Главная » Обработка грибов » Удельное электрическое сопротивление ом м. Удельное сопротивление железа, алюминия, меди и других металлов

Удельное электрическое сопротивление ом м. Удельное сопротивление железа, алюминия, меди и других металлов

Термин «удельное сопротивление» обозначает параметр, которым обладает медь или любой другой металл, и довольно часто встречается в специальной литературе. Стоит разобраться, что понимается под этим.

Одна из разновидностей медного кабеля

Общие сведения об электрическом сопротивлении

Для начала следует рассмотреть понятие электрического сопротивления. Как известно, под действием электрического тока на проводник (а медь является одним из лучших металлов-проводников) часть электронов в нем покидают свое место в кристаллической решетке и устремляются по направлению к положительному полюсу проводника. Однако не все электроны покидают кристаллическую решетку, часть из них остаются в ней и продолжают совершать вращательное движение вокруг ядра атома. Вот эти электроны, а также атомы, расположенные в узлах кристаллической решетки, и создают электрическое сопротивление, препятствующее продвижению высвободившихся частиц.

Данный процесс, который мы вкратце обрисовали, характерен для любого металла, для меди в том числе. Естественно, что различные металлы, у каждого из которых особая форма и размеры кристаллической решетки, сопротивляются продвижению по ним электрического тока по-разному. Как раз эти различия и характеризует удельное сопротивление – показатель, индивидуальный для каждого металла.

Применение меди в электрических и электронных системах

Для того чтобы понять, причину популярности меди как материала для изготовления элементов электрических и электронных систем, достаточно посмотреть в таблице значение ее удельного сопротивления. У меди данный параметр равен 0,0175 Ом*мм2/метр. В этом отношении медь уступает только серебру.

Именно низкое удельное сопротивление, измеряемое при температуре 20 градусов Цельсия, является основной причиной того, что без меди сегодня не обходится практически ни одно электронное и электротехническое устройство. Медь – это основной материал для производства проводов и кабелей, печатных плат, электродвигателей и деталей силовых трансформаторов.

Низкое удельное сопротивление, которым характеризуется медь, позволяет использовать ее для изготовления электротехнических устройств, отличающихся высокими энергосберегающими свойствами. Кроме того, температура проводников из меди повышается очень незначительно при прохождении через них электрического тока.

Что влияет на величину удельного сопротивления?

Важно знать, что существует зависимость величины удельного сопротивления от химической чистоты металла. При содержании в меди даже незначительного количества алюминия (0,02%) величина этого ее параметра может значительно возрасти (до 10%).

Влияет на этот коэффициент и температура проводника. Объясняется это тем, что при повышении температуры усиливаются колебания атомов металла в узлах его кристаллической решетки, что и приводит к тому, что коэффициент удельного сопротивления возрастает.

Именно поэтому во всех справочных таблицах значение данного параметра приведено с учетом температуры 20 градусов.

Как рассчитать общее сопротивление проводника?

Знать, чему равно удельное сопротивление, важно для того, чтобы проводить предварительные расчеты параметров электротехнического оборудования при его проектировании. В таких случаях определяют общее сопротивление проводников проектируемого устройства, обладающих определенными размерами и формой. Посмотрев значение удельного сопротивления проводника по справочной таблице, определив его размеры и площадь поперечного сечения, можно рассчитать величину его общего сопротивления по формуле:

В данной формуле используются следующие обозначения:

  • R - общее сопротивление проводника, которое и необходимо определить;
  • p - удельное сопротивление металла, из которого изготовлен проводник (определяют по таблице);
  • l - длина проводника;
  • S - площадь его поперечного сечения.

Сопротивление меди действительно меняется с температурой, но сначала нужно определиться, имеется ли в виду удельное электрическое сопротивление проводников (омическое сопротивление), что важно для питания по Ethernet, использующего постоянный ток, или же речь идет о сигналах в сетях передачи данных, и тогда мы говорим о вносимых потерях при распространении электромагнитной волны в среде витой пары и о зависимости затухания от температуры (и частоты, что не менее важно).

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм 2 /м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм 2 . Величина 1 Ом∙мм 2 /м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм 2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм 2 /м . В различных источниках можно встретить значения до 0,018 Ом∙мм 2 /м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R 2 = R 1 · (1 + α · (T 2 - T 1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С -1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С -1 . Рассчитаем удельное сопротивление меди при 60°С.

R 60°С = R 20°С · (1 + α · (60°С - 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм 2 /м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Затухание сигнала в витой паре / Вносимые потери

При распространении электромагнитной волны в среде медной витой пары часть ее энергии рассеивается по пути от ближнего конца к дальнему. Чем выше температура кабеля, тем сильнее затухает сигнал. На высоких частотах затухание сильнее, чем на низких, и для более высоких категорий допустимые пределы при тестировании вносимых потерь строже. При этом все предельные значения заданы для температуры 20°С. Если при 20°С исходный сигнал приходил на дальний конец сегмента длиной 100 м с уровнем мощности P, то при повышенных температурах такая мощность сигнала будет наблюдаться на более коротких расстояниях. Если необходимо обеспечить на выходе из сегмента ту же мощность сигнала, то либо придется устанавливать более короткий кабель (что не всегда возможно), либо выбирать марки кабелей с более низким затуханием.

  • Для экранированных кабелей при температурах выше 20°С изменение температуры на 1 градус приводит к изменению затухания на 0.2%
  • Для всех типов кабелей и любых частот при температурах до 40°С изменение температуры на 1 градус приводит к изменению затухания на 0.4%
  • Для всех типов кабелей и любых частот при температурах от 40°С до 60°С изменение температуры на 1 градус приводит к изменению затухания на 0.6%
  • Для кабелей категории 3 может наблюдаться изменение затухания на уровне 1,5% на каждый градус Цельсия

Уже в начале 2000 гг. стандарт TIA/EIA-568-B.2 рекомендовал уменьшать максимально допустимую длину постоянной линии/канала категории 6, если кабель устанавливался в условиях повышенных температур, и чем выше температура, тем короче должен быть сегмент.

Если учесть, что потолок частот в категории 6А вдвое выше, чем в категории 6, температурные ограничения для таких систем будут еще жестче.

На сегодняшний день при реализации приложений PoE речь идет о максимум 1-гигабитных скоростях. Когда же используются 10-гигабитные приложения, питание по Ethernet не применяется, по крайней мере, пока. Так что в зависимости от ваших потребностей при изменении температуры вам нужно учитывать либо изменение удельного сопротивления меди, либо изменение затухания. Разумнее всего и в том, и в другом случае обеспечить кабелям нахождение при температурах, близких к 20°С.

Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

Вещество

p , Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0.0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0.15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 - температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

Уде?льное электри?ческое сопротивле?ние, или просто удельное сопротивление вещества — физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока .

Удельное сопротивление обозначается греческой буквой ρ. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м .

Из соотношения следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи , выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10 −6 от 1 Ом·м . Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянногоили переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура .


По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого? источника равна нулю.

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности , напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE , в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита — σ . Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости. Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м. Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка. Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества. Словом, всё довольно сложно для не специалиста. Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности. Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма. Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника. Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить. Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки. Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов. При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника. Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов. Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов. Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения. И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля. Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился. Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот. А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта