Главная » 1 Описание » Физика масса тела открытие теории. Зарождение и развитие физики как науки

Физика масса тела открытие теории. Зарождение и развитие физики как науки

Хотя история физики как самостоятельной науки началась только в XVII веке, ее истоки относятся к самой глубокой древности, когда люди начали систематизировать первые свои знания об окружающем их мире. До Нового времени они относились к натуральной философии и включали в себя сведения о механике, астрономии и физиологии. Настоящая же история физики началась благодаря опытам Галилея и его учеников. Также фундамент этой дисциплины был заложен Ньютоном.

В XVIII и XIX столетии появились ключевые понятия: энергия, масса, атомы, импульс и т. д. В XX веке стала ясной ограниченность классической физики (помимо нее, зародилась квантовая физика, теория относительности, теория микрочастиц и т. д.). Естественнонаучные знания дополняются и сегодня, так как перед исследователями остается множество нерешенных проблем и вопросов о природе нашего мира и всей вселенной.

Древность

Многие языческие религии Древнего мира основывались на астрологии и знаниях звездочетов. Благодаря их исследованиям ночного неба произошло становление оптики. Накопление астрономических знаний не могло не повлиять на развитие математики. Однако теоретически объяснить причины природных явлений древние не могли. Жрецы приписывали молнии и солнечные затмения божественному гневу, что не имело ничего общего с наукой.

В то же время в Древнем Египте научились измерять длину, вес и угол. Эти знания были необходимы архитекторам при строительстве монументальных пирамид и храмов. Развивалась прикладная механика. Сильны в ней были и вавилоняне. Они же, основываясь на своих астрономических знаниях, стали использовать сутки для измерения времени.

Древнекитайская история физики началась в VII веке до н. э. Накопленный опыт в ремеслах и строительстве был подвергнут научному анализу, результаты которого были изложены в философских сочинениях. Самым известным их автором считается Мо-цзы, живший в IV столетии до н. э. Он предпринял первую попытку сформулировать основополагающий закон инерции. Уже тогда китайцы первыми изобрели компас. Они открыли законы геометрической оптики и знали о существовании камеры-обскуры. В Поднебесной появились зачатки теории музыки и акустики, о которых еще долгое время не подозревали на Западе.

Античность

Античная история физики больше всего известна благодаря греческим философам. Их исследования основывались на геометрических и алгебраических познаниях. Например, пифагорейцы первыми объявили о том, что природа подчиняется универсальным законам математики. Эту закономерность греки видели в оптике, астрономии, музыке, механике и других дисциплинах.

История развития физики с трудом представляется без трудов Аристотеля, Платона, Архимеда, Лукреция Кара и Герона. Их сочинения сохранились до наших времен в достаточно целостном виде. Греческие философы отличались от современников из других стран тем, что они объясняли физические законы не мифическими понятиями, а строго с научной точки зрения. В то же время у эллинов случались и крупные ошибки. К ним можно отнести механику Аристотеля. История развития физики как науки многим обязана мыслителям Эллады уже хотя бы тем, что их натурфилософия оставалась основой международной науки до XVII столетия.

Вклад александрийских греков

Демокрит сформулировал теорию атомов, согласно которой все тела состоят из неделимых и крохотных частиц. Эмпедокл предложил закон сохранения материи. Архимед заложил основы гидростатики и механики, изложив теорию рычага и подсчитав величину выталкивающей силы жидкости. Он же стал автором термина «центр тяжести».

Александрийский грек Герон считается одним из величайших инженеров в человеческой истории. Он создал паровую турбину, обобщил знания об упругости воздуха и сжимаемости газов. История развития физики и оптики продолжилась благодаря Евклиду, исследовавшему теорию зеркал и законы перспективы.

Средневековье

После падения Римской империи настал крах античной цивилизации. Многие знания были преданы забвению. Европа почти на тысячу лет остановилась в своем научном развитии. Храмами знаний стали христианские монастыри, которым удалось сохранить некоторые сочинения прошлого. Однако прогресс тормозила сама церковь. Она подчинила философию богословской доктрине. Мыслители, пытавшиеся выйти за ее пределы объявлялись еретиками и жестоко наказывались инквизицией.

На этом фоне первенство в естественных науках перешло к мусульманам. История возникновения физики у арабов связана с переводом на их язык трудов античных греческих ученых. На их основе мыслители востока сделали несколько собственных важных открытий. К примеру, изобретатель Аль-Джазири описал первый коленчатый вал.

Европейский застой продлился вплоть до Ренессанса. За Средние века в Старом Свете изобрели очки и объяснили возникновение радуги. Немецкий философ XV века Николай Кузанский первым предположил, что Вселенная бесконечна, и тем самым далеко опередил свое время. Через несколько десятилетий Леонардо да Винчи стал первооткрывателем явления капиллярности и закона трения. Также он пытался создать вечный двигатель, но не справившись с этой задачей, начал теоретически доказывать неосуществимость подобного проекта.

Ренессанс

В 1543 году польский астроном Николай Коперник опубликовал главный труд всей своей жизни «О вращении небесных тел». В этой книге впервые в христианском Старом Свете была произведена попытка защитить гелиоцентрическую модель мира, согласно которой Земля крутится вокруг Солнца, а не наоборот, как предполагала принятая церковью геоцентрическая модель Птолемея. Многие ученые физики и их открытия претендуют на звание великих, однако именно появление книги «О вращении небесных тел» считается началом научной революции, за которой последовало возникновение не только современной физики, но и современной науки в целом.

Другой знаменитый ученый Нового времени Галилео Галилей больше всего прославился изобретением телескопа (также ему принадлежит изобретение термометра). Кроме того, он сформулировал закон инерции и принцип относительности. Благодаря открытиям Галилея зародилась совершенно новая механика. Без него история изучения физики застопорилась бы еще на долгое время. Галилею, как и многим его широко мыслившим современникам, пришлось сопротивляться давлению церкви, из последних сил пытавшейся защитить старый порядок.

XVII столетие

Набравший ход рост интереса к науке продолжился и в XVII веке. Немецкий механик и математик стал первооткрывателем в Солнечной системе Свои взгляды он изложил в книге «Новая астрономия», изданной в 1609 году. Кеплер оппонировал Птолемею, заключив, что планеты движутся по эллипсам, а не по окружностям, как считалось еще в античности. Этот же ученый внес значительный вклад в развитие оптики. Он исследовал дальнозоркость и близорукость, выяснив физиологические функции хрусталика глаза. Кеплер ввел понятия оптической оси и фокуса, сформулировал теорию линз.

Француз Рене Декарт создал новую научную дисциплину - аналитическую геометрию. Также он предложил Главным трудом Декарта стала книга «Начала философии», изданная в 1644 году.

Немногие ученые-физики и их открытия известны так, как англичанин Исаак Ньютон. В 1687 году он написал революционную книгу «Математические начала натуральной философии». В ней исследователь изложил закон всемирного тяготения и три закона механики (также ставшие известными как Этот ученый работал над теорией цвета, оптикой, интегральными и дифференциальными исчислениями. История физики, история законов механики - все это тесно связано с открытиями Ньютона.

Новые рубежи

XVIII век подарил науке множество выдающихся имен. Особенно выделяется среди них Леонард Эйлер. Этот швейцарский механик и математик написал более 800 работ по физике и таким разделам, как математический анализ, небесная механика, оптика, теория музыки, баллистика и т. д. Петербургская академия наук признала его своим академиком, из-за чего Эйлер значительную часть жизни провел в России. Именно этот исследователь положил начало аналитической механике.

Интересно что история предмета физика сложилась такой, какой мы ее знаем, благодаря не только профессиональным ученым, но и исследователям-любителям, гораздо больше известным в совершенно другом качестве. Самым ярким примером такого самоучки стал американский политик Бенджамин Франклин. Он изобрел громоотвод, внес большой вклад в изучение электричества и сделал предположение о его связи с явлением магнетизма.

В конце XVIII столетия итальянец Алессандро Вольта создал «вольтов столб». Его изобретение стало первой электрической батарей в истории человечества. Этот век также ознаменовался появлением ртутного термометра, создателем которого был Габриэль Фаренгейт. Другим важным событием изобретательства оказалось изобретение паровой машины, произошедшее в 1784 году. Оно породило новые средства производства и перестройку промышленности.

Прикладные открытия

Если история начала физики развивалась исходя из того, что наука должна была объяснить причину природных явлений, то в XIX веке ситуация значительно изменилась. Теперь у нее появилось новое призвание. От физики стали требовать управления природными силами. В связи с этим стала ускоренно развиваться не только экспериментальная, но и прикладная физика. «Ньютон электричества» Андре-Мари Ампер ввел новое понятие электрического тока. В этой же области работал Майкл Фарадей. Он открыл явление электромагнитной индукции, законы электролиза, диамагнетизм и стал автором таких терминов, как анод, катод, диэлектрик, электролит, парамагнетизм, диамагнетизм и т. д.

Сложились новые разделы науки. Термодинамика, теория упругости, статистическая механика, статистическая физика, радиофизика, теория упругости, сейсмология, метеорология - все они формировали единую современную картину мира.

В XIX столетии возникли новые научные модели и понятия. обосновал закон сохранения энергии, Джеймс Клерк Максвелл предложил собственную электромагнитную теорию. Дмитрий Менделеев стал автором значительно повлиявшей на всю физику периодической системы элементов. Во второй половине века появилась электротехника и двигатель внутреннего сгорания. Они стали плодами прикладной физики, ориентированной на решение определенных технологических задач.

Переосмысление науки

В XX веке история физики, кратко говоря, перешла к тому этапу, когда наступил кризис уже устоявшихся классических теоретических моделей. Старые научные формулы начали противоречить новым данным. К примеру, исследователи выяснили, что скорость света не зависит от, казалось бы, незыблемой системы отсчета. На рубеже столетий были открыты требовавшие подробного объяснения явления: электроны, радиоактивность, рентгеновские лучи.

Вследствие накопившихся загадок произошел пересмотр старой классической физики. Ключевым событием в этой очередной научной революции стало обоснование теории относительности. Ее автором был Альберт Эйнштейн, впервые поведывавший миру о глубинной связи пространства и времени. Возник новый раздел теоретической физики - квантовая физика. В ее становлении приняли участие сразу несколько ученых с мировым именем: Макс Планк, Макс Бон, Пауль Эренфест и другие.

Современные вызовы

Во второй половине XX века история развития физики, хронология которой продолжается и сегодня, перешла на принципиально новый этап. Этот период ознаменовался расцветом исследования космоса. Небывалый скачок сделала астрофизика. Появились космические телескопы, межпланетные зонды, детекторы внеземных излучений. Началось детальное изучение физических данных различных тел Солнечной планеты. С помощью современной техники ученые обнаружили экзопланеты и новые светила, в том числе радиогалактики, пульсары и квазары.

Космос продолжает таить в себе множество неразгаданных загадок. Изучаются гравитационные волны, темная энергия, темная материя, ускорение расширения Вселенной и ее структура. Дополняется теория Большого взрыва. Данные, которые можно получить в земных условиях, несоизмеримо малы по сравнению с тем, сколько работы у ученых есть в космосе.

Ключевые проблемы, стоящие перед физиками сегодня, включают в себя несколько фундаментальных вызовов: разработку квантового варианта гравитационной теории, обобщение квантовой механики, объединение в одну теорию всех известных сил взаимодействия, поиск «тонкой настройки Вселенной», а также точное определение явления темной энергии и темной материи.

Зарождение и развитие физики как науки. Физика - одна из древнейших наук о природе. Первыми физиками были греческие мыслители, которые предприняли попытку объяснить наблюдаемые явления природы. Величайшим из древних мыслителей был Аристотель (384-322 pp. До н. Н.э.), который ввел слово «<{> vai ?,» («фюзис»)

Что в переводе с греческого означает природа. Но не подумайте, что "Физика" Аристотеля хоть как-то похожа на современные учебники по физике. Нет! В ней вы не найдете ни одного описания опыта или прибора, ни рисунка или чертежа, ни одной формулы. В ней - философские размышления о вещах, о времени, о движении вообще. Такими же были все труды ученых-мыслителей античного периода. Вот как римский поэт Лукреций (ок. 99-55 pp. До н. Н.э.) описывает в философской поэме «О природе вещей» движение пылинок в солнечном луче: От древнегреческого философа Фалеса (624-547 pp. До н. Э) берут начало наши знания по электричеству и магнетизму, Демокрит (460-370 pp. до н. э) является основоположником учения о строении вещества, именно он предположил, что все тела состоят из мельчайших частиц - атомов, Евклиду (III в. до н. н.э.) принадлежат важные исследования в области оптики - он впервые сформулировал основные законы геометрической оптики (закон прямолинейного распространения света и закон отражения), описал действие плоских и сферических зеркал.

Среди выдающихся ученых и изобретателей этого периода первое место занимает Архимед (287-212 pp. До н. Н.э.). Из его работ «О равновесии плоскостей», «О плавающих телах», «О рычаги» начинают свое развитие такие разделы физики, как механика, гидростатика. Яркий инженерный талант Архимеда проявился в сконструированных им механических устройствах.

С середины XVI в. наступает качественно новый этап развития физики - в физике начинают применять эксперименты и опыты. Одним из первых является опыт Галилея с бросания ядра и пули с Пизанской башни. Этот опыт стал знаменитым, поскольку его считают «днем рождения» физики как экспериментальной науки.

Мощным толчком к формированию физики как науки стали научные труды Исаака Ньютона. В работе «Математические начала натуральной философии» (1684 г.) он разрабатывает математический аппарат для объяснения и описания физических явлений. На сформулированных им законах было построено так называемое классическое (Ньют-новский) механику.

Быстрый прогресс в изучении природы, открытие новых явлений и законов природы способствовали развитию общества. Начиная с конца XVIII в., Развитие физики вызывает бурное развитие техники. В это время появляются и совершенствуются паровые машины. В связи с широким их использованием в производстве и на транспорте этот период времени называют «возрастом пары». Одновременно углубленно изучаются тепловые процессы, в физике выделяется новый раздел - термодинамика. Наибольший вклад в исследовании тепловых явлений принадлежит С. Карно, Р. Клаузиуса, Д. Джоуля, Д. Менделеев, Д. Кельвину и многим другим.

Ладченко Наталья 10 класс МАОУ СОШ №11 г Калининграда 2013г

Реферат по физике

Скачать:

Предварительный просмотр:

Аннотация.

Реферат «Случайное открытие».
Номинация «Удивительное рядом».

10 «А» класс МАОУ СОШ №11

В данном реферате мы широко раскрыли тему, затрагивающую законы и открытия, в частности случайные открытия в физике, их связь с будущим человека. Данная тема показалась нам очень интересной, потому что случайности, которые привели к великим открытиям ученых, происходят и с нами каждый день.
Мы показали, что законы, в том числе законы физики играют крайне важную роль в природе. И выделили важным то, что законы природы делают нашу Вселенную познаваемой, подвластной силе человеческого разума.

Также рассказали о том, что такое открытие и постарались более конкретно расписать классификацию открытий физики.

Затем, расписали все открытия с указанием примеров.

Остановясь на случайных открытиях, мы более конкретно рассказали о значении их в жизни человечества, об их истории и авторах.
Чтобы вы получили более полную картину того, как случались непредугаданные открытия и что они значат сейчас, мы обратились к легендам, опровержениям открытий, к поэзии и биографии авторов.

На сегодняшний день, при изучении физики эта тема является актуальной и любопытной для исследования. В ходе исследования случайностей открытий, стало ясно, что иногда прорывом в науке мы обязаны ошибке, вкравшейся в расчеты и научные эксперименты, или не самым приятным чертам характера ученых, например, небрежности и неаккуратности. Так или нет, судить вам после прочтения работы.

Муниципальное автономное общеобразовательное учреждение города Калининграда средняя общеобразовательная школа №11.

Реферат по физике:

«Случайные открытия в физике»

В номинации «Удивительное рядом»

Ученицы 10 «А» класса.
Руководитель: Бибикова И.Н.

2012 год

Введение………………………………………………………....3 стр.

Классификация открытий………………………………….....3 стр.

Случайные открытия………………………………………..... 5 стр.

Закон всемирного тяготения………………………………… 5 стр.

Закон плавучести тел…………………………………………..11 стр.

Животное электричество……………………………………...15 стр.

Броуновское движение…………………………………………17 стр.

Радиоактивность……………………………………………….18 стр.

Непредугаданные открытия в повседневной жизни………20 стр.

Микроволновая печь……………………………………………22 стр.

Приложение………………………………………………………24 стр.

Список используемой литературы……………………………25 стр.

Законы природы - скелет вселенной. Они служат ей опорой, придают форму, связывают воедино. Все вместе они воплощают в себе умопомрачительную и величественную картину нашего мира. Однако важнее всего, наверное, то, что законы природы делают нашу Вселенную познаваемой, подвластной силе человеческого разума. В эпоху, когда мы перестаем верить в свою способность управлять окружающими нас вещами, они напоминают, что даже самые сложные системы повинуются простым законам, понятным обычному человеку.
Круг объектов во вселенной невероятно широк – от звезд, в тридцать раз превосходящих массой солнце, до микроорганизмов, которые нельзя рассмотреть невооруженным глазом. Эти объекты и их взаимодействия составляют то, что мы называем материальным миром. В принципе, каждый объект мог бы существовать по своему собственному набору законов, но такая Вселенная была бы хаотичной и трудной для понимания, хотя с точки зрения логики это возможно. А то, что мы живем не в такой хаотичной вселенной, стало в большей степени следствием существования законов природы.

Но как появляются законы? Что приводит человека к осознанию новой закономерности, к созданию нового изобретения, к обнаружению чего-то абсолютно до этого незнакомого, и т.д.? Определенно, это открытие. Открытие может совершиться в процессе наблюдения природы - первого шага к науке, в ходе эксперимента, опыта, расчетов, или даже…случайно! Мы начнем с того, что такое открытие.

Открытие-установление неизвестных ранее объективно существующих закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познания. Открытием признается научное положение, представляющее собой решение познавательной задачи и обладающее новизной в мировом масштабе. От открытия следует отличать научные догадки и гипотезы. Открытием не признается установление единичного факта (тоже иногда именуемого открытием), в том числе географического, археологического, палеонтологического, месторождения полезных ископаемых, а также положения в области общественных наук.

Классификация научных открытий .
Открытия бывают:

Повторные (в т.ч. одновременные).

Предугаданные.

Непредугаданные (случайные).

Преждевременные.

Запаздывающие.

К сожалению, данная классификация не включает один очень важный раздел – ошибки, ставшие открытиями.

Есть определенная категория предугаданных открытий. Их появление связано с высокой прогностической силы новой парадигмы, которую использовали для своих прогнозов те, кто их делал. К предугаданным открытиям относятся открытие спутников Урана, открытие инертных газов, исходя из предсказаний периодической таблицы элементов, разработанной Менделеевым, он их предсказал исходя из периодического закона. К этой же категории относится открытие Плутона, открытие радиоволн на основе предсказания Максвелла о существовании другой волны.

С другой стороны существуют очень интересные непредугаданные , или как их еще называют случайные открытия. Их описание стало полной неожиданностью для научного сообщества. Это открытие рентгеновских лучей, электрического тока, электрона... Открытие А. Беккерелем в 1896 году радиоактивности не могло быть предвидено, т.к. доминировала непреложная истина о неделимости атома.


Наконец, выделяют так называемые запаздывающие открытия, они не были реализованы по случайной причине, хотя научное сообщество было готово это сделать. Причиной может быть запаздывание теоретического обоснования. Подзорные трубы употреблялись уже в 13 веке, но потребовалось 4 столетия, чтобы вместо одной пары стекол использовать сразу 4 пары и таким образом создать телескоп.
Запаздывание связано с характерами технического свойства. Так, первый лазер заработал только в 1960 году, хотя теоретически лазеры могли быть созданы непосредственно после появления работы Эйнштейна о квантовой теории индуцированного излучения.
Броуновское движение очень запоздалое открытие. Оно было сделано с помошью лупы, хотя прошло уже 200 лет как был изобретен микроскоп 1608 год.

Кроме вышеперечисленных открытий существуют открытия повторные. В истории науки большинство фундаментальных открытий, связанных с решением фундаментальных проблем делалось несколькими учеными, которые работая в разных странах, приходили к одинаковым результатам. В науковедении повторные открытия изучаются. Р. Мертоном и Е. Барбером. Они проанализировали 264 исторически зафиксированных случаев повторных открытий. Большая часть 179 составляет двоичные, 51 троичные, 17 четверичные, 6 пятеричные, 8 шестеричные.

Особенный интерес представляют случаи одновременных открытий, т.е тех случаев, когда первооткрывателей разделяли буквально часы. К ним можно отнести Теорию естественного отбора Чарльза Дарвина и Уоллеса.

Преждевременные открытия. Такие открытия происходят, когда научное сообщество оказывается неподготовлено к принятию данного открытия и отрицает его или не замечает. Без понимания открытия научным сообществом оно не может быть использовано в прикладных исследованиях, а потом в технологии. К ним относятся кислород, теория Менделя.

Случайные открытия.

Из исторических данных становится понятно: одни открытия и изобретения являются результатом кропотливого труда, причем сразу нескольких ученных, другие научные открытия были сделаны совершенно случайно, или наоборот гипотезы открытий хранились многие годы.
Если говорить о случайных открытиях, достаточно вспомнить всем известное яблоко, упавшее на светлую голову Ньютона, после чего он открыл всемирное тяготение. Архимеда ванна натолкнула на открытие закона относительно выталкивающей силы погруженных в жидкость тел. А Александр Флеминг, случайно натолкнувшийся на плесень, разработал пенициллин. Бывает и так, что прорывом в науке мы обязаны ошибке, вкравшейся в расчеты и научные эксперименты, или не самым приятным чертам характера ученых, например, небрежности и неаккуратности.

В жизни людей имеет место множество случайностей, которые они используют, получают определенное удовольствие и даже не предполагают, что за эту радость благодарить необходимо его Величество случай.

Остановимся на теме, затрагивающей случайные открытия в области физики. Мы провели небольшое исследование открытий, которые в некоторой степени изменили нашу жизнь, как, например, закон Архимеда, микроволновая печь, радиоактивность, рентгеновские лучи, и многие другие. Не стоит забывать, что эти открытия не были запланированы. Таких случайных открытий огромное множество. Как происходит такое открытие? Какими умениями и знаниями нужно обладать? Либо внимание к деталям и любознательность есть ключи к успеху? Чтобы ответить на эти вопросы, мы решили ознакомиться с историей случайных открытий. Они оказались захватывающими и познавательными.

Начнем с наиболее известного непредугаданного открытия.

Закон всемирного тяготения .
Когда мы слышим словосочетание «случайное открытие» большинству из нас в голову приходит одна и та же мысль. Конечно же, нам вспоминается всем известное
яблоко Ньютона.
Точнее сказать, известный рассказ о том, что однажды, гуляя в саду, Ньютон увидел, как с ветки упало яблоко, (или яблоко упало на голову ученому) и это подтолкнуло его к открытию закона всемирного тяготения.

Рассказ этот имеет любопытную историю. Неудивительно, что многие историки науки и учёные пытались установить, соответствует ли она истине. Ведь для многих это кажется просто мифом. Даже на сегодняшний день, со всеми новейшими технологиями и способностями в области науки трудно судить о степени достоверности этой истории. Попробуем рассуждать о том, что в этой случайности все-таки имеет место быть подготовленным мыслям ученого.
Не сложно предположить, что и до Ньютона яблоки падали на головы огромного числа людей, и от этого они получили только лишь шишки. Ведь никто из них не задумался, отчего же яблоки падают на землю, притягиваются к ней. Или задумывался, но не доводил своих размышлений до логичного конца. На мой взгляд, Ньютон открыл важный закон, во-первых, потому, что он был Ньютоном, а во-вторых, потому что он постоянно думал о том, какие силы заставляют двигаться небесные тела, и в то же время находиться в равновесии.
Один из предшественников Ньютона в области физики и математики Блез Паскаль высказал мысль, что случайные открытия делают только подготовленные люди. Можно с уверенностью рассуждать, что человек, чья голова не занята решением никакой задачи или проблемы, врядли сделает в ней случайное открытие. Возможно, Исаак Ньютон, будь он простым фермером и семьянином, не стал бы размышлять над тем, почему яблоко упало, а лишь стал свидетелем этого самого не открытого еще закона тяготения, как и многие другие до этого. Возможно, будь он художником, он взял бы кисть и написал картину. Но он был физиком, и искал ответы на свои вопросы. Поэтому открыл закон. Остановясь на этом, можно сделать вывод, что случай, который также называют удачей или везением, приходит только к тому, кто его ищет и кто постоянно готов максимально использовать выпавший ему шанс.

Обратим внимание на доказательство этого случая, и сторонников такой идеи.

С. И. Вавилов в превосходной биографии Ньютона пишет, что рассказ этот, по-видимому, достоверен и не является легендой. В своих рассуждениях он ссылается на свидетельство Стаклея, близкого знакомого Ньютона.
Вот что рассказывает в "Воспоминаниях о жизни Исаака Ньютона" его друг Уильям Стекли, посетивший Ньютона 15 апреля 1725 г. в Лондоне: "Так как стояла жара, мы пили послеобеденный чай в саду, в тени раскидистых яблонь. Были только мы вдвоём. Между прочим он (Ньютон) сказал мне, что в такой же точно обстановке ему впервые пришла в голову мысль о тяготении. Она была вызвана падением яблока, когда он сидел, погрузившись в думы. Почему яблоко всегда падает отвесно, подумал он про себя, почему не в сторону, а всегда к центру Земли. Должна существовать притягательная сила в материи, сосредоточенная в центре Земли. Если материя так тянет другую материю, то должна существовать

пропорциональность её количеству. Поэтому яблоко притягивает Землю так же, как Земля яблоко. Должна, следовательно, существовать сила, подобная той, которую мы называем тяжестью, простирающаяся по всей вселенной».

Очевидно, эти размышления о тяготении относятся к 1665 или к 1666 году, когда из-за вспышки чумы в Лондоне Ньютон вынужден был жить в деревне. В бумагах Ньютона была найдена такая запись по поводу «чумных лет»: «... в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после».

Свидетельство Стаклея было мало кому известно (мемуары Стаклея были напечатаны только в 1936 году), но знаменитый французский писатель Вольтер в книге, изданной в 1738 году и посвящённой первому популярному изложению идей Ньютона, приводит аналогичную историю. При этом он ссылается на свидетельство Катарины Бартон, племянницы и компаньонки Ньютона, прожившей рядом с ним 30 лет. Её муж, Джон Кондуит, работавший ассистентом у Ньютона, писал в своих мемуарах, опираясь на рассказ самого учёного: "В 1666 году Ньютон был вынужден на некоторое время вернуться из Кембриджа в своё поместье Вулсторп, так как в Лондоне была эпидемия чумы. Когда он однажды отдыхал в саду, ему, при виде падающего яблока, пришла в голову мысль, что сила тяжести не ограничена поверхностью Земли, а простирается гораздо дальше. Почему бы и не до Луны? Лишь через 20 лет (в 1687 г.) были опубликованы "Математические начала натуральной философии", где Ньютон доказал, что Луна удерживается на своей орбите той же силой тяготения, под действием которой падают тела на поверхность Земли.

Рассказ этот с высокой скоростью приобрел популярность, однако у многих вызвал сомнения.

Великий русский педагог К. Д. Ушинский, наоборот, увидел в истории с яблоком глубокий смысл. Противопоставляя Ньютона так называемым светским людям, он писал:

«Нужен был гений Ньютона, чтобы вдруг удивиться тому, что яблоко упало на землю. Таким «пошлостям» не удивляются всезнающие люди света. Они даже считают удивления таким обыденным событиям признаком мелкого, детского, не сформированного ещё практического ума, хоть в то же самое время сами часто удивляются уже действительным пошлостям».
В журнале "Современная физика" (англ. "Соntеmроrаrу Physics") за 1998 г. англичанин Кизинг, преподаватель Йоркского университета, увлекающийся историей и философией науки, опубликовал статью "История Ньютоновой яблони". Кизинг придерживается мнения, что легендарная яблоня была единственной в садике Ньютона, и приводит рассказы и рисунки с её изображениями. Легендарное дерево пережило Ньютона почти на сто лет и погибло в 1820 г. во время сильной грозы. Кресло, сделанное из него, хранится в Англии, в частной коллекции. Это открытие, возможно действительно совершившееся в результате случайности, послужило музой для некоторых поэтов.

Советский поэт Кайсын Кулиев передал свою мысль в поэтической форме. Он написал небольшое, мудрое стихотворение «Жить удивляясь»:
«Рождаются великие творенья

Не потому ли, что порою где-то

Обычным удивляются явленьям

Учёные, художники, поэты».

Приведу ещё несколько примеров того, как история с яблоком отразилась в художественной литературе.

Соотечественник Ньютона, великий английский поэт Байрон в своей поэме «Дон Жуан» начинает песнь десятую следующими двумя строфами:
«Случилось яблоку, упавши, прервать

Глубокие Ньютона размышленья,

И говорят (не стану отвечать

За мудрецов догадки и ученья),

Нашёл он в этом способ доказать

Весьма наглядно силу тяготенья.

С паденьем, стало быть, и яблоком лишь он

Был в силах справиться с Адамовых времён.

* * *

От яблок пали мы, но этот плод

Возвысил снова род людской убогий

(Коль верен приведённый эпизод).

Проложенная Ньютоном дорога

Страданий облегчила тяжкий гнёт;

С тех пор открытий сделано уж много,

И, верно, мы к луне когда-нибудь,

(Благодаря парам *), направим путь».

Перевод И. Козлова. В оригинале «паровой машины».

Владимир Алексеевич Солоухин - видный представитель деревенской прозы, в стихотворении «Яблоко» несколько неожиданно написал на ту же тему:

«Я убеждён, что Исаак Ньютон

То яблоко, которое открыло

Ему закон земного тяготенья,

Что он его,

В конечном счёте, - съел».

Наконец, Марк Твен придал всему эпизоду юмористическую окраску. В рассказе «Когда я служил секретарём» он пишет:

«Что есть слава? Порождение случая! Сэр Исаак Ньютон открыл, что яблоки падают на землю, - честное слово, такие пустяковые открытия делали до него миллионы людей. Но у Ньютона были влиятельные родители, и они раздули этот банальный случай в чрезвычайное событие, а простаки подхватили их крик. И вот в одно мгновение Ньютон стал знаменит».
Как было написано выше, этот случай имел и имеет много противников, которые не верят тому, что яблоко привело ученого к открытию закона. У многих такая гипотеза вызвала сомнения. После издания книги Вольтера, в 1738 году, посвящённой первому популярному изложению идей Ньютона, посыпались споры, так ли все было на самом деле? Считалось, что это очередная выдумка Вольтера, слывшего одним из самых остроумных людей своего времени. Нашлись люди, у которых этот рассказ вызвал даже возмущение. К числу последних принадлежал великий математик Гаусс. Он говорил:

«История с яблоком слишком проста; упало ли яблоко или нет - это всё равно; но не понимаю, как можно предполагать, что этот случай мог ускорить или замедлить такое открытие. Вероятно, дело было так: однажды к Ньютону пришёл глупый и нахальный человек и спрашивал его, каким образом он мог дойти до такого великого открытия. Ньютон, увидев, какого рода существо стоит перед ним, и желая от него отвязаться, отвечал, что ему упало на нос яблоко, и это совершенно удовлетворило любознательность того господина».

Вот еще одно опровержение данного случая историками, для которых разрыв между датой падения яблока, и открытием самого закона подозрительно растянулась.
На Ньютона упало яблоко.

Скорее это выдумка, - уверен историк. - Хотя после воспоминаний друга Ньютона Стекелея, рассказавшего якобы со слов самого Ньютона, что на закон всемирного тяготения его натолкнуло упавшее с яблони яблоко, это дерево в саду ученого почти столетие было музейным экспонатом. Но еще один друг Ньютона Пембертон сомневался в возможности такого события. Согласно легенде событие с падающим яблоком произошло в 1666 году. Однако свой закон Ньютон открыл значительно позже.

Биографы великого физика утверждают: если на гения и упал плод, то только в 1726 году, когда ему уже было 84 года, то есть за год до смерти. Один из его биографов, Ричард Уэстфол, замечает: «Сама по себе дата еще не опровергает правдивости эпизода. Но, учитывая возраст Ньютона, как-то сомнительно, чтобы он отчетливо помнил сделанные тогда выводы, тем более что в своих сочинениях он представил совсем другую историю».

Сказку о падающем яблоке он сочинил для своей любимой племянницы Катерины Кондуит, чтобы популярно изложить девушке суть закона, который сделал его знаменитым. Для заносчивого физика Катерина была единственной в семье, к кому он относился с теплотой, и единственная женщина, к которой он когда-либо приближался (по мнению биографов, ученый никогда не знал физической близости с женщиной). Даже Вольтер писал: «В юности я думал, что Ньютон обязан своими успехами собственным заслугам… Ничего подобного: флюксии (используются в решении уравнений) и всемирное тяготение были бы бесполезны без этой прелестной племянницы».

Так падало ли ему на голову яблоко? Возможно, свою легенду Ньютон рассказал племяннице Вольтера в качестве сказки, та передала ее своему дяде, а уж в словах самого Вольтера никто сомневаться не собирался, его авторитет был достаточно высок.

Еще одна догадка по этому поводу звучит так:За год до своей смерти Исаак Ньютон стал рассказывать своим друзьям и родственникам анекдотическую историю о яблоке. Всерьёз её никто не воспринимал, кроме племянницы Ньютона Катерины Кондуит, которая и распространила этот миф.
Сложно понять, был ли это миф или анекдотическая история племянницы Ньютона, или действительно вероятная последовательность событий, которые привели физика к открытию закона всемирного тяготения. Жизнь Ньютона, история его открытий стали предметом пристального внимания ученых и историков. Однако в биографиях Ньютона много противоречий; вероятно, это связано с тем, что сам Ньютон был весьма скрытным человеком и даже подозрительным. И не так уж часты были в его жизни моменты, когда он приоткрывал свое истинное лицо, свой строй мыслей, свои страсти. Ученые до сих пор пытаются по сохранившимся бумагам, письмам, воспоминаниям воссоздать его жизнь и, что самое главное, его творчество, но, как заметил один из английских исследователей творчества Ньютона, «это в значительной мере работа детектива».

Возможно, скрытность Ньютона, его нежелание пускать посторонних в свою творческую лабораторию и дали толчок к возникновению легенды о падающем яблоке. Однако, исходя из предложенных материалов, можно все-таки сделать следующие заключения:

Что в истории с яблоком было несомненно?
То, что после окончания колледжа и получения степени бакалавра Ньютон осенью 1665 года уехал из Кембриджа к себе домой в Вулсторп. Причина? Эпидемия чумы, охватившая Англию, – в деревне все-таки меньше шансов заразиться. Сейчас трудно судить, насколько необходима была эта мера с медицинской точки зрения; во всяком случае, она была не лишней. Хотя у Ньютона было, по-видимому, прекрасное здоровье – к старости он

сохранил густые волосы, не носил очков и потерял только один зуб, – но кто знает, как сложилась бы история физики, останься Ньютон в городе.

Что еще было? Был несомненно также сад при доме, а в саду – яблоня, и была осень, и в это время года яблоки, как известно, нередко самопроизвольно падают на землю. Была и привычка у Ньютона гулять в саду и размышлять о волновавших его в тот момент проблемах, он сам не скрывал этого: «Я постоянно держу в уме предмет своего исследования и терпеливо жду, пока первый проблеск мало-помалу обратится в полный и блестящий свет». Правда, если считать, что именно в то время его озарил проблеск нового закона (а мы можем теперь так считать: в 1965 году были опубликованы письма Ньютона, в одном из которых он прямо говорит об этом), то на ожидание «полного блестящего света» понадобилось довольно много времени – целых двадцать лет. Потому что опубликован закон всемирного тяготения был только в 1687 году. Причем интересно, что и эта публикация была сделана не по инициативе Ньютона, его буквально заставил изложить свои взгляды коллега по Королевскому обществу Эдмонд Галлей, один из самых молодых и одаренных «виртуозов» – так в то время называли людей, «изощрявшихся в науках». Под его давлением Ньютон и начал писать свои знаменитые «Математические начала натуральной философии». Сначала он отправил Галлею сравнительно небольшой трактат «О движении».Так что, возможно, не заставь Галлей изложить Ньютона свои заключения, мир услышал этот закон не через 20 лет а гораздо позже, или же услышал от другого ученого.

Ньютон получил всемирную славу еще при жизни, он понимал, что все созданное им не есть окончательная победа разума над силами природы, ибо познание мира бесконечно. Ньютон умер 20 марта 1727 в возрасте 84 лет. Незадолго перед смертью Ньютон сказал: «Не знаю, чем я могу казаться миру, но сам себе я кажусь только мальчиком, играющим на берегу, развлекающимся тем, что от поры до времени отыскиваю камушек более цветистый, чем обыкновенно, или красивую раковину, в то время как великий океан истины расстилается передо мною неисследованным». ,,.

Закон плавучести тел.

Еще одним примером случайности открытия можем назвать открытие закона Архимеда . Его открытию принадлежит многоизвестное «Эврика!» Но об этом чуть позже. Для начала, остановимся на том, кто такой и чем знаменит Архимед.

Архимед - древнегреческий математик, физик и инженер из Сиракуз. Он сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений. Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его

поразительные изобретения, производившие ошеломляющее действие на современников.

Достаточно лишь мельком взглянуть на «ноу-хау» Архимеда, чтобы понять, насколько этот человек обогнал свое время и во что мог превратиться наш мир, если бы высокие технологии усваивались в античности так же быстро, как и сегодня. Архимед специализировался в математике и геометрии - двух важнейших науках, лежащих в основе технического прогресса. О революционности его исследований говорит тот факт, что историки считают Архимеда одним из трех величайших математиков человечества. (Другие два - Ньютон и Гаусс)

Если нас спросят, какое открытие Архимеда является самым важным, мы начнем перебирать - например, его знаменитое: «Дайте мне точку опоры, и я переверну Землю». Или сожжение римского флота зеркалами. Или определение числа пи. Или основы для интегрального исчисления. Или винт. Но все равно будем не до конца правы. Все открытия и изобретения Архимеда крайне важны для человечества. Потому что они дали мощный импульс для развития математики и физики, особенно ряда отраслей механики. Но вот еще что интересно заметить. Сам Архимед считал своим высшим достижением определение того, как соотносятся объемы цилиндра, шара и конуса. Почему? Он объяснил просто. Потому что это - идеальные фигуры. А нам важно знать соотношения идеальных фигур и их свойства, чтобы принципы, которые заложены в них, внести в наш далеко не идеальный мир.
«Эврика!» Кто из нас не слышал этого знаменитого восклицания? «Эврика!», т. е. нашел, воскликнул Архимед, когда догадался, как узнать подлинность золота короны царя. И этот закон открыли опять-таки по воле случая:
Известен рассказ о том, как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму.

Архимед всё время размышлял над этой задачей. Как-то он принимал ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив, объём вытесненной ею воды. Согласно легенде, Архимед выскочил голый на улицу с криком «Эврика!», т. е. «Нашёл!». И действительно в этот момент был открыт основной закон гидростатики.

Но как он определил качество короны? Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера.

Сейчас закон Архимеда звучит так:

На тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа). Сила называется силой Архимеда.
Но что же послужило причиной этого случайности: сам Архимед, корона, вес золота которой необходимо было определить, или ванная, в которой Архимед? Хотя, это могло быть все вместе. Возможно ли, что Архимеда к открытию привела только случайность? Или в этом замешана сама подготовка ученого в любое время найти решение этого вопроса? Мы можем обратится к выражению Паскаля, что случайные открытия делают только подготовленные люди. Так вот, прими он ванну просто, не думая о короне царя, он наврядли бы обратил внимание, на то, что весом его тела вода вытесняется из ванны. Но на то он был Архимедом, чтобы заметить это. Вероятно, именно ему было предписано открыть основной закон гидростатики. Если задуматься, можно сделать вывод, что к случайному открытию законов ведет какая-то цепочка обязательных событий. Получается, эти самые случайные открытия не такие уж и случайные. Архимед должен был принять ванну, чтобы случайно открыть закон. А до того как он ее примет, его мысли должны были быть заняты проблемой веса золота. И при этом, одно должно быть обязательно для другого. Но нельзя утверждать, что ему не удалось бы решить вопрос, не прими он ванну. А вот если бы не было необходимости вычислить массу золота в короне, Архимед бы не спешил открыть этот закон. Он бы просто принял ванну.
Вот какой сложный механизм у нашего, так сказать, случайного открытия. К этой самой случайности вела уйма причин. И вот, наконец, при идеальных условиях открытия этого закона (легко обратить внимание как поднимается вода, когда погружается тело, мы все видели этот процесс) подготовленный человек, в нашем примере Архимед, просто вовремя схватил эту мысль.

Однако многие сомневаются, что открытие закона было совершенно именно так. Есть опровержение этому. Звучит оно так: в действительности вытесненная Архимедом вода ничего не говорит о знаменитой выталкивающей силе, поскольку описанный в мифе способ всего лишь позволяет измерить объём. Этот миф распространил Витрувий, и больше никто не сообщал об этой истории.

Как бы то ни было, мы знаем, что был Архимед, была ванна Архимеда и была корона царя. Делать однозначные заключения, к сожалению, не может никто, поэтому, будем называть случайное открытие Архимеда легендой. А правдивая она или нет, каждый может решить для себя сам.

Ученный, заслуженный преподаватель и поэт Марк Львовский написал стихотворение, посвященный знаменитому случаю науки с ученым.

Закон Архимеда

Архимед открыл закон,

Мылся в ванне как-то он,

Полилась на пол вода,

Догадался он тогда.

Сила действует на тело,

Так природа захотела,

Шар летит как самолёт,

Что не тонет, то плывёт!

И в воде груз легче станет,

И тонуть он перестанет,

Океаны вдоль Земли,

Покоряют корабли!

Все историки Рима очень подробно описывают оборону города Сиракузы во время Второй пунической войны. Говорят, руководил ею и воодушевлял сиракузцев как раз Архимед. И его видели на всех стенах. Говорят об удивительных машинах его, с помощью которых греки разбили римлян, и те долго не осмеливались атаковать город. Следующий стих достойно описывает момент гибели Архимеда, в ходе той самой пунической войны:


К.Анкундинов. Смерть Архимеда.

Он был задумчив и спокоен,

Загадкой круга увлечен...

Над ним невежественный воин

Взмахнул разбойничьим мечом.

Чертил мыслитель с вдохновеньем,

Сдавил лишь сердце тяжкий груз.

«Ужель гореть моим твореньям

Среди развалин Сиракуз?»

И думал Архимед: «Поникну ль

Я головой на смех врагу?»

Рукою твердой взял он циркуль -

Провел последнюю дугу.

Уж пыль клубилась над дорогой,

То в рабство путь, в ярмо цепей.

«Убей меня, но лишь не трогай,

О варвар, этих чертежей!»

Прошли столетий вереницы.

Научный подвиг не забыт.

Никто не знает, кто убийца.

Но знают все, кто был убит!

Нет, не всегда смешон и узок

Мудрец, глухой к делам земли:

Уже на рейде в Сиракузах

Стояли римлян корабли.

Над математиком курчавым

Солдат занес короткий нож,

А он на отмели песчаной

Окружность вписывал в чертеж.

Ах, если б смерть - лихую гостью -

Мне так же встретить повезло,

Как Архимед, чертивший тростью

В минуту гибели - число!

Животное электричество.

Следующим открытием является открытие электричества внутри живых организмов. В нашей таблице это открытие неожиданного вида, однако, сам процесс его тоже не был спланирован и все произошло по знакомой нам «случайности».
Открытие электрофизиологии принадлежит ученому Луиджи Гальвани.
Л. Гальвани был итальянским врачом, анатомом, физиологом и физиком. Он один из основателей электрофизиологии и учения об электричестве, основоположник экспериментальной электрофизиологии.

Вот как произошло то, что мы называем случайным открытием..

В конце 1780 года профессор анатомии в Болонье Луиджи Гальвани, занимался в своей лаборатории изучением нервной системы отпрепарированных лягушек, еще вчера квакавших в неотдаленном пруду.

Совершенно случайно получилось так, что в той комнате, где в ноябре 1780 года Гальвани изучал на препаратах лягушек их нервную систему, работал еще его приятель – физик, производивший опыты с электричеством. Одну из отпрепарированных лягушек Гальвани по рассеянности положил на стол электрической машины.

В это время в комнату вошла жена Гальвани. Ее взору предстала жуткая картина: при искрах в электрической машине лапки мертвой лягушки, прикасавшиеся к железному предмету (скальпелю), дергались. Жена Гальвани с ужасом указала на это мужу.

Последуем же за Гальвани в его знаменитых опытах: «Я разрезал лягушку и положил ее безо всякого умысла на стол, где на некотором расстоянии стояла электрическая машина. Случайно один из моих ассистентов дотронулся до нерва лягушки концом скальпеля, и в тот же момент мускулы лягушки содрогнулись как бы в конвульсиях.

Другой ассистент, обыкновенно помогавший мне в опытах по электричеству, заметил, что явление это происходило лишь тогда, когда из кондуктора машины извлекалась искра.

Пораженный новым явлением, я тотчас же обратил на него свое внимание, хотя замышлял в этот момент совсем иное и был всецело поглощен своими мыслями. Меня охватила неимоверная жажда и рвение исследовать это и пролить свет на то, что было под этим скрыто».

Гальвани решил, что все дело тут в электрических искрах. Для того чтобы получить более сильный эффект, он вывесил несколько отпрепарированных лягушачьих лапок на медных проволочках на железную садовую решетку во время грозы. Однако молнии – гигантские электрические разряды никак не повлияли на поведение отпрепарированных лягушек. Что не удалось сделать молнии, сделал ветер. При порывах ветра лягушки раскачивались на своих проволочках и иногда касались железной решетки. Как только это случалось, лапки дергались. Гальвани, однако, отнес явление все-таки на счет грозовых электрических разрядов.

В 1786 г. Л. Гальвани заявил, что открыл «животное» электричество. Уже была известна Лейденская банка - первый конденсатор (1745 г.). А. Вольта изобрел упоминавшуюся электрофорную машину (1775 г.), Б. Франклин объяснил электрическую природу молнии. Идея биологического электричества витала в воздухе. Сообщение Л. Гальвани было встречено с неумеренным энтузиазмом, который он вполне разделял. В 1791 г. вышел его основной труд «Трактат о силах электричества при мышечном сокращении».

Вот еще одна история о том, как он заметил биологическое электричество. Но она, естественно, отличается от предыдущей. Эта история своего рода курьез.

Простудившаяся жена профессора анатомии Болонского университета Луиджи Гальвани, как и все больные, требовала заботы и внимания. Врачи прописали ей "укрепительный бульон" в состав которого входили те самые лягушечьи лапки. И вот, в процессе приготовления лягушек для бульона, Гальвани заметил, как двигались лапки при соприкосновении их с электрической машиной. Таким образом открыл знаменитое "живое электричество" - электрический ток.
Как бы то ни было, Гальвани преследовал в своих занятиях немного другие

цели. Он изучал строение лягушек, а открыл электрофизиологию. Или, еще интереснее, хотел приготовить бульон для своей супруги, сделать ей полезное, а сделал открытие, полезное всему человечеству. И все почему? В обоих случаях лапки лягушек, случайным образом докоснулись до электромашины или какого-то другого электропредмета. Но так ли случайно и неожиданно все складывалось, или опять же это была обязательная взаимосвязь событий?...

Броуновское движение.

По нашей таблице мы можем видеть, что броуновское движение относится к запоздалым открытиям в физике. Но мы остановимся на этом открытии, так как оно тоже в некоторой степени было сделано случайно.

Что такое броуновское движение?
Броуновское движение- это следствие хаотического движения молекул. Причиной броуновского движения является тепловое движение молекул среды и их столкновения с броуновской частицей.

Это явление было открыто Р. Броуном (в честь его и назвали открытие), когда в 1827 году, когда он проводил исследования пыльцы растений. Шотландский ботаник Роберт Броун ещё при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырёхлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет посвятил их изучению. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя учёного сейчас широко известно вовсе не из-за этих работ.

Вот как случилось Броуну заметить движение, присущее молекулам. Получается, пытаясь работать над одним, Броун заметил немного другое:

В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella взвешенные в воде удлиненные цитоплазматические зерна. И вот, неожиданно Броун увидел, что мельчайшие твёрдые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и постоянно передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же себя вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях.

Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; очень мелкие частички угля, сажи и пыли лондонского воздуха, тонко растертые неорганические вещества: стекло, множество различных минералов.

Наблюдение Броуна подтвердили другие учёные.

Причем, надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».
Броуновское движение считается очень запоздалым открытием. Оно было сделано с помощью лупы, хотя прошло уже 200 лет, как был изобретен микроскоп (1608 год)

Как это часто бывает в науке, спустя многие годы историки обнаружили, что ещё в 1670 изобретатель микроскопа голландец Антони Левенгук, видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

Радиоактивность .

Антуан Анри Беккерель родился 15 декабря 1852 , умер 25 августа 1908 . Он был французским физиком, лауреатом Нобелевской премии по физике и одним из первооткрывателей радиоактивности.

Явление радиоактивности было очередным открытием, совершившимся по случайности. В 1896 г. французский физик А. Беккерель по время работ по исследованию солей урана завернул флюоресцирующий материал в непрозрачный материал вместе с фотопластинками.

Он обнаружил, что фотопластинки были полностью засвечены. Ученый продолжил исследования и выявил, что все соединения урана испускают излучение. Продолжением работы Беккереля стало открытие в 1898 г. радия Пьером и Мари Кюри. Атомная масса радия не так уж сильно отличается от массы урана, но его радиоактивность в миллион раз выше. Явление излучения назвали радиоактивностью. В-1903 г. Беккерель совместно с супругами Кюри получил Нобелевскую премию по физике «В знак признания выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности». Это стало началом атомной эры.

Еще одним из важных открытий физики, относящихся к разделу непредугаданных, является открытие рентгеновских лучей. Сейчас, спустя многие годы этого открытия, рентгеновские лучи имеют большое значение для человечества.
Первой и наиболее широко известной областью применения рентгеновских лучей является медицина. Рентгеновские снимки стали уже привычным инструментов и врачей-травматологов, и стоматологов, и медицинских специалистов других направлений.

Другой отраслью, где широко применяется рентгеновская аппаратура, стала безопасность. Так, в аэропортах, на таможнях и прочих контрольно-пропускных пунктах принцип использования рентгена практически тот же, что и в современной медицине. Лучи используются для обнаружения запрещенных для провоза предметов в багаже и прочих грузах. В последние годы появились автономные устройства небольших размеров, позволяющие обнаруживать подозрительные предметы в местах большого скопления людей.
Расскажем об истории открытия рентгеновских лучей.

Рентгеновские лучи были открыты в 1895 г. Способ их получения с особой наглядностью обнаруживает их электромагнитную природу. Немецкий физик Рентген (1845-1923) обнаружил этот вид излучения случайно, при исследовании катодных лучей.

Наблюдение Рентгена состояло в следующем. Он работал в затемненной комнате, пытаясь понять, смогут ли недавно открытые катодные лучи или нет (они применяются до сих пор – в телевизорах, в флуоресцентных лампах и т.д.) пройти сквозь вакуумную трубку или нет. Случайно он заметил, что на химически очищенном экране на расстоянии в несколько футов появилось расплывчатое зеленоватое облачко. Это было похоже на то, как если бы слабая вспышка от индукционной катушки отразилась в зеркале. Семь недель он проводил исследования, практически не покидая лабораторию. Оказалось, что причиной свечения являются прямые лучи, исходящие от катодно-лучевой трубки, что излучение дает тень, и оно не может быть отклонено с помощью магнита - и многое другое. Так же стало ясно, что человеческие кости отбрасывают более плотную тень, чем окружающие мягкие ткани, что до сих пор и используется в рентгеноскопии. А первый рентгеновский снимок появился в 1895 году – это был снимок руки мадам Рентген с четко выделяющимся золотым кольцом. Так что впервые именно мужчины увидели женщин «насквозь», а не наоборот.

Вот какие полезные случайные открытия подарила Вселенная человечеству!

И это лишь малая доля полезных случайных открытий и изобретений. За один раз не рассказать, сколько их было. И сколько еще будет…Но узнать об открытиях, которые совершились в повседневной жизни было бы тоже

Полезно.

Непредугаданные открытия в нашей повседневной жизни.

Печенье с кусочками шоколада .
Один из самых популярных видов печенья в США - печенье с кусочками шоколада. Оно было изобретено в 1930-е годы, когда хозяйка небольшой гостиницы Рут Вэйкфилд решила испечь масляное печенье. Женщина разломала шоколадную плитку и перемешала кусочки шоколада с тестом, рассчитывая, что шоколад растает и придаст тесту коричневый цвет и шоколадный привкус. Однако Вэйкфилд подвело незнание законов физики, и из духовки она достала печенье с кусочками шоколада.

Клейкие бумажки для заметок.
Клейкие бумажки появились в результате неудачного эксперимента по усилению стойкости клея. В 1968 году сотрудник исследовательской лаборатории компании 3M пытался улучшить качество клейкой ленты (скотча). Он получил плотный клей, который не впитывался в склеиваемые поверхности и был совершенно бесполезен для производства скотча. Исследователь не знал, каким образом можно использовать новый сорт клея. Четыре года спустя, его коллега, который в свободное время пел в церковном хоре, был раздражен тем, что закладки в книге псалмов, все время выпадали. Тогда же он вспомнил о клее, который мог бы закреплять бумажные закладки, не повреждая страниц книги. В 1980 году Post-it Notes были впервые выпущены в продажу.

Кока-Кола.
1886 год. Доктор-фармацевт Джон Пембертон ищет способ приготовления микстуры тонизирующего действия с помощью ореха Кола и растения коки. Микстура на вкус оказалась очень приятной. Этот сироп он отвозил в аптеку, где она и продавалась. А сама Кока-Кола появилась по случайности. Продавец в аптеке спутал краны с обычной водой и газированной и налил вторую. Так и появилась Кока-Кола. Правда вначале она была не очень популярной. Расходы Пембертона превышали доходы. Но сейчас ее пьют в более двухсот странах мира.

Мешок для мусора.
В 1950 году изобретатель Гарри Василюк создал такой мешок. Дело было так. К нему обратилась администрация города с задачей: придумать способ, при котором мусор не будет вываливаться в процессе его погружения в мусороуборочную машину. У него появилась задумка создать специальный пылесос. Но кто-то бросил фразу: Мне нужна сумка под мусор. И вдруг он понял, что для мусора нужно сделать одноразовые

мешки, а что бы сэкономить, изготавливать их из полиэтилена. А через 10 лет в продаже появились мешки для частных лиц.

Тележка для супермаркета .
Так же как и другие открытия в этом посте открыто случайно в 1936 году. Изобретатель тележки торговец Сильван Голдман стал замечать, что покупатели редко покупают габаритные товары, ссылаясь на то, что их тяжело нести до кассы. Но однажды в магазине он увидел, как на машинке за веревочку катил сын покупательницы сумку с продуктами. И тут его просвятило. Первоначально он просто приделал к корзинам небольшие колесики. Но потом привлек группу конструкторов для создания современной тележки. Через 11 лет началось массовое изготовление таких тележек. И кстати, благодаря этому новшеству появился новый тип магазинов под названием супермаркет.

Булочки с изюмом .
В России тоже было создано лакомство по ошибке. Это произошло на царской кухне. Повар готовил булочки, замесил тесто, и по случайности задел кадушку с изюмом, которая упала в тесто. Он очень сильно испугался, вытащить изюм у него не получалось. Но страх себя не оправдал. Государю очень сильно понравились булочки с изюмом, за что повара и наградили.
Здесь же стоит упомянуть и о легенде, описанной знатоком Москвы журналистом и писателем Владимиром Гиляровским, о том, что булочку с изюмом изобрел знаменитый булочник Иван Филиппов. Генерал-губернатор Арсений Закревский, купивший как-то свежую сайку, вдруг обнаружил в ней таракана. Вызванный на ковер Филиппов, схватил насекомое и съел, заявив, что генерал ошибся - это была изюминка. Вернувшись в пекарню, Филиппов распорядился срочно начать печь булочки с изюмом, чтобы оправдаться перед губернатором.

Искусственные подсластители

Три самых распространенных заменителя сахара были открыты лишь благодаря тому, что ученые забыли помыть руки. Цикламат (1937) и аспартам (1965) явились побочным продуктом медицинских исследований, а сахарин (1879) был случайно обнаружен при исследованиях дериватов каменноугольного дегтя.

Кока-Кола

В 1886 году доктор и фармацевт Джон Пембертон (John Pemberton) пытался приготовить микстуру на основе вытяжки из листьев южноамериканского растения кока и африканских орехов кола, обладающих тонизирующими свойствами. Пембертон попробовал готовую

микстуру и понял, что она обладает хорошим вкусом. Пембертон посчитал, что этот сироп мог помочь людям, страдающим от усталости, стресса и зубной боли. Фармацевт отнес сироп в самую крупную аптеку города Атланты. В тот же день были проданы первые порции сиропа, по пять центов за стакан. Однако напиток Coca-Cola появился в результате небрежности. Случайно продавец, разбавлявший сироп, перепутал краны и налил газированную воду вместо обыкновенной. Получившаяся смесь и стала «кока-колой». Изначально этот напиток не имел большого успеха. За первый год производства газировки Пембертон израсходовал $79.96 на рекламу нового напитка, но смог продать Кока-колы только на $50. Ныне кока-колу производят и пьют в 200 странах мира.

13.Тефлон

Как появилось изобретение микроволновка?

Перси Лебарон Спенсер - ученый, изобретатель, который изобрел первую СВЧ-печь. Он родился 9 июля 1984 года в городе Хоуленд штата Мэн, США.

Как изобрели микроволновку.

Спенсер изобрел прибор для микроволновой кулинарии совершенно случайно. В лаборатории Raytheon в 1946, когда он стоял около

магнетрона, он вдруг почувствовал покалывание и что леденцы, которые лежали у него в кармане, таяли. Он не первый заметил этот эффект, но другие боялись проводить эксперименты, в то время как Спенсеру было любопытно и интересно проводить такие исследования.

Он расположил кукурузу рядом с магнетроном и через определенное время она начала трещать. Наблюдая такой эффект, он сделал металлическую коробку с магнетроном для разогревания пищи. Так Перси Лаберон Спенсер изобрел микроволновку.

После написания отчета о его результатах, «Raytheon» в 1946 году запатентовала это открытие и начала продавать микроволновые печи в индустриальных целях.

В 1967 году филиал «Raytheon Amana» начал продавать домашние СВЧ-печи «RadarRange». За свое изобретение Спенсер не получил лицензионных платежей, но ему заплатили одноразовое пособие за два доллара от Raytheon - символическая оплата компании, сделанная всем изобретателям компании.

Список используемой литературы.

Http://shkolyaram.narod.ru/interesno3.html

Приложение.

«Нам необыкновенно повезло, что мы живём в век, когда ещё можно делать открытия. Это как открытие Америки, которую открывают раз и навсегда. Век, в который мы живем, это век открытия основных законов природы, и это время уже никогда не повторится. Это удивительное время, время волнений и восторгов, но этому наступит конец. Конечно, в будущем интересы будут совсем другими. Тогда будут интересоваться взаимосвязями между явлениями разных уровней - биологическими и т. п. или, если речь идет об открытиях, исследованием других планет, но все равно это не будет тем же, что мы делаем сейчас».

Ричард Фейнман, Характер физических законов, М., «Наука», 1987 г., с. 158.

«Теперь я хочу рассказать Вам об искусстве угадывания законов природы. Это действительно искусство. Как же это делается? Для того чтобы попытаться получить ответ на этот вопрос, можно, например, обратиться к истории науки и посмотреть, как это делали другие. Вот поэтому мы и займёмся историей.

Перенесемся мысленно на сто с хвостиком лет назад и попробуем представить себе, каково было в то время положение в науке. В физике шла тогда величайшая революция, вызванная удивительными открытиями конца позапрошлого века и начала прошлого. Одно за другим следовали блестящие открытия, в свете которых материя представлялась иной, чем рисовалось ученым еще так недавно. Тогда были открыты лучи Рентгена (1895), радиоактивность (Веккерель, 1896), электрон (Томсон, 1897), радий (супруги Кюри, 1899), создана теория радиоактивного распада атомов (Резерфорд и Содли, 1902). Электрон предстал не только как мельчайшая частица отрицательного электричества, но и как общая составная часть всех атомов, как кирпичик всех атомных построек. С этого момента идея неизменного, неделимого атома, идея вечных, не превращающихся друг в друга химических элементов, которая много веков господствовала в умах ученых, внезапно рухнула, причем окончательно и бесповоротно.

Одновременно начались открытия в области световых явлений. В 1900 году были сделаны два замечательных открытия в оптике. Планк открыл дискретный (атомистический) характер излучения и ввел понятие действия; Лебедев измерил (а значит, экспериментально открыл) давление света. Отсюда логически следовало, что свет должен обладать массой.

Спустя еще несколько лет (в 1905 году) Эйнштейн создал теорию относительности (ее специальный принцип) и вывел из нее фундаментальный закон современной физики — закон взаимосвязи массы и энергии. Одновременно он выдвинул понятие фотона (или «атома света»).

Рубеж XIX и XX веков был периодом глубочайшей ломки старых физических понятий. Рушилась вся старая, по сути дела, механистическая, картина мира. Ломались не только понятия атома и элемента, но и понятия массы и энергии, вещества и света, пространства и времени, движения и действия. На место понятия неизменной массы, не зависящей от скорости движения тела, пришло понятие массы, меняющейся по своей величине в зависимости от того, с какой скоростью движется тело. На место понятия непрерывного движения и действия пришло представление об их дискретном, квантовом характере. Если энергетические явления математически описывались раньше непрерывными функциями, то теперь пришлось вводить для их описания прерывисто меняющиеся величины.

Пространство и время выступили не как внешние по отношению к материи, к движению и друг к другу формы бытия, а как зависимые и от них и друг от друга. Вещество и свет, разделенные ранее абсолютной перегородкой, обнаружили общность своих свойств (наличие массы, хотя качественно и различной) и своего строения (дискретный, зернистый характер).

Но не только крушением устаревших представлений характеризовалось то время: на руинах старых принципов, подвергшихся всеобщему разгрому (по выражению Л. Пуанкаре) стали уже то тут, то там возводиться первые теоретические постройки, но они еще не были охвачены общим планом, не были сведены в общий архитектурный ансамбль научных представлений.

«От атома отошли», значит, перестали по-старому считать атом пределом познания, последней частицей материи, дальше которой двигаться нельзя, некуда. «До электрона не дошли», значит, еще не создали нового представления о строении атома из электронов (включая и представление о положительном заряде в атоме).

Создание новой электронной теории строения материи стало центральной задачей физиков. Для решения этой задачи необходимо было ответить, прежде всего, на следующие четыре вопроса.

Первый вопрос. Как распределен или где сосредоточен внутри атома положительный электрический заряд? Одни физики полагали, что он равномерно распределен по всему атому, другие считали, что он находится в центре атома, словно «нейтральное светило» миниатюрной , которую, по их предположению, представляет собой атом.

Второй вопрос. Как ведут себя электроны внутри атома? Одни ученые думали, что электроны наглухо закреплены в атоме, как бы вкраплены в него, и образуют статическую систему, другие же, напротив, допускали, что электроны с огромной скоростью движутся внутри атома по определенным орбитам.

Третий вопрос. Сколько электронов может быть в атоме того или иного химического элемента? На этот вопрос не давалось даже предположительного ответа.

Четвертый вопрос. Как распределяются электроны внутри атома: слоями или и виде хаотического роя? На этот вопрос нельзя было дать никакого ответа, по крайней мере, до тех пор, пока оставалось неустановленным общее число электронов в атоме.

Ответ на первый вопрос был получен в 1911 году. Бомбардируя атомы положительно заряженными альфа-частицами, Резерфорд установил, что альфа-частицы свободно пронизывали атом во всех направлениях и на всех его участках, кроме центра. Близ центра частицы явно отклонялись от прямолинейного пути, как если бы они испытывали отталкивающее воздействие, исходящее из центра атома. Когда же частицы оказывались направленными прямо в центр атома, они отскакивали назад, как если бы в центре находилось чрезвычайно прочное, твердое зернышко. Это свидетельствовало о том, что положительный заряд атома действительно сосредоточен в ядре атома, равно как и почти вся масса атома. Резерфорд вычислил на основании полученных им опытных данных, что по своим размерам ядро атома в сто тысяч раз меньше самого атома. (Диаметр атома около 10 см, диаметр ядра около 10-13 см.)

Но если это так, то электроны не могут находиться в неподвижном состоянии внутри атома: их там ничто не может закрепить на одном месте. Напротив, они должны двигаться вокруг ядра, подобно тому как планеты движутся вокруг Солнца.

Так намечался ответ на второй вопрос. Однако окончательный ответ на него удалось добыть не сразу. Дело в том, что, согласно представлениям классической электродинамики, электрически заряженное тело, двигающееся в электромагнитном поле, должно непрерывно терять свою энергию. В результате этого электрон должен был постепенно приближаться к ядру и наконец, пасть на него. На деле же ничего подобного не происходит, атом ведет себя как вполне устойчивая система.

Не зная, как решить возникшую перед ними трудность, физики не могли дать определенного ответа на второй вопрос. Но пока продолжались поиски ответа па второй вопрос, неожиданно пришел ответ на третий.

…В конце XIX века многим ученым казалось, что ответ на вопрос о том, каково же строение материи, даст периодический закон химических элементов. Так думал и сам Д. И. Менделеев. Физические открытия, сделанные на рубеже XIX и XX веков, казалось бы, никак не были связаны с этим законом и стояли от него особняком.

В итоге сложились как бы две самостоятельные, изолированные друг от друга линии научного развития: одна - старая, начавшаяся еще в 1869 году (когда был открыт периодический закон) и продолжавшаяся в XX веке (это была, так сказать, химическая линия), другая - новая, возникшая в 1895 году, когда началась «новейшая революция в естествознании» (физическая линия).

Не связанность обеих линий научного развития усугублялась еще и тем, что многие химики представляли себе периодическую систему Менделеева как трактующую о неизменности химических элементов. Новая же физика, наоборот, исходила целиком из представлений о превращающихся и разрушающихся элементах.

Грандиозный бросок естествознания вперед стал возможным, прежде всего, благодаря тому, что две линии научного развития - «химическая» (идущая от периодического закона) и «физическая» (идущая от рентгеновых лучей, радиоактивности, электрона и кванта) - слились, взаимно обогатив друг друга.

В 1912 году в лаборатории Резерфорда появился молодой физик Мозли. Он выдвинул свою собственную тему, которую Резерфорд горячо одобрял. Мозли хотел выяснить зависимость между местом элементов (речь шла о ) в периодической системе Менделеева и характеристическим рентгеновским спектром того же элемента. Здесь была гениальна сама идея, сам замысел задуманной работы связать периодический закон с экспериментальными данными рентгеновского анализа. Как это нередко бывает в науке, правильная постановка проблемы дала сразу же ключ к ее решению.

В 1913 году Мозли нашей решение проблемы. Из математически обработанных Данных рентгеновского спектра того или иного химического элемента при помощи несложных операций он выводил некоторое целое число, специфичное для каждого элемента. Перенумеровав все элементы по порядку их расположения в периодической системе, Мозли увидел, что найденное из экспериментальных данных число N равняется порядковому номеру элемента в системе Менделеева. Это был решающий шаг к тому, чтобы ответить на третий вопрос.

В самом деле. Каков физический смысл числа N? Почти одновременно несколько физиков ответили так: «Число N указывает величину положительного заряда атомного ядра (Z), а значит, и число электронов в оболочке нейтрального атома данного элемента». Такой ответ дали Нильс Вор, Мозли и голландский физик ван ден Брук.

Таким образом, начался прямой штурм одной из важнейших крепостей природы, еще не завоеванной к тому времени человеческим разумом, - электронного строения атома. Успех этого штурма обеспечивался начавшимся союзом идей химиков и физиков, своеобразным взаимодействием различных «родов войск».

В то время как Мозли открывал закон, носящий теперь его имя, сильная поддержка отряду науки, штурмующему вышеназванную крепость, пришла со стороны ученых, изучавших радиоактивные явления. В этой области были сделаны три важных открытия.

Во-первых, были установлены различные типы радиоактивного распада: альфа-распад, при котором из ядра вылетают альфа- частицы - ядра гелия: бета-распад (из ядра вылетают электроны) и гамма-распад (ядро испускает жесткое электромагнитное излучение). Во-вторых, оказалось, что существуют три различных радиоактивных ряда: , тория и актиния. В-третьих, было обнаружено, что при разных атомных весах некоторые члены одного ряда оказываются химически неотличимыми и неотделимыми от членов другого ряда.

Все эти явления требовали объяснения, и оно было дано в том же знаменательном 1913 году. Но об этом уже читайте в нашей следующей статье.

P. S. О чем еще говорят британские ученые: о том, что для лучшего понимания многих физических открытий было бы здорово почитать труды ученых-первооткрывателей в оригинале – на английском языке. Для этого, пожалуй, не стоит пренебрегать такими вещами как английский для детей в Истре , ведь язык нужно учить смолоду, тем более если собираетесь в будущем читать на нем серьезные научные труды.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта