-088-6
  4. В. Л. Гинзбург , Е. А. Андрюшин Глава 5. Звезда сверхпроводимости // Сверхпроводимость . - 2-е издание, переработанное и дополненное. - Альфа-М, 2006. - 112 с. - 3000 экз. -

Сверхпроводимость: история открытия и сущность явления.

История открытия.

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и металл совсем перестанет проводить ток. Эксперименты, проводимые Камерлингом-Оннесом со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий спад сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H 2 S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C).

Понятие о сверхпроводимости.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением(при постоянном токе) при достижении ими температуры ниже определённого значения (критическая температура)

Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух «противоположных сил»: одна стремится упорядочить электроны, а другая – разрушить этот порядок. Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.

Классификация.

Существует несколько критериев для классификации сверхпроводников. Вот основные из них:

    По их отклику на магнитное поле: они могут быть I рода, что значит, что они имеют единственное значение магнитного поля, H c , выше которого они теряют сверхпроводимость. Или II рода, подразумевающего наличие двух критических значений магнитного поля, H c1 и H c2 ,. При приложении магнитного поля в этом диапазоне происходит частичное его проникновение в сверхпроводник с сохранением сверхпроводящих свойств.

    По их критической температуре: низкотемпературные, если Tc < 77 K (ниже температуры кипения азота), и высокотемпературные.

    По материалу: чистый химический элемент (такие как свинец или ртуть, однако не все элементы в чистом виде достигают сверхпроводящего состояния), сплавы (например, NbTi), керамика (например, YBCO, MgB 2), сверхпроводники на основе железа, органические сверхпроводники и т. п.

Принципиальные свойства сверхпроводников

    Нулевое электрическое сопротивление. Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).

    Наличие критических свойств:

Критическое магнитное поле (критическая индукция) . Критическое магнитное поле – значение поля, выше которого сверхпроводник находится в нормальном состоянии. Критические поля обычно лежат в интервале от нескольких десятков гаусс до нескольких сотен тысяч гаусс в зависимости от сверхпроводника и его металлофизического состояния. Критическое поле данного сверхпроводника меняется с температурой, уменьшаясь при ее повышении. При температуре перехода критическое поле равно нулю, а при абсолютном нуле оно максимально

Рис. 2. СВЕРХПРОВОДИМОСТЬ разрушается при сильных магнитных полях и высоких температурах. Представлена фазовая диаграмма магнитное поле – абсолютная температура для олова. При условиях, соответствующих точкеА , олово находится в нормальном, несверхпроводящем состоянии. Если же его охладить до точкиВ , то оно становится

сверхпроводящим.

    Критический ток . Критический ток – максимальный постоянный ток, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. Как и критическое магнитное поле, критический ток сильно зависит от температуры, уменьшаясь при ее увеличении.

    Критическая температура. Температура T c , при достижении которой происходит скачок, называется критической. Внимательное исследование показывает, что такой переход наблюдается в некотором интервале температур. Критическая температура своя для каждого вещества.

Рис. 3 Вид «сверхпроводящего перехода». Зависимость сопротивления от температуры для образца 1 (более «чистого») и 2 (более «грязного»). Критическая температура T c обозначает середину перехода, когда сопротивление падает наполовину по сравнению с нормальным состоянием. Начало падения - T c0 , конец - T ce

    Полное вытеснение магнитного поля - Эффект Мейснера-Оксенфельда, о котором подробно рассказывается далее.

Эффект Мейснера-Оксенфельда. В течение 22 лет после открытия сверхпроводимости считалось, что сверхпроводник - это идеальный проводник, т. е. просто металл с сопротивлением равным нулю.

Посмотрим, как должен вести себя такой идеальный проводник во внеш- нем магнитном поле (достаточно слабом, чтобы не разрушить сверхпро- водимость). Пусть в исходном состоянии идеальный проводник охлажден до некоторой температуры T < T c и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Что тогда произойдет? Достаточно легко понять, что магнитное поле в такой идеальный проводник не проникнет. Действительно, сразу при появлении внешнего магнитного поля на поверхности идеального проводника возникает ток, который по правилу Ленца создает свое собственное магнитное поле, направленное навстречу приложенному и полное поле в образце будет равно нулю в любой точке образца.

Рис.4. Нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);

Однако, того же состояния (идеальный проводник при T < Tc во внешнем магнитном поле) можно достигнуть и другим путем: сначала наложить внешнее магнитное поле на ”теплый” образец с T > Tc , а затем охладить его до температуры T < Tc . Тогда электродинамика, основанная на уравнениях Максвелла, предсказывает для идеального проводника иной результат. При T > Tc, ρ0 и магнитное поле хорошо проникает в образец. После охлаждения его ниже Tc поле остается в образце.

Итак, до 1933 года считалось, что сверхпроводник - это идеальный проводник. Но вот Мейснер и Оксенфельд обнаружили, что это не так. Оказалось, что при T < Tc магнитное поле в образце равно нулю всегда B = 0, независимо от пути перехода к условию T < Tc при наличии магнитного поля. Однако, равенство B = 0 не относится к тонкому поверхностному слою тела. В действительности, как мы увидим в дальнейшем, магнитное поле проникает в сверхпроводник на некоторую глубину, большую по сравнению межатомными расстояниями (обычно ∼10 −5 см), зависящую от рода металла и от температуры. По этой же причине равенство B = 0 вообще не имеет места в тонких металлических пленках или малых частицах, толщина или размеры которых порядка величины глубины проникновения.

Это было чрезвычайно важное открытие. Ведь, если B = 0 независимо от предыстории образца, то это равенство можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при H < Hcm. Но тогда можно рассматривать переход в сверхпроводящее состояние как фазовый переход в новую фазу и использовать для исследования сверхпроводящей фазы термодинамический подход. Итак, сверхпроводящее состояние удовлетворяет уравнениям, которые вытекают из экспериментальных данных

Таким образом можно сказать, что сверхпроводник это не идеальный проводник, а идеальный диамагнетик! По этой причине эффект Мейснера приводит ко многим интересным явлениям, например левитации сверхпроводника в магнитном поле – Рис.5, которые можно наблюдать уже сейчас и которые несут с собой фантастические возможности в будущем.

Рис. 5: Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом.

Теоретическое объяснение эффекта сверхпроводимости.

Уравнения Лондонов.

Первая попытка построить макроскопическую теорию сверхпроводников, точнее их электродинамику была осуществлена в 1935 году братьями Ф. Лондоном и Г. Лондоном. Они хотели, не вдаваясь в микроскопические причины сверхпроводимости, невыясненные к тому времени, записать в математической форме основные экспериментальные факты: отсутствие сопротивления и эффект Мейсснера. Они резонно предположили, что носителями тока в сверхпроводнике, так же как в металле, являются электроны проводимости. Равенство нулю сопротивления (ρ = 0) означает что электрон при своем движении не испытывает столкновений, т. е. свободно ускоряется под действием электрического поля E.

где j – плотность тока, – постоянная,n – концентрация электронов.

Эти два уравнения и представляет собой основу Лондоновской электродинамики сверхпроводников.

Г лубина проникновения магнитного поля в сверхпроводник

При помощи уравнения Максвелла запишем, гдеили.

Величина λ называется лондонской длиной проникновения.

Рассмотрим случай, когда сверхпроводник занимает полупространство z > 0 - рис.6 . И пусть x компонента магнитного поля снаружи сверхпроводника равна

Рис. 6: Полупространство занятое сверхпроводником в магнитном поле.

Тогда имеем решение, т.е. магнитное поле экспоненциально спадает вглубь сверхпроводника на длине λ.

Давайте оценим теперь глубину проникновения магнитного поля в сверхпроводник. Согласно полученной нами формуле

Таким образом, магнитное поле в сверхпроводник все же проникает, но на небольшую глубину, порядка 500 − 1000 Å.

Рис. 7: Зависимость глубины проникновения от температуры.

Глубина проникновения не является постоянной величиной и изменяется с изменением температуры - рис. 7. Эта зависимость имеет вид

В точке сверхпроводящего перехода λ обращается в бесконечность.

Куперовские пары. Длина когерентности.

Для описания сверхпроводников даже на макроскопическом уровне необходимо применение квантовой механики. Дело в том, что сверхпроводимость - явление сугубо квантовое. Объяснить ее с классических позиций невозможно. В сверхпроводнике, так же как и в металле, в переносе тока участвуют электроны проводимости. Однако, существенное различие между теми и другими заключается в том, что если в металле электроны движутся нескоррелированно под действием приложенного электрического поля (каждый сам по себе), то в сверхпроводнике возникает корреляция в движении электронов. Пространственный масштаб, на котором электроны сверхпроводника ”чувствуют” друг друга, называется длина когерентности ξ. Физической причиной возникновения корреляции в движении электронов является существующее в сверхпроводнике эффективное притяжение между ними. Это притяжение как бы объединяет электроны с противоположно направленными спинами в пары, называемые куперовскими парами - рис. 8.

Рис. 3: Куперовские пары в сверхпроводнике.

Характерный размер такой пары и является длиной когерентности ξ. В чистых металлах величина ξ " 10−4 см = 10000 Å. Возникает естественный вопрос: как такие пары могут помещаться в металле не мешая друг другу. Ведь из оценок лондоновской длины проникновения следует, что концентрация электронов в металле, принимающих участие в сверхпроводимости, порядка 1022 - 1023 см−3 . Это значит, что пары ”проникают” друг через друга и в то же время как частицы газа являются свободными и практически не взаимодействуют друг с другом. Такое положение возможно только в квантовой механике, так же как течение этого ”газа” куперовских пар через решетку без рассеяния.

В чем же причина притяжения между электронами в сверхпроводнике. Ведь электроны, являясь отрицательно заряженными частицами, по закону Кулона должны отталкиваться друг от друга. Такое кулоновское отталкивание действительно имеет место в вакууме. Но в сверхпроводнике (в металле) электроны движутся не в вакууме, а в кристаллической решетке. Естественно, что при своем движении они деформируют решетку. Деформация решетки позволяет им понизить потенциальную энергию, поэтому естественно, что электроны будут притягиваться к месту деформации.

Такой механизм сверхпроводимости называется фононным и был введен в работе Бардина, Купера и Шрифера (БКШ в 1956 г.) и одновременно Боголюбовым 6 в 1958 г. Фононным же этот механизм называется потому, что два электрона, пролетая друг мимо друга, обмениваются виртуальным фононом (квантом колебаний кристаллической решетки) с энергией ħ ω и импульсом ħ k - рис. 9.

Рис. 5: Взаимодействие двух электронов за счет обмена виртуальным фононом.

Таким образом, образование куперовских пар или куперовское спаривание электронов в сверхпроводнике выгодно с энергетической точки зрения (это понижает энергию системы). Существенно, что при спаривании образуется частица, называемая куперовской парой, со спином 0.

Поскольку образование куперовских пар энергетически выгодно, то, чтобы разорвать такую пару, необходимо затратить энергию, которую обозначим через ∆. Очевидно, что когда тепловая энергия kT сравняется с ∆, куперовская пара разрушится и сверхпроводимость исчезнет. Поэтому,

Если теперь ввести в рассмотрение скорость электронов в металле -(скорость электронов, обладающих энергией Ферми), то длину когерент- ности можно выразить через них следующим образом

Сверхпроводники I и II рода.

Существует два рода сверхпроводников, магнитные свойства которых, в частности проникновение магнитного поля в сверхпроводник (т. е. эффект Мейснера), существенно различаются. Происхождение этих различий связано с величиной отношения двух характерных длин λ и ξ. Магнитная длина λ характеризует глубину проникновения магнитного поля в сверхпроводник. Длина когерентности ξ дает масштаб расстояний, на которых электроны сверхпроводника ”чувствуют” друг друга и в результате движутся когерентно. Материалы с ξ > λ называют сверхпроводниками I рода, а в случае ξ < λ говорят о сверхпроводниках II рода. К сверхпроводникам I рода относятся, как правило, чистые металлы. Для них типичны λ ∼ 300 Å и ξ ∼ 104 Å. К сверхпроводникам II рода принадлежат грязные металлы, сплавы. Для них характерны ξ = 50 Å и λ ∼ 103 Å.В сверхпроводнике II рода самопроизвольно зарождаются вихревые токи.

Вихри Абрикосова.

Явление квантования магнитного потока играет большую роль в сверхпроводниках II рода. Как мы помним, это сверхпроводники, у которых лондоновская длина проникновения λ значительно больше длины когерентности ξ. Вследствие этого поверхностная энергия на границе сверхпроводящей и нормальной фаз при определенных условиях может стать отрицательной. Тогда ясно, что в сверхпроводящей фазе должны появиться очень измельченные N (нормальные) области, т. к. выгодна именно обширная поверхность раздела. При заданном потоке на бесконечности N области будут иметь форму тонких цилиндрических трубочек, через которые и проходят силовые линии магнитного поля - рис. 9. По периферии такой трубочки течет незатухающий сверхпроводящий ток. Такую вот трубочку и называют вихрем. Абрикосовским вихрем, поскольку Абрикосов 1 был первый, кто догадался о существовании таких вихрей в сверхпроводниках II рода (и вообще понял, что в природе существует два типа сверхпроводников).

Рис. 9: Проникновение магнитного поля в сверхпроводник II рода.

Структура абрикосовского вихря выглядит следующим образом - рис. 10. В центре вихря имеется сердцевина, размером порядка длины когерентности ξ - кор вихря, где плотность сверхпроводящих электронов равна нулю, т. е. там сверхпроводимость разрушена и кор вихря образует собой нормальную фазу N. На больших расстояниях вещество находится в сверхпроводящем состоянии, причем вокруг кора вихря циркулирует незатухающий сверхпроводящий ток I, амплитуда которого убывает вглубь S области и сходит на нет на расстоянии от кора порядка λ.

Рис. 10: Структура абрикосовского вихря.


А при чем здесь квантование магнитного потока? А притом, что поток магнитного поля через абрикосовский вихрь в точности равен кванту магнитного потока Φ 0 = hc/2e . Каждый абрикосовский вихрь несет в себе квант магнитного потока Φ 0 . Пользуясь этим, можно оценить при каком магнитном поле в сверхпроводнике появится первый вихрь.

При меньших полях магнитное поле не проникает в сверхпроводник II рода, а начиная с H = Hc1 начинается его проникновение в виде абрикосовских вихрей. Поле Hc1 называют первым критическим полем.

Фазовая диаграмма для сверхпроводника II рода выглядит следующим образом - рис. 11. Состояние сверхпроводника с абрикосовскими вихрями

называется фазой Шубникова или смешанным состоянием. В поле Hc2 нормальные области (центры вихрей) начинают перекрываться, и весь сверхпроводник переходит в нормальное состояние. Остается только тонкий сверхпроводящий приповерхностный слой, который разрушается в поле Hc3.

Рис. 8: Фазовая диаграмма сверхпроводника II рода.

Вихри «небезразличны» друг другу: текущие в них токи создают вза- имные помехи, поэтому параллельные вихри отталкиваются. Они стара- ются держаться подальше друг от друга, но когда их много, то оттал- кивание идет со всех сторон. Подобно атомам кристалла, вихри (в до- статочно чистом сверхпроводнике) образуют правильную решетку. Если смотреть в направлении магнитного поля, как бы с торца цилиндриков вихрей, то, как правило, получается картина треугольной решетки. Ее удалось наблюдать экспериментально приблизительно теми же способа- ми, что и промежуточное состояние сверхпроводников I рода, но, конеч- но, с помощью микроскопа.

Эффект Дфозефсона. В 1962 Б.Джозефсон, аспирант Кембриджского университета, размышляя над тем, что будет, если сблизить два сверхпроводника на расстояние нескольких ангстрем, высказал предположение, что куперовские пары должны за счет «туннельного» эффекта переходить из одного сверхпроводника в другой при нулевом напряжении.

Было предсказано два замечательных эффекта. Во-первых, через туннельный сверхпроводящий контакт (переход, представляющий собой два сверхпроводника, разделенные слоем диэлектрика) возможно протекание сверхпроводящего (бездиссипативного) тока. Критическое значение этого тока зависит от внешнего магнитного поля. Во-вторых, если ток через контакт превосходит критический ток перехода, то контакт становится источником высокочастотного электромагнитного излучения. Первый из этих эффектов называют стационарным эффектом Джозефсона, второй – нестационарным. Оба эффекта хорошо наблюдаются экспериментально. В частности, наблюдались осцилляции максимального сверхпроводящего тока через переход при увеличении магнитного поля. Если ток, задаваемый внешним источником, превысит критическое значение, то на переходе появляется напряжение U , периодически зависящее от времени. Частота колебаний напряжения зависит от того, насколько ток через контакт превышает его критическое значение.

Конечно, сблизить два сверхпроводника на расстояние нескольких ангстрем невозможно. Поэтому в экспериментах на подложку напылялся тонкий слой сверхпроводящего материала, такого, как алюминий, затем он окислялся с поверхности на глубину нескольких ангстрем, а сверху напылялся еще один слой алюминия. Напомним, что оксид алюминия – диэлектрик. Такой «сэндвич» эквивалентен двум сверхпроводникам, расположенным на расстоянии нескольких ангстрем друг от друга.

Эффект Джозефсона обусловлен фазовыми соотношениями между электронами в сверхпроводящем состоянии. Выше говорилось, что суть сверхпроводящего состояния – в когерентном движении куперовских пар через атомную решетку. Когерентность куперовских пар сверхпроводника определяется тем, что пары электронов движутся «в фазе». Куперовские же пары двух разных сверхпроводников движутся «не в фазе». Если два сверхпроводника тесно приблизить друг к другу, то куперовские пары могут туннелировать через зазор между ними. При туннелировании фаза куперовской пары изменяется. Если изменение таково, что куперовская пара начинает идти «в ногу» с парами во втором сверхпроводнике, то туннелирование возможно. Это и происходит в стационарном эффекте Джозефсона. Величиной магнитного поля определяется сдвиг фазы, который приобретают туннелирующие пары.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило и практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

Видео YouTube

История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Видео YouTube


Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.


Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока rotB = 0 . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположнонаправленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением


где Hc0 - критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая jc, поскольку он создаёт магнитное поле, большее критического.

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

Электроны в металлах
Открытие изотопического эффекта означало, что сверхпроводимость, вероятно, вызывается взаимодействием между электронами проводимости и атомами кристаллической решетки. Чтобы выяснить, как это приводит к сверхпроводимости, нужно рассмотреть структуру металла. Как и все кристаллические твердые тела, металлы состоят из положительно заряженных атомов, расположенных в пространстве в строгом порядке. Порядок, в котором размещены атомы, можно сравнить с повторяющимся рисунком на обоях, но только рисунок должен повторяться в трех измерениях. Электроны проводимости движутся среди атомов кристалла со скоростями от 0,01 до 0,001 скорости света; их движение и есть электрический ток.

В 1933 году немецкий физик Вальтер Фриц Мейснер совместно со своим коллегой Робертом Оксенфельдом открыл эффект, который впоследствии назвали его именем. Эффект Мейснера заключается в том, что при переходе в сверхпроводящее состояние, наблюдается полное вытеснение магнитного поля из объема проводника. Наглядно это можно наблюдать с помощью опыта, которому дали название “Гроб Магомета” (по легенде, гроб мусульманского пророка Магомета висел в воздухе без физической поддержки). В этой статье мы расскажем об Эффекте Мейснера и его будущему и настоящему практическому применению.

В 1911 году Хейке Камерлинг-Оннес сделал важное открытие – сверхпроводимость. Он доказал, что если охладить некоторые вещества до температуры 20 К, то они не оказывают сопротивление электрическому току. Низкая температура “успокаивает” случайные колебания атомов, и электричество не встречает сопротивление.

После этого открытия началась настоящая гонка по нахождению таких веществ, которые не будут оказывать сопротивление без охлаждения, например при обычной комнатной температуре. Такой сверхпроводник сможет передавать электричество на гигантские расстояния. Дело в том, что обычные линии электропередач теряют значительное количество электрического тока, как раз из-за сопротивления. Пока же физики ставят свои опыты с помощью охлаждения сверхпроводников. И одним из самых популярных опытов, является демонстрация Эффекта Мейснера. В сети можно встретить множество роликов, показывающих этот эффект. Мы выложили один, который лучше всего демонстрирует это.

Для демонстрации опыта левитации магнита над сверхпроводником нужно взять высокотемпературную сверхпроводящую керамику и магнит. Керамика охлаждается с помощью азота до уровня сверхпроводимости. К ней подключается ток и сверху кладется магнит. В полях 0,001 Тл магнит смещается вверх и левитирует над сверхпроводником.

Объясняется эффект тем, что при переходе вещества в сверхпроводимость, магнитное поле выталкивается из его объема.

Как можно применить эффект Мейснера на практике? Наверное, каждый читатель этого сайта видел множество фантастических фильмов, в которых автомобили парили над дорогой. Если удастся изобрести вещество, которое превратится в сверхпроводник при температуре, скажем не ниже +30, то это уже не окажется фантастикой.

А как же сверхскоростные поезда, которые тоже парят над железной дорогой. Да они существуют уже сейчас. Но в отличие от Эффекта Мейснера, там действуют другие законы физики: отталкивание однополюсных сторон магнитов. К сожалению, дороговизна магнитов не позволяет широко распространить эту технологию. С изобретение сверхпроводника, которого не нужно охлаждать, летающие машины станут реальностью.

Ну а пока Эффект Мейснера взяли на свое вооружение фокусники. Одно из таких представлений мы раскопали для вас в сети. Свои трюки показывает труппа “Эксос”. Никакой магии – только физика.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта