Главная » Засолка грибов » Эксперимент миллера-юрия. Эксперимент Миллера-Юри – пересмотр результатов

Эксперимент миллера-юрия. Эксперимент Миллера-Юри – пересмотр результатов

Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул.

В мае 1953 года в журнале Science были опубликованы результаты знаменитого эксперимента по синтезу высокомолекулярных соединений из метана, аммиака и водорода под действием электрических разрядов (см. Stanley L. Miller. A Production of Amino Acids Under Possible Primitive Earth Conditions (PDF, 690 Кб) // Science. 1953. V. 117. P. 528). Установка для опытов представляла собой систему колб, в которых циркулировал водяной пар. В большой колбе на вольфрамовых электродах генерировался электрический разряд. Опыт длился неделю, по истечении которой вода в колбе приобрела желто-коричневый оттенок и стала маслянистой.

Миллер анализировал состав органики с помощью бумажной хроматографии - метода, тогда только вошедшего в обиход биологов и химиков. Миллер обнаружил в растворе глицин, аланин и другие аминокислоты. В то же самое время подобные опыты проводились Кеннетом Алфредом Уайлдом (см. Kenneth A. Wilde, Bruno J. Zwolinski, Ransom B. Parlin. The Reaction Occurring in CO 2 –H 2 O Mixtures in a High-Frequency Electric Arc (PDF, 380 Кб) // Science. 10 July 1953. V. 118. P. 43–44) с той разницей, что вместо смеси газов с восстановительными свойствами в колбе был углекислый газ - окислитель. В отличие от Миллера, Уайлд не получил никаких значимых результатов. Миллер и вслед за ним многие ученые исходили из восстановительной, а не окислительной атмосферы в начале существования Земли. Логическая цепочка их рассуждений была такой: мы стоим на позициях, что жизнь зародилась на Земле; для этого нужны были органические вещества; они должны были быть продуктом земного синтеза; если в восстановительной атмосфере синтез идет, а в окислительной - не идет, значит первичная атмосфера была восстановительной.

Помимо гипотезы восстановительной атмосферы на ранней Земле, миллеровские опыты доказывают еще и принципиальную возможность самопроизвольного синтеза необходимых биологических молекул из простых составляющих. Эта гипотеза получила серьезное подкрепление после опыта Хуана Оро (Joan Oró; см. J. Oró. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions // Nature. 16 September 1961. V. 191. P. 1193–1194), который в 1961 году в установку Миллера ввел синильную кислоту и на выходе получил нуклеотид аденин - одно из четырех оснований молекул ДНК и РНК. Возможность самопроизвольного синтеза высокомолекулярной органики, включая нуклеотиды и аминокислоты, стала мощной опорой теории Опарина о самозарождении жизни в первичном бульоне.

После этих экспериментов прошла целая биологическая эпоха. Отношение к теории первичного бульона стало более настороженным. В течение прошедшего полстолетия ученые не могли придумать механизма избирательного синтеза хиральных молекул в неживой природе и наследования этого механизма в живых организмах. Идея восстановительной атмосферы на ранней Земле тоже была подвергнута решительной критике. Не появилось решения главного вопроса: как из неживых молекул сложилось самовоспроизводящееся живое существо? Появились аргументы для теории внеземного происхождения жизни.

Однако в последние годы ученые достигли ощутимых успехов в развитии теории зарождения жизни из неорганической материи. Основные достижения в этом направлении - это, во-первых, открытие роли РНК в становлении биоорганического катализа; теория РНК-мира приближает нас к ответу на вопрос, как из неживой органики сложились живые системы. Во-вторых, открытие каталитических функций неорганических природных минералов в реакциях высокомолекулярного органического синтеза, доказательство важнейшей роли катионов металлов в метаболизме живого. В-третьих, доказательство избирательного синтеза хиральных изомеров в естественных земных условиях (см. например, Открыт новый способ получения органических молекул», «Элементы», 06.10.2008). Иными словами, теория абиогенеза получила новые обоснования.

С этих позиций интересны результаты переизучения материалов, оставшихся от старых экспериментов Миллера, до сих пор хранившихся, как это ни странно, в запечатанных колбах в его лаборатории. В 50-е годы Стэнли Миллер поставил три эксперимента, имитировавших различные варианты условий зарождения жизни. Самый известный из них, вошедший во все школьные учебники, - это образование биомолекул при пропускании через пар электрических разрядов. Колба моделировала условия испарения вод над океаном во время гроз. Второй - образование биомолекул при слабой ионизации газов - при так называем тихом разряде. Это была модель ионизированной, насыщенной паром атмосферы ранней Земли. В третьем эксперименте пар подавался под большим давлением, поступая в колбу в виде мощных струй, через которые пропускали, как и в первом случае, электрические разряды. Этот случай имитировал вулканические выбросы и образование горячих вулканических аэрозолей. Биологи опирались на результаты только первого, наиболее удачного опыта, потому что в остальных двух опытах синтезировалось мало органики и разнообразие аминокислот и других соединений было невелико.

Переизучение этих материалов после смерти Миллера в 2007 году взяли на себя специалисты из Америки и Мексики - из Индианского университета (Блумингтон), Института Карнеги (Вашингтон), Отдела исследования Солнечной системы Центра космических полетов имени Годдарда (Гринбелт), Скриппсовского океанографического института (Ла-Холья, Калифорния) и Независимого мексиканского университета (Мехико). В их распоряжении оказались 11 колб, соответствующим образом промаркированных Миллером. Все они содержали высушенные материалы третьего эксперимента, того, который имитировал вулканические выбросы. Ученые развели осадок дистиллированной водой и проанализировали смесь, теперь уже с помощью высокоэффективной жидкостной хроматографии и масс-спектрометрии. Современные методы выявили высокое разнообразие «биологических» молекул. Оно оказалось даже выше, чем в первом эксперименте. Очевидно, что методы бумажной хроматографии менее чувствительны, чем жидкостной, поэтому теперь выявились и те соединения, которые присутствовали в малых концентрациях.

Новые результаты старого опыта будут, по-видимому, приняты к сведению биохимиками, микробиологами и вулканологами. Вулканические выбросы представляют собой аэрозоли, состоящие на 96-98% из воды и содержащие аммиак, азот, угарный газ, метан. В вулканических выбросах всегда в большой концентрации присутствуют соединения металлов - железа, марганца, меди, цинка, никеля и др., которые участвуют в ферментативных реакциях в живых системах. Вулканические пеплы и туфы, как показали многочисленные эксперименты, стимулируют рост и анаэробной, и аэробной микрофлоры. При этом в среду для культивирования даже не обязательно добавлять различные жизненно необходимые элементы - бактерии их сами добудут из нее. В древнейшие времена дополнительный синтез органики мог косвенно способствовать росту жизни на изверженных субстратах. Кроме того, химия аэрозолей - это малоизученная область, поэтому тем более интересен результат аэрозольного синтеза высокомолекулярных биологических молекул. В этом смысле химики и вулканологи могут привнести весомый вклад в обсуждение проблемы зарождения земной жизни.

Авторы сообщения замечают, что версия о восстановительной атмосфере ранней Земли сейчас находится под сомнением. Однако вулканические выбросы и грозы - это постоянное явление на Земле, в древнейшие эпохи интенсивность и того и другого была предположительно выше, чем в современном мире. Поэтому, какой бы ни была атмосфера на архейской и протерозойской Земле, извержения вулканов всегда создают условия для синтеза биологических молекул.

Источники:

1) Adam P. Johnson, H. James Cleaves, Jason P. Dworkin, Daniel P. Glavin, Antonio Lazcano, Jeffrey L. Bada. The Miller Volcanic Spark Discharge Experiment // Science. 17 October 2008. V. 322. P. 404. DOI: 10.1126/science.1161527.
2) Jeffrey L. Bada, Antonio Lazcano. Prebiotic Soup-Revisiting the Miller Experiment // Science. 2 May 2003. V. 300. P. 745–746. DOI: 10.1126/science.1085145.

См. также:
В. Н. Пармон. Новое в теории появления жизни, «Химия и жизнь» №5, 2005.

Первые эксперименты, моделирующие первичную атмосферу Земли, были поставлены в 1953 г. американским ученым Стэнли Миллером (род. в 1930 г.). Его установка представляла собой колбу, внутри которой создавались электрические разряды. В колбе находилась вода и различные газы, предположительно входящие в состав первичной атмосферы (водород, метан, аммиак и др.). Свободный кислород в системе отсутствовал. При нагревании в установке происходила постоянная циркуляция водяного пара и газов. После нескольких дней эксперимента в колбе образовывались простейшие органические соединения: аминокислоты (строительный материал для белков), азотистые основания (компоненты нуклеиновых кислот) и некоторые другие вещества. Их концентрация возрастала по мере убывания исходных компонентов.

Вслед за опытами Миллера последовали другие эксперименты. Варьировался состав исходной смеси, источники энергии, длительность опытов, вводились различные катализаторы. Было показано, что подобные реакции происходят даже при обычном нагревании, при этом среда может быть как водной, так и безводной.

Биогенез

Разнообразие экспериментов позволяет предположить, что неорганический синтез органических соединений мог быть достаточно распространенным явлением в прошлом нашей планеты. При этом в качестве исходной среды для подобных процессов рассматривались различные природные системы. Так, академик А. И. Опарин считал, что такие реакции происходили в морях и океанах и сопровождались увеличением концентрации образующихся органических веществ, при этом водная среда становилась «первичным бульоном», способным к дальнейшей эволюции.

Однако образование органических молекул и их полимеризация являются только началом в длинной цепочке эволюции, которая привела к появлению первых живых клеток, поскольку отдельно взятый белок еще не обладает специфическими свойствами, присущими организму в целом. Поэтому на смену химической эволюции должна была прийти биологическая.

Процесс возникновения и эволюции живых систем называется биогенезом.

Рассмотренный выше неорганический синтез органических соединений является начальной стадией биогенеза.

Последующие этапы эволюции

Согласно гипотезе А. И. Опарина, предками настоящих клеток были протоклеточные структуры, способные к простейшему обмену с окружающей средой. Они образовывались по мере накопления в исходной среде органических молекул. Этот процесс называется коацервацией, т.е. объединением в небольшие комплексы, называемые коацерватами (от латинского coacervus – сгусток). Механизм коацервации связан с поляризованностью молекул многих органических веществ. Взаимодействие нескольких таких молекул приводит к сближению их полярных концов и образованию «коацерватной капли».

Возникающие коацерваты обладали значительно бóльшими возможностями, чем отдельные молекулы, поскольку могли поглощать из окружающей среды другие вещества. Если вещество оказывалось вредным, коацерват распадался, а если оно усваивалось, коацерват увеличивался в размерах и изменял свою структуру. Этому способствовало появление примитивных мембран, роль которых играли липидоподобные соединения. К ним относятся поверхностно-активные вещества, которые в силу полярности своих молекул стремятся образовывать мономолекулярные пленки на поверхности раздела двух сред. Мембраны не только выполняли защитные функции, но и способствовали дальнейшему обособлению коацерватов от окружающей среды и сохранению постоянства своего внутреннего состава.

В ходе химической эволюции коацерваты при увеличении своих размеров приобрели способность распадаться на дочерние капли, сохраняющие особенности и химический состав материнского комплекса. Параллельно шла дифференциация свойств молекул внутри коацерватов: белки оказались способными регулировать ход химических реакций, приводящих к появлению новых органических веществ, а нуклеотидные цепи постепенно приобрели возможность удваиваться по принципу дополнения. Дальнейшая эволюция этих важнейших свойств привела к появлению наследственного генетического кода, несущего информацию о строении белковых молекул. Таким образом, развитие коацерватов привело к появлению первых примитивных прокариотических клеток. Это произошло более 4 млрд. лет назад.

Прокариотические клетки – примитивно устроенные клетки, не имеющие клеточного ядра, генетический материал (ДНК) которых находится прямо в цитоплазме.

Эти клетки типичны для организмов – прокариотов, к которым в настоящее время относятся некоторые бактерии и сине-зеленые водоросли.

Прокариоты были гетеротрофами, т.е. в качестве источника энергии использовали органическое вещество первичного бульона. Они существовали в условиях бескислородной атмосферы, поэтому их метаболизм был анаэробным.

Анаэробный метаболизм – обмен веществ и энергии, протекающий в отсутствие атмосферного кислорода.

Постепенно запасы органических веществ, необходимых для питания, истощались, и у некоторых клеток возникла способность использовать солнечную энергию для синтеза органических веществ из неорганических соединений углерода. Так появились автотрофы – организмы, способные к фотосинтезу.

Фотосинтез – процесс преобразования солнечной энергии в энергию химических связей органических веществ.

Источником углерода, входящего в состав органических молекул, служит углекислый газ. В качестве источника водорода зеленые растения используют воду, при разложении которой в атмосферу выделяется кислород.

Сначала фотосинтез шел без образования молекулярного кислорода. В ходе дальнейшей эволюции организмы стали выделять кислород. Это произошло около 4 млрд. лет назад.

Обогащение атмосферы свободным кислородом привело со временем к образованию озона, поглощающего коротковолновое ультрафиолетовое излучение, опасное для живых организмов. Кроме того, возник аэробный способ метаболизма – дыхание, при котором расщепление органических веществ происходит с участием кислорода. Он характерен для большинства современных растений, животных и микроорганизмов. Энергетический выход таких реакций в несколько раз больше, чем в реакциях брожения (например, расщепление глюкозы при брожении дает энергию 50 кал/моль, а при дыхании – 686 кал/моль).

В дальнейшем происходило усложнение клеточного строения и около 2 млрд. лет назад появились первые эукариотические клетки.

Эукариотические клетки – сложные клетки, имеющие ядро и большое число внутриклеточных структур (митохондрии, хлоропласты и пр.).

Эукариотические клетки характерны для организмов – эукариотов, к которым относится большинство современных форм жизни.

Был предложен механизм возникновения эукариотов на основе симбиоза гетеротрофной анаэробной клетки и клетки, способной к дыханию. Затем, к поверхности клетки присоединилась жгутикоподобная бактерия, что привело к увеличению подвижности организма, предка современных жгутиковых простейших. Это были первые животные клетки.

Следующим эволюционным шагом в развитии организмов стало появление многоклеточных форм жизни примерно 1,3 млрд. лет назад. По мнению известного русского биолога И. И. Мечникова (1845 – 1916), первые многоклеточные произошли от колониальных простейших – жгутиковых. В некоторых таких колониях реализуется примитивное функциональное разделение клеток (клетки, поглощающие добычу и клетки, отвечающие за размножение), но при этом каждая клетка является отдельной особью. В процессе своего развития отдельные виды колоний одноклеточных простейших превратились в примитивные, но целостные организмы.

Эксперимент Миллера - Юри - известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера - Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот. Однако более точный повторный анализ, опубликованный в 2008 году, показал, что эксперимент привёл к образованию 22 аминокислот.

Описание эксперимента

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH 4), аммиака (NH 3), водорода (H 2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10-15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара, липиды и предшественники нуклеиновых кислот. Эксперимент повторялся несколько раз в 1953-1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

Миллер и Юри основывались в своих экспериментах на представлениях 1950-х годов о возможном составе земной атмосферы. После их экспериментов многие исследователи проводили подобные опыты в различных модификациях. Было показано, что даже небольшие изменения условий процесса и состава газовой смеси (например, добавления азота или кислорода) могли привести к очень существенным изменениям как образующихся органических молекул, так и эффективности самого процесса их синтеза. В настоящее время вопрос о возможном составе первичной земной атмосферы остаётся открытым. Однако, считается, что высокая вулканическая активность того времени способствовала выбросу также таких компонентов как диоксид углерода (CO 2), азот, сероводород (H 2 S), двуокись серы (SO 2).


Критика выводов эксперимента

Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике.

Как становится понятным, одним из основных аргументов критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров, в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован.

Много позже, в 2001 году, Алан Сагательян показал, что самореплицирующиеся пептидные системы в состоянии эффективно усиливать молекулы определённого вращения в рацемической смеси, показав таким образом, что преобладание одного из стереоизомеров могло возникнуть естественным образом. Кроме того, показано, что существует возможность спонтанного возникновения хиральности в обычных химических реакциях, известны также пути синтеза ряда стереоизомеров, в том числе, углеводородов и аминокислот, в присутствии оптически активных катализаторов. Впрочем, непосредственно в данном эксперименте ничего подобного в явном виде не произошло.

Проблему хиральности пытаются решить иными способами, в частности, через теорию занесения органики метеоритами.

Биохимик Роберт Шапиро указал, что аминокислоты, синтезированные Миллером и Юри, значительно менее сложные молекулы, чем нуклеотиды. Самая простая из тех 20 аминокислот, что входят в состав природных белков, имеет всего два углеродных атома, а 17 аминокислот из того же набора - шесть и более. Аминокислоты и другие молекулы, синтезированные Миллером и Юри, содержали не более трех атомов углерода. А нуклеотиды в процессе подобных экспериментов вообще никогда не образовывались.

Эксперимент Миллера-Юри — химический опыт, который смоделировал гипотетические условия, существовавшие на древней Земле, с целью проверки возможности химической эволюции. Эксперимент ставил перед собой цель исследовать идею Александра Опарина и Дж. Б. С. Галдейна о том, что условия на Земле в древнюю эпоху способствовали химическим реакциям, в результате которых органические соединения могли бы образоваться из неорганических исходных веществ. Эксперимент был поставлен в 1952 году Стэнли Миллером и Гарольдом Юри в Чикагском университете. Результаты были опубликованы в 1953 году.

Повторный анализ данных, результаты которого были опубликованы в октябре 2008 года показал, что в приборе синтезируются 22 аминокислоты (оригинальное публикация сообщала о пяти). Результаты эксперимента свидетельствуют в пользу того, что биологические молекулы могут образовываться из простых реагентов.

Опыт и его интерпретация

Исходными веществами для эксперимента были вода, метан, аммиак и водород. Эти химические вещества поместили в герметично запаянную стерильную систему стеклянных колб и трубок, соединенных таким образом, что они образовывали петлю. В одну из колб залили воду, а в другой поместили пару электродов. Колбу с водой подогревали, чтобы жидкость испарялась, между электродами периодически пропускалась искра, которая должна была отвечать молниям. Затем атмосфера снова охлаждалась таки образом, что вода конденсировалась и просачивалась назад в первую колбу, проходя таким образом замкнутый цикл.

После недели непрерывного действия установки Миллер и Ури обнаружили, что 10-15% всего углерода входили в состав органических веществ. Два процента карбона образовали аминокислоты, которые обычно входят в состав белков. Особенно много было глицина. Образовались также сахар, липиды и некоторые составные части нуклеиновых кислот.

Как показали последующие эксперименты в установке образовалась рацемическая смесь лево- и правообертаючих оптически активных изомеров.

Химизм эксперимента

Известно, что сначала в колбах образуется цианид водорода (HCN), формальдегид и другие активные промежуточные соединения (ацетилен, цианоацетилен и т.д.):

(атомарный кислород) (процесс BMA)

Эти соединения в дальнейшем реагируют между собой с образованием аминокислот (синтез Стрекер) и других биомолекул:

(глицин)

Другие эксперименты

Первый эксперимент Миллера и Ури послужил вдохновением для многих других. В 1961 году Хоан Ого обнаружил, что с цианида водорода может образовываться одна из нуклеиновых оснований — аденин. В своем эксперименте он получил большое количество аденина, молекулы которого образовывались из 5-ти молекул HCN. При соответствующих условиях с HCN и аммиака образуется много аминокислот. Дальнейшие эксперименты показали, что в условиях восстановительной атмосферы можно получить и другие нуклеиновые основания.

Одновременно с экспериментом Миллера-Юри проводились также другие связанные с проблемой происхождения жизни эксперименты с электрическими разрядами. Статья в «Нью-Йорк Таймс» от 8 марта 1953 описывала работу Воллмен М. Макневина из Университета штата Огайо. Макневин пропускал искры в 100000 В через смесь метана и водяного пара и получил смолоподобные конденсат, который оказался слишком сложным для анализа. В статье говорилось также о других эксперименты Макневина, связанные с древней Землей. Неизвестно они были опубликованы в научной литературе.

15 декабря 1952 К. А. Уайлд подал статью в журнал «Science», тогда, когда Миллер представил свою 14 февраля 1953-го. Работа Уайльда была опубликована 10 июля 1953. Уайлд использовал напряжения до 600 В, действуя на смесь углекислого газа и воды. Он получил только незначительное восстановление углекислого газа в угарного. Другие исследователи изучали фотолиз водяного пара и монооксида углерода под воздействием ультрафиолета. Было установлено, что в результате образуются спирты, альдегиды и органические кислоты.

Современные эксперименты химика Джефри Бада в Институте океанографии Скриппса были аналогичными поставленных Ури и Миллером. Однако, Бада отметил, что в современных моделях древней атмосферы Земли вугекислий газ и азот образуют нитриды, которые уничтожают аминокислоты как только те образуются. Однако, на древней Земле могла буди достаточно железа и карбонатов в составе минералов, способных нейтрализовать эффект нитридов. Когда Бада провел эксперимент типа Миллерово, добавив в систему железа и карбонатов, продукты реакции были богаты на аминокислоты. Это наводит на мысль, что аминокислоты могли образовываться в атмосфере древней Земли даже в условиях, когда она содержала вугликислий газ и азот.

Атмосфера древней Земли

Важность эксперимента Мюллера-Ури для объяснения происхождения жизни на Земле связана с вопросом о составе земной атмосферы сразу же после образования планеты. По современным представлениям начальная атмосфера Земли была полностью уничтожена в результате сильного метеоритного дождя, который падал примерно 4500000000 лет назад и оставил после себя кратеры. Новая атмосфера Земли сформировалась в результате дегазации земной коры. Первоначальный состав этой новой, вторичной, атмосферы определить трудно, поскольку современная атмосфера является в большой степени продуктом деятельности живых огранизмы. Состав ранней атмосферы экспериментально определяют анализируя древние из земных пород. Точность исследований осложняется тем, что за последние 4 млрд лет даже древние скалы подвергшихся воздействию и изменились, загрязнились вследствие поздних явлений.

Существуют доказательства того, что в состав атмосферы Земли после формирования планеты входило гораздо меньше молекул восстановителей, чем считалось во времена эксперимента Миллера-Юри. Достаточно свидетельств значительных вулканических извержений 4 миллиарда лет назад, что выбрасывали в воздух углекислый газ, азот, сероводород и диоксид серы. Эксперименты с использованием этих газов в дополнение к тем, что использовались в первом опыте Миллера-Юри, дают разнообразный набор молекул. В своих опытах Миллер и Юри получили рацемические смеси, однако в природе доминируют L-изомеры аминокислот. Некоторые позже исследования показали, что возможны непропорционально количества L- и D-энантиомеров.

Первоначально считалось, что вторичная атмосфера Земли содержала в основном аммиак и метан. Однако, вероятно, что основной составляющей атмосферы был углекислый газ, возможно, с некоторыми примесями окиси углерода и азота. Газовые смеси с CO, CO 2, N 2 и т.д., дают результаты похожи на те, в которых используются CH 4, NH 3, если только и не имеет O 2. Источником атомов водорода служит водяной пар. Собственно, для выработки ароматических аминокислот нужно викорстовуваты не особо богатые водород смеси. В вариантах экспериментов Миллера удалось получить большинство аминокислот, гидроксикислот, пиримидинив и сахаров, которые встречаются в природе.

Новые результаты ставят под сомнение эти выводы. В 2005 году университеты Ватерлоо и Колорадо провели моделирование, по которым древняя атмосфера Земли могла содержать до 40% водорода — что означало бы гораздо более благоприятные условия для формирования биологическим органических молекул. Побег водорода с атмосферы Земли могла происходить со скоростью, которая составляет лишь один процент от той, что давали предыдущие оценки. Переоценка основывается на изменении представлений о температуре верхних слоев атмосферы. Один из авторов Оуэн Тун замечает: «При таком сценарии органика могла образоваться в большом количестве в атмосфере древней Земли, снова возвращая нас к уявляння об органической суп в океане … Думаю, что это исследование вновь делает актуальным эксперименты Миллера и других.» Вычисление выделения газов из земных пород с использованием хордритовои модели ранней Земли дополняют результаты Ватерлоо / Колорадо.

Однако, если в смеси добавить кислород, то никаких ограничних молекул не образуется. Оппоненты гипотезы Миллера-Юри находят поддержку в недавних исследованиях, которые указывают на присутствие урана в осадочных породах возрастом в 3700000000 лет, и отмечают, что они попали туда потоком богатой кислородом воды. Иначе они выпали бы из раствора. Таким образом, делается вывод, что присутствие кислорода помешала бы образованию к биологической органики с абиогенетичним сценарию Миллера-Юри. Однако, авторы работы утверждают, что присутствие кислорода является свидетельством существования фотосинтеза в живых организмах 3700000000 лет назад (примерно на 200 млн лет, чем считалось ранее). Этот вывод только отодвигает во времени период, когда мог произойти абиогенезис, но не могут его совсем исключить.

Условия, аналогичные тем, что использовались в эксперименте Миллера-Юри, существуют на других небесных телах Солнечной системы. Часто роль молний можно приписать ультрафиолетовому излучению. Мерчисонський меторит, упавшего в 1969 году вблизи города Мерчисон в Австралии, имел в своем составе более 90 различных аминокислот, девятнадцать из которых встречаются в живых организмах. Считается, что кометы и другие ледяные внеземные тела содержат немало сложных соединений углерода, таких как Толине. Поскольку на ранних стадиях своей истории Земли пришлось пережить падение большого числа метеоритов, то на ее поверхность могло попасть немало органики вместе с водой и другими составляющими атмосферы. Такие рассуждения приводят сторонники гипотезы панспермии, которая считает, что жизнь зародилась за пределами Земли.

Видео по теме

Изображения по теме

О том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри . Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера - Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот . Однако, более точный повторный анализ, опубликованный в 2008 году , показал, что эксперимент привёл к образованию 22 аминокислот.

Описание эксперимента

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH 4), аммиака (NH 3), водорода (H 2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10-15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара , липиды и предшественники нуклеиновых кислот . Эксперимент повторялся несколько раз в 1953-1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada ) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

Критика выводов эксперимента

Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике. Основным аргументом критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров , в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован.

См. также

Примечания

Литература

  • MILLER SL (May 1953). «A production of amino acids under possible primitive earth conditions ». Science (New York, N.Y.) 117 (3046): 528–9. PMID 13056598 .
  • MILLER SL, UREY HC (July 1959). «Organic compound synthesis on the primitive earth ». Science (New York, N.Y.) 130 (3370): 245–51. PMID 13668555 .
  • Lazcano A, Bada JL (June 2003). «The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry ». Origins of life and evolution of the biosphere: the journal of the International Society for the Study of the Origin of Life 33 (3): 235–42. PMID 14515862 .
  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (October 2008). «The Miller volcanic spark discharge experiment». Science (New York, N.Y.) 322 (5900): 404. DOI :10.1126/science.1161527 . PMID 18927386 .

Ссылки

  • Получены новые результаты старого эксперимента Стэнли Миллера
  • A Production of Amino Acids Under Possible Primitive Earth Conditions by Stanley L. Miller
  • A simulation of the Miller–Urey Experiment along with a video Interview with Stanley Miller by Scott Ellis from CalSpace (UCSD)
  • Origin-Of-Life Chemistry Revisited: Reanalysis of famous spark-discharge experiments reveals a richer collection of amino acids were formed
  • Сотворение мира: молекулы жизни из молекул смерти - Статья проф. Л. А. Громова

Wikimedia Foundation . 2010 .

Смотреть что такое "Эксперимент Миллера - Юри" в других словарях:

    Схема эксперимента. Эксперимент Миллера Юри известный классический эксперимент, в котором симулировались гипотетические условия раннего периода … Википедия

    Схема эксперимента. Эксперимент Миллера Юри известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест … Википедия



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта