Главная » 1 Описание » Функциональная система поведения по анохину. Обзор теорий сознания: теория функциональных систем П

Функциональная система поведения по анохину. Обзор теорий сознания: теория функциональных систем П

ФС – морфо-физиологическая основа ВПФ как совокупность всех процессов, протекающих в различных системах, обеспечивающих функционирование ВПФ (афферентные и эфферентные составляющие).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Основные положения теории функциональной системы были сформулированы П. К. Анохиным еще в 1935 г. Теория функциональных систем, предложенная П.К.Анохиным, постулирует принципиально новый подход к физиологическим явлениям. Она изменяет традиционное "органное" мышление и открывает картину целостных интегративных функций организма. Возникнув на основе теории условных рефлексов И.П.Павлова, теория функциональных систем явилась ее творческим развитием. Вместе с тем в процессе развития самой теории функциональных систем она вышла за рамки классической рефлекторной теории и оформилась в самостоятельный принцип организации физиологических функций. Функциональные системы имеют отличную от рефлекторной дуги циклическую динамическую организацию, вся деятельность составляющих компонентов которой направлена на обеспечение различных приспособительных результатов, полезных для организма и для его взаимодействия с окружающей средой и себе подобными.

Наиболее принципиальным положением теории является то, что системы могут быть самыми разнообразными по типу задач, ими решаемых, и по сложности этих задач, но архитектура систем при этом остается одной и той же. Это означает, что различные функциональные системы - от системы терморегуляции до системы по­литического управления - имеют сходную структуру. Основными компонентами любых функциональных систем являются следующие:

Афферентный синтез;

Принятие решения;

Модель результатов действия (акцептор действия) и программа действия;

Действие и его результат;

Обратная связь.

Афферентный синтез представляет собой обобщение потоков информации, приходящей как снаружи, так и извне. Субкомпонентами афферентного синтеза являются доминирующая мотивация, обстано­вочная афферентация, пусковая афферентация и память. Функция доминирующей мотивации - обеспечение общей мотивационной активации. «Первопричиной» лю­бого действия является потребность, мотивация. Переевшее животное не будет лихо­радочно искать пищу, человек, лишенный честолюбия, мало озабочен стремлением к продвижению по служебной лестнице. Функция обстановочной афферентации - обеспечение общей готовности к действию. Как только в среде появляется то, что спо­собно удовлетворить нашу потребность, включается механизм пусковой афферента­ции. Пусковая афферентация инициирует поведение. Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей. Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.

Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется.

  • < Назад
  • Вперёд >

Множество исследований в области искусственного интеллекта сталкиваются с проблемой отсутствия на сегодняшний момент какой-либо мощной теории сознания и мозговой активности. Фактически мы обладаем достаточно скудными знаниями о том каким образом мозг обучается и достигает адаптивного результата. Однако, на данный момент происходит заметное увеличение взаимовлияния области искусственного интеллекта и нейробиологии. По результатам математического моделирования мозговой активности ставятся новые цели для экспериментов в области нейробиологии и психофизиологии, а экспериментальные данные биологов в свою очередь во многом влияют на вектор развития ИИ.

Исходя из вышесказанного становится ясно, что для будущего успешного развития бионического ИИ необходимо плотное сотрудничество математиков и нейробиологов, которое в итоге будет плодотворным для обеих областей. Для этого в частности необходимо изучение современных успехов теоретической нейробиологии.

На данный момент существуют три наиболее проработанных и отчасти экспериментально проверенных теории строения сознания в области теоретической нейробиологии: теория функциональных систем П.К. Анохина, теория селекции нейрональных групп (нейродарвинизм) Джеральда Эдельмана и теория глобальных информационных пространств Жана-Пьера Шанже (изначально сформулирована Бернардом Баарсом). Остальные теории либо являются модификациями названных, либо не подтверждены никакими экспериментальными данными. В данной статье речь пойдет о первой из этих теорий - Теории функциональных систем П.К. Анохина .

Парадигмы реактивности и активности

В первую очередь необходимо сказать о том, что при всем многообразии теорий и подходов, используемых в психологии, психофизиологии и нейронауках, их можно условно разделить на две группы. В первой группе в качестве основного методологического принципа, определяющего подход к исследованию закономерностей мозговой организации поведения и деятельности, рассматривается реактивность, во второй - активность (рис. 1).

Рис. 1. Две парадигмы нейрофизиологии - реактивность и активность

В соответствии с парадигмой реактивности за стимулом следует реакция – поведенческая у индивида, импульсная у нейрона. В последнем случае в качестве стимула рассматривается импульсация пресинаптического нейрона.

В соответствии с парадигмой активности действие завершается достижением результата и его оценкой. В схему включается модель будущего результата: для человека, например, контакт с объектом-целью .

Согласно реактивностному подходу, агент не должен проявлять активность в отсутствии стимулов. Напротив, при использовании парадигмы активности мы можем допустить случай, когда агенту не поступило никакого стимула из внешней среды, однако, согласно ожиданиям агента он должен был поступить. В этом случае агент будет действовать и обучаться для устранения рассогласования, чего не может бы быть в случае простейшего безусловного ответа агента на стимул из внешней среды.

Теория функциональных систем

В теории функциональных систем в качестве детерминанты поведения рассматривается не прошлое по отношению к поведению событие - стимул, а будущее – результат . Функциональная система есть динамически складывающаяся широкая распределенная система из разнородных физиологических образований, все части которой содействуют получению определенного полезного результата . Именно опережающее значение результата и модель будущего, создаваемая мозгом, позволяет говорить не о реакции на стимулы из внешней среды, а о полноценном целеполагании.


Рис. 2. Общая архитектура функциональной системы
(ОА – обстановочная афферентация, ПА – пусковая афферентация)

Архитектура функциональной системы приведена на рис. 2. На схеме представлена последовательность действий при реализации одной функциональной системы. Вначале происходит афферентный синтез, который аккумулирует сигналы из внешней среды, память и мотивацию субъекта. На основе афферентного синтеза принимается решение, на основе которого формируется программа действий и акцептор результата действия – прогноз результативности совершаемого действия. После чего непосредственно совершается действие и снимаются физические параметры результата. Одной из самых важных частей данной архитектуры является обратная афферентация – обратная связь, которая позволяет судить об успешности того или много действия. Это непосредственно позволяет субъекту обучаться, так как сравнивая физические параметры полученного результата и предсказанного результата, можно оценивать результативность целенаправленного поведения. Причем небходимо отметить, что на выбор того или иного действия влияет очень много факторов, совокупность которых обрабатывается в процессе афферентного синтеза.

Такие функциональные системы вырабатываются в процессе эволюции и обучения в течение жизни . Если обобщать, то вся цель эволюции – это выработка функциональных систем, которые будут давать наилучший приспособительный эффект. Функциональные системы, вырабатываемые эволюцией, развиваются еще до рождения, когда нету прямого соприкосновения со средой, и обеспечивают первичный репертуар. Именно этот факт указывает на эволюционную природу этих явлений. Такие процессы получили общее название – первичный системогенез .

Системно-эволюционная теория, разработанная Швырковым В.Б. на основе теории функциональных систем, отвергала даже понятие «пускового стимула» и рассматривала поведенческий акт не изолировано, а как компоненту поведенческого континуума: последовательности поведенческих актов, совершаемых индивидом на протяжении его жизни (рис. 3) . Следующий акт в континууме реализуется после достижения и оценки результата предыдущего акта. Такая оценка – необходимая часть процессов организации следующего акта, которые, таким образом, могут быть рассмотрены как трансформационные или процессы перехода от одного акта к другому .


Рис. 3. Поведенчески-временной континуум

Из всего вышесказанного следует, что индивид, и даже отдельный нейрон, должны обладать способностью вырабатывать образ результата действия и возможностью оценивать результативность своего поведения. При выполнении этих условий поведение можно с уверенностью называть целенаправленным.

Однако, процессы системогенеза происходят в мозге не только в развитии (первичный системогенез), но и в течение жизни субъекта. Системогенез – это образование новых систем в процессе обучения. В рамках системно-селекционной концепции научения - формирование новой системы - рассматривается как формирование нового элемента индивидуального опыта в процессе научения. В основе формирования новых функциональных систем при научении лежит селекция нейронов из «резерва» (предположительно низко активных или «молчащих» клеток). Эти нейроны могут быть обозначены как преспециализированные клетки .

Селекция нейронов зависит от их индивидуальных свойств, т.е. от особенностей их метаболических «потребностей». Отобранные клетки становятся специализированными относительно вновь формируемой системы – системно-специализированными. Эта специализация нейронов относительно вновь формируемых систем постоянна. Таким образом, новая система оказывается «добавкой» к ранее сформированным, «наслаиваясь» на них. Этот процесс называется вторичным системогенезом .

Следующие положения системно-эволюционной теории:
о наличии в мозге животных разных видов большого числа «молчащих» клеток;
об увеличении количества активных клеток при обучении;
о том, что вновь сформированные специализации нейронов остаются постоянными
что при научении происходит скорее вовлечение новых нейронов, чем переобучение старых,
согласуются с данными, полученными в работах ряда лабораторий .

Отдельно хотелось бы отметить, что согласно современным представлениям психофизиологии и системно-эволюционной теории количество и состав функциональных систем индивида определяется как процессами эволюционной адаптации, которые отражаются в геноме, так и индивидуальным прижизненным обучением.

Теория функциональных систем успешно исследуется путем имитационного моделирования и на ее основе строятся различные модели управления адаптивным поведением .

Вместо заключения

Теория функциональных систем в свое время первой ввела понятие целенаправленности поведения за счет сравнения предсказания результата с фактическими его параметрами, а также обучение как способ устранения рассогласования организма со средой. Многие положения данной теории уже сейчас нуждаются в существенном пересмотре и адаптации с учетом новых экспериментальных данных. Однако на сегодняшний момент данная теория входит в число наиболее проработанных и биологически адекватных.

Хотелось бы еще раз отметить, что с моей точки зрения дальнейшее развития области ИИ невозможно без тесного сотрудничества с нейробиологами, без построения новых моделей на основе мощных теорий.

Список литературы

. Александров Ю.И. «Введение в системную психофизиологию». // Психология XXI века. М.: Пер Се, стр. 39-85 (2003).
. Александров Ю.И., Анохин К.В. и др. Нейрон. Обработка сигналов. Пластичность. Моделирование: Фундаментальное руководство. Тюмень: Издательство Тюменского Государственного Университета (2008).
. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина (1975).
. Анохин П.К. «Идеи и факты в разработке теории функциональных систем». // Психологический журнал. Т.5, стр. 107-118 (1984).
. Анохин П.К. «Системогенез как общая закономерность эволюционного процесса». // Бюллетень экпериментальной биологии и медицины. № 8, т. 26 (1948).
. Швырков В.Б. Введение в объективную психологию. Нейрональные основы психики. М.: Институт психологии РАН (1995).
. Александров Ю.И. Психофизиология: Учебник для вузов. 2-е изд. Спб.: Питер (2003).
. Александров Ю.И. «Научение и память: системная перспектива». // Вторые симоновские чтения. М.: Изд. РАН, стр. 3-51 (2004).
. Теория системогенеза. Под. ред. К.В.Судакова. М.: Горизонт (1997).
. Jog M.S., Kubota K, Connolly C.I., Hillegaart V., Graybiel A.M. «Bulding neural representations of habits». // Science. Vol. 286, pp. 1745-1749 (1999).
. Red"ko V.G., Anokhin K.V., Burtsev M.S., Manolov A.I., Mosalov O.P., Nepomnyashchikh V.A., Prokhorov D.V. «Project «Animat Brain»: Designing the Animat Control System on the Basis of the Functional Systems Theory» // Anticipatory Behavior in Adaptive Learning Systems. LNAI 4520, pp. 94-107 (2007).
. Red"ko V.G., Prokhorov D.V., Burtsev M.S. «Theory of Functional Systems, Adaptive Critics and Neural Networks» // Proceedings of IJCNN 2004. Pp. 1787-1792 (2004).
Теория функциональных систем была разработана П.К.Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах центральной нервной системы и рабочей периферии, тем не менее, всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П.К.Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой, прежде всего, динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П.К.Анохин, 1958]. Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» - по
А.А.Ухтомскому, 1966) [П.К.Анохин, 1958].
Согласно теории функциональных систем, центральным системообразующим фактором каждой функциональной системы является результат ее деятельности, определяющий в целом для организма условия течения метаболических процессов [П.К.Анохин, 1980]. Именно достаточность или недостаточность результата определяет поведение системы: в случае его достаточности организм переходит на формирование другой функциональной системы с другим полезным результатом, представляющим собой следующий этап в универсальном континууме результатов. В случае недостаточности полученного результата происходит стимулирование активирующих механизмов, возникает активный подбор новых компонентов, создается перемена степеней свободы действующих синаптических организаций и, наконец, после нескольких «проб и ошибок» находится совершенно достаточный приспособительный результат. Таким образом, системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения конкретного полезного результата [П.К.Анохин, 1978].
Были сформулированы основные признаки функциональной системы как интегративного образования:
  1. Функциональная система является центральнопериферическим образованием, становясь, таким образом, конкретным аппаратом саморегуляции. Она поддерживает свое единство на основе циклической циркуляции от периферии к центрам и от центров к периферии, хотя и не является «кольцом» в полном смысле этого слова.
  2. Существование любой функциональной системы непременно связано с получением какого-либо четко очерченного результата. Именно этот результат определяет то или иное распределение возбуждений и активностей по функциональной системе в целом.
  3. Другим абсолютным признаком функциональной системы является наличие рецепторных аппаратов, оценивающих результаты ее действия. Эти рецепторные аппараты в одних случаях могут быть врожденными, в других это могут быть обширные афферентные образования центральной нервной системы, воспринимающие афферентную сигнализацию с периферии о результатах действия. Характерной чертой такого афферентного аппарата является то, что он складывается до получения самих результатов действия.
  4. Каждый результат действия такой функциональной системы формирует поток обратных афферентаций, представляющих все важнейшие признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет последнее наиболее эффективное действие, она становится «санкционирующей афферентацией» [П.К.Анохин, 1935].
  5. В поведенческом смысле функциональная система имеет ряд дополнительных широко разветвленных аппаратов.
  6. Жизненно важные функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими точно к моменту рождения. Из этого следует, что объединение частей каждой жизненно важной функциональной системы (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения [П.К.Анохин, 1968].
Функциональная система всегда гетерогенна. Конкретным механизмом взаимодействия компонентов любой функциональной системы является освобождение их от избыточных степеней свободы, не нужных для получения данного конкретного результата, и, наоборот, сохранение всех тех степеней свободы, которые способствуют получению результата. В свою очередь, результат через характерные для него параметры и благодаря системе обратной афферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения именно запрограммированного результата. Смысл системного подхода состоит в том, что элемент или компонент функционирования не должен пониматься как самостоятельное и независимое образование, он должен пониматься как элемент, чьи степени свободы подчинены общему плану функционирования системы, направляемому получением полезного результата. Таким образом, результат является неотъемлемым и решающим компонентом системы, создающим упорядоченное взаимодействие между всеми другими ее компонентами.
Все ранее известные формулировки систем построены на принципе взаимодействия множества компонентов. Вместе с тем элементарные расчеты показывают, что простое взаимодействие огромного числа компонентов, например, человеческого организма, ведет к бесконечно огромному числу степеней их свободы. Даже оценивая только число степеней свобод основных компонентов центральной нервной системы, но, принимая при этом во внимание наличие, по крайней мере, пяти возможных изменений в градации состояний нейрона , можно получить совершенно фантастическую цифру с числом нулей на ленте длиной более 9 км [П.К.Анохин, 1978]. То есть простое взаимодействие компонентов реально не является фактором, объединяющим их в систему. Именно поэтому в большинство формулировок систем входит термин «упорядочение». Однако, вводя этот термин, необходимо понять, что же «упорядочивает» «взаимодействие» компонентов системы, что объединяет эти компоненты в систему, что является системообразующим фактором. П.К.Анохин (1935, 1958, 1968, 1978, 1980 и др.) считает, что «таким упорядочивающим фактором является результат деятельности системы». Согласно его концепции, только результат деятельности системы может через обратную связь (афферентацию) воздействовать на систему, перебирая при этом все степени свободы и оставляя только те, которые содействуют получению результата. «Традиция избегать результат действия как самостоятельную физиологическую категорию не случайна. Она отражает традиции рефлекторной теории, которая заканчивает «рефлекторную дугу» только действием, не вводя в поле зрения и не интерпретируя результат этого действия» [П.К.Анохин, 1958]. «Смешение причины с основанием и смешение действия с результатами распространено и в нашей собственно повседневной речи» . «Фактически физиология не только не сделала результаты действия предметом научно объективного анализа, но и всю терминологию, выработанную почти на протяжении 300 лет, построила на концепции дугообразного характера течения приспособительных реакций («рефлекторная дуга»)» [П.К.Анохин, 1968]. Но «результат господствует над системой, и над всем формированием системы доминирует влияние результата. Результат имеет императивное влияние на систему: если он недостаточен, то немедленно эта информация о недостаточности результата перестраивает всю систему, перебирает все степени свободы, и, в конце концов, каждый элемент вступает в работу теми своими степенями свободы, которые способствуют получению результата» [П.К.Анохин, 1978].
«Поведение» системы определяется прежде всего ее удовлетворенностью или неудовлетворенностью полученным результатом. В случае удовлетворенности системы полученным результатом, организм «переходит на формирование другой функциональной системы, с другим результатом, представляющим собой следующий этап в универсальном непрерывном континууме результатов» [П.К.Анохин, 1978]. Неудовлетворенность системы результатом стимулирует ее активность в поиске и подборе новых компонентов (на основе перемены степеней свободы действующих синаптических организаций - важнейшего звена функциональной системы) и достижении достаточного результата. Более того, одно из главнейших качеств биологической самоорганизующейся системы состоит в том, что система в процессе достижения окончательного результата непрерывно и активно производит перебор степеней свободы множества компонентов, часто даже в микроинтервалах времени, чтобы включить те из них, которые приближают организм к получению конкретного запрограммированного результата. Получение системой конкретного результата на основе степени содействия ее компонентов определяет упорядоченность во взаимодействии множества компонентов системы, а, следовательно, любой компонент может быть задействован и способен войти в систему только в том случае, если он вносит свою долю содействия в получение запрограммированного результата. В соответствии с этим в отношении компонентов, входящих в систему, более пригоден термин «взаимосодействие» [П.К.Анохин, 1958, 1968 и др.],
отражающий подлинную кооперацию компонентов множества отобранных ею для получения конкретного результата. «Системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения фокусированного полезного результата» [П.К.Анохин, 1978]. Именно потому, что в рассматриваемой концепции результат оказывает центральное организующее влияние на все этапы формирования системы, а сам результат ее функционирования является, по сути, функциональным феноменом, вся архитектура системы была названа функциональной системой [П.К.Анохин, 1978].
Следует подчеркнуть, что «функциональные системы организма складываются из динамически мобилизуемых структур в масштабе целого организма и на их деятельности и окончательном результате не отражается исключительное влияние какой-нибудь участвующей структуры анатомического типа», более того, «компоненты той или иной анатомической принадлежности мобилизуются и вовлекаются в функциональную систему только в меру их содействия получению запрограммированного результата» [П.К.Анохин, 1978]. Введение понятия структуры в систему приводит к ее пониманию как чего-то жестко структурно детерминированного. Вместе с тем, именно динамическая изменчивость входящих в функциональную систему структурных компонентов является одним из ее самых характерных и важных свойств. Кроме того, в соответствии с требованиями, которые функция предъявляет структуре, живой организм обладает крайне важным свойством внезапной мобилизуемости его структурных элементов. «.Существование результата системы как определяющего фактора для формирования функциональной системы и ее фазовых реорганизаций и наличие специфического строения структурных аппаратов, дающего возможность немедленной мобилизации объединения их в функциональную систему, говорят о том, что истинные системы организма всегда функциональны по своему типу», а это значит, что «функциональный принцип выборочной мобилизации структур является доминирующим» [П.К.Анохин, 1978].
Не менее важным обстоятельством является то, что функциональные системы, обеспечивающие какой-то результат, можно изолировать только с дидактической целью. В конечном итоге единственно полноценной функциональной системой является собственно живой организм, существующий в непрерывном пространственно-временном континууме получаемых приспособительных результатов. Выделение любых функциональных систем в организме в достаточной степени искусственно и может быть оправдано лишь с позиций облегчения их исследования. Вместе с тем, эти «функциональные системы» сами по себе являются взаимосодействующими компонентами целостных функциональных систем используемых организмом в процессе своего существования в среде. Поэтому, по мнению П.К.Анохина (1978), говоря о составе функциональной системы, необходимо иметь в виду тот факт, что «...каждая функциональная система, взятая для исследования, неизбежно находится где-то между тончайшими молекулярными системами и наиболее высоким уровнем системной организации в виде, например, целого поведенческого акта».
Независимо от уровня своей организации и от количества составляющих их компонентов функциональные системы имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем [П.К.Анохин, 1978].
Центральная архитектура целенаправленного поведенческого акта развертывается последовательно и включает следующие узловые механизмы:
  1. Афферентный синтез.
  2. Принятие решения.
  3. Формирование акцептора результата действия.
  4. Обратная афферентация (эфферентный синтез).
  5. Целенаправленное действие.
  6. Санкционирующая стадия поведенческого акта [П.К.Анохин, 1968].
Таким образом, функциональная система по П.К.Анохину (1935) - это
«законченная единица деятельности любого живого организма и состоящая из целого ряда узловых механизмов, которые обеспечивают логическое и физиологическое формирование поведенческого акта».
Образование функциональной системы характеризуется объединением частных физиологических процессов организма в единое целое, обладающее своеобразием связей, отношений и взаимных влияний именно в тот момент, когда все эти компоненты мобилизованы на выполнение конкретной функции.
Однако мне хотелось бы обратить внимание читателя на одно из высказываний великого физиолога: «Как целостное образование любая
функциональная система имеет вполне специфические для нее свойства, которые в целом придают ей пластичность, подвижность и в какой-то степени независимость от готовых жестких конструкций различных связей, как в пределах самой центральной системы, так и в масштабе целого организма» [П.К.Анохин, 1958, 1968]. Именно здесь кроется ошибка. П.К.Анохина и это именно тот момент, который обусловил фактическую невозможность до последнего времени реального применения теории функциональных систем в науке и практике. П.К.Анохин (1958, 1968) наделил функциональные системы свойством практически безграничной лабильности (возможности неограниченного выбора компонентов для получения одного и того же «полезного результата») и таким образом лишил функциональные системы присущих им черт функционально-структурной специфичности [С.Е.Павлов,
2000].
Тем не менее, функциональные системы обладают свойством относительной лабильности лишь на определенных этапах своего формирования, постепенно теряя это свойство к моменту окончательного формирования системы [С.Е.Павлов, 2000]. В этом случае целостные функциональные системы организма (по «внешнему» содержанию - его многочисленные поведенческие акты) становятся предельно специфичными и «привязываются» к вполне конкретным структурным образованиям организма [С.Е.Павлов, 2000, 2001]. Другими словами пробегание 100-метровой
дистанции трусцой и с максимальной скоростью - две совершенно разные функциональные системы бега, обеспечиваемые различными структурными компонентами. Равно как примерами различных функциональных систем являются, например, проплывания с одной скоростью, но разными стилями одной и той же дистанции. Более того, изменение любых параметров двигательного акта при сохранении одинакового конечного результата также будет свидетельствовать о «задействовании» в реализации данных поведенческих актов различных функциональных систем, «собранных» из различных структурно-функциональных компонентов. Однако это положение не принимается сегодня ни физиологами, ни спортивными педагогами (в противном случае последним придется кардинальным образом пересмотреть свои позиции по вопросам теории и методики спортивной тренировки). Так
В.Н.Платоновым (1988, 1997) в защиту концепции абсолютной лабильности функциональных систем приводятся данные о проплывании соревновательной дистанции Линой Качюшите, свидетельствующие о том, что одного и того же конечного результата можно достичь при разной частоте гребковых движений. Однако, здесь г-н Платонов проигнорировал как ряд положений теории функциональных систем П.К.Анохина (1935, 1958, 1968 и др.), описывающих особенности формирования целостных функциональных систем поведенческих актов, так и дополнения к теории функциональных систем, сделанные
В.А.Шидловским (1978, 1982) и обязывающие оценивать не только конечный результат, но и максимум его параметров [С.Е.Павлов, 2000]. Более того, указанные положения и дополнения привносят необходимость оценки максимума параметров всего рабочего цикла функциональной системы. Пример же, приведенный В.Н.Платоновым (1988, 1997), свидетельствует лишь о том, что один и тот же конечный результат может быть достигнут с использованием различных функциональных систем. Не одно и то же идти за водой к колодцу во дворе или к роднику, находящемуся в нескольких километрах от дома, хотя конечные результаты и той и другой деятельности - наличие воды в доме - будут одинаковыми [С.Е.Павлов, 2000].
П.К.Анохин (1968) писал: «Совершенно очевидно, что конкретные механизмы интеграции, связанные с определенными структурными образованиями, могут менять свою характеристику и удельный вес в процессе динамических превращений функциональной системы». В связи с этим следует вспомнить о свойстве функциональной системы изменяться в процессе своего формирования и признать, что на начальных этапах своего формирования функциональная система обязательно должна быть в достаточной степени лабильна. В противном случае окажется невозможным перебор множества всевозможных сочетаний исходно «свободных» компонентов с целью поиска единственно необходимых для формирующейся системы. В то же время сформированная функциональная система всегда должна быть предельно «жестка» и обладать минимумом лабильности. Следовательно, на разных этапах своего формирования функциональная система будет обладать различными уровнями лабильности, а сам процесс формирования любой функциональной системы должен сопровождаться сужением пределов ее лабильности, определяемых уже исключительно параметрами промежуточных и конечного результатов.

5.Теория функциональных систем П.К. Анохина.

В теории функциональных систем в качестве детерминанты поведения рассматривается не прошлое по отношению к поведению событие - стимул, а будущее – результат .

Функциональная система есть динамически складывающаяся широкая распределенная система из разнородных физиологических образований, все части которой содействуют получению определенного полезного результата. Именно опережающее значение результата и модель будущего, создаваемая мозгом, позволяет говорить не о реакции на стимулы из внешней среды, а о полноценном целеполагании.

рис. 2. Общая архитектура функциональной системы (ОА – обстановочная афферентация, ПА – пусковая афферентация) На схеме представлена последовательность действий при реализации одной функциональной системы. Вначале происходит афферентный синтез , который аккумулирует сигналы из внешней среды, память и мотивацию субъекта . На основе афферентного синтеза принимается решение , на основе которого формируется программа действий и акцептор результата действия прогноз результативности совершаемого действия. После чего непосредственно совершается действие и снимаются физические параметры результата. Одной из самых важных частей данной архитектуры является обратная афферентация – обратная связь, которая позволяет судить об успешности того или много действия. Это непосредственно позволяет субъекту обучаться, так как сравнивая физические параметры полученного результата и предсказанного результата, можно оценивать результативность целенаправленного поведения. Причем небходимо отметить, что на выбор того или иного действия влияет очень много факторов, совокупность которых обрабатывается в процессе афферентного синтеза.

Взаимодействие человека и животных с окружающей средой осуществляется через целенаправленную деятельность или поведение.

Функциональные системы - динамические, самоорганизующиеся, саморегулирующиеся построения, все составные компоненты которых содружественно объединяются для достижения полезных для самой системы и организма в целом - приспособительных результатов.

Выделяют два типа функциональных систем.

1. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т.п . Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде.

2. Функциональные системы второго типа используют внешнее звено саморегуляции . Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.

Центральная функциональная система, определяющая целенаправленные поведенческие акты различной степени сложности, складывается из следующих последовательно сменяющих друг друга стадий: -> афферентный синтез, -> принятие решения, -> акцептор результатов действия, -> эфферентный синтез, -> формирование действия, и, наконец, -> оценка достигнутого результата

АФФЕРЕНТНЫЙ (от лат. afferens - приносящий), несущий к органу или в него (напр., афферентная артерия); передающий импульсы от рабочих органов (желез, мышц) к нервному центру (афферентные, или центростремительные, нервные волокна). ЭФФЕРЕНТНЫЙ (от лат. efferens - выносящий), выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам, напр. эфферентные, или центробежные, нервные волокна. АКЦЕПТОР (от лат. acceptor - принимающий).

(1.Поведенческий акт любой степени сложности начинается со стадии афферентного синтеза. Возбуждение, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает во взаимодействие с другими афферентными возбуждениями, имеющими иной функциональный смысл. Головной мозг непрерывно обрабатывает все сигналы, поступающие по многочисленным сенсорным каналам. И только в результате синтеза этих афферентных возбуждений создаются условия для реализации определенного целенаправленного поведения.

Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи)

Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза. Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия . Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта.Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей . Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется. Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией . Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата. Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется. И животное успокаивается. В случае, когда результаты действия не совпадают с акцептором действия и возникает их рассогласование, появляется ориентировочно-исследовательская деятельность. В результате этого заново перестраивается афферентный синтез, принимается новое решение, создается новый акцептор результатов действия и строится новая программа действий. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией – удовлетворением потребности. Таким образом, в концепции функциональной системы наиболее важным ключевым этапом, определяющим развитие поведения, является выделение цели поведения. Она представлена аппаратом акцептора результатов действия, который содержит два типа образов , регулирующих поведение, - сами цели и способы их достижения. Выделение цели связывается с операцией принятия решения как заключительного этапа афферентного синтеза. Целенаправленное поведение – поиск целевого объекта, удовлетворяющего потребность, - побуждается не только отрицательными эмоциональными переживаниями. Побудительной силой обладают и представления о тех положительных эмоциях, которые в результате индивидуального прошлого опыта связаны в памяти животного и человека с получением будущего положительного подкрепления или награды, удовлетворяющего данную конкретную потребность. Положительные эмоции фиксируются в памяти и впоследствии возникают всякий раз как своеобразное представление о будущем результате при возникновении соответствующей потребности. Таким образом, в структуре поведенческого акта формирование акцептора результатов действия опосредовано содержанием эмоциональных переживаний. Ведущие эмоции выделяют цель поведения и тем самым инициируют поведение, определяя его вектор. Ситуативные эмоции, возникающие в результате оценок отдельных этапов или поведения в целом, побуждают субъект действовать либо в прежнем направлении, либо менять поведение, его тактику, способы достижения цели. Согласно теории функциональной системы, хотя поведение и строится на рефлекторном принципе, но оно не может быть определено как последовательность или цепь рефлексов. Поведение отличается от совокупности рефлексов наличием особой структуры, включающей в качестве обязательного элемента программирование, которое выполняет функцию опережающего отражения действительности . Постоянное сравнение результатов поведения с этими программирующими механизмами, обновление содержания самого программирования и обусловливают целенаправленность поведения . Таким образом, в рассмотренной структуре поведенческого акта отчетливо представлены главные характеристики поведения: его целенаправленность и активная роль субъекта в процессе построения поведения.

Помимо школы И. П. Павлова, успешно развивающей условно- рефлекторную теорию и в наше время, в физиологии существует целый ряд других направлений. Так, например, хорошо известна физиологическая школа ученика И. П. Павлова академика П. К. Анохина (1898–1974), обосновавшего и развившего принцип системной организации деятельности организма – теорию функциональных систем .

Среди многих проблем, разработкой которых занимались П. К. Анохин и его ученики, важное место занимал вопрос о системной работе ЦНС в условиях формирования ответа организма на внешние раздражители. Экспериментальные данные, полученные в условно-рефлекторных экспериментах, при параллельной регистрации суммарной электрической активности ряда структур мозга и активности отдельных нейронов позволили сформулировать концепцию функциональной системы. Еще в 1937 г. П. К. Анохин дал этому понятию следующее определение: "группа нервных образований с соответствующими рабочими органами на периферии, которые выполняют специфическую и четко определенную функцию" . В дальнейших исследованиях понятие функциональной системы претерпело определенные, однако не принципиальные изменения. Одним из первых в отечественной и мировой физиологии Анохин привлек внимание к феномену обратной афферентации, который в дальнейшем стал известен как принцип отрицательной обратной связи (этот же принцип представляет собой краеугольное понятие кибернетики). Важным этапом развития взглядов П. К. Анохина было введение им представления о системогенезе, т.е. о закономерностях развития функциональных систем.

В концепции функциональной системы условный рефлекс рассматривается в качестве результата сложного многокомпонентного процесса. Ведущим системообразующим фактором считается достижение определенного "конечного" результата, соответствующего потребностям организма в данный момент. Начальный узловой механизм функциональной системы – афферентный синтез. Это комплекс физиологических процессов, состоящий из нескольких функциональных блоков – доминирующей мотивации, обстановочной афферентации (всей суммы внешней и внутренней стимуляции, получаемой мозгом в обстановке эксперимента), так называемой пусковой афферентации и памяти. В результате интеграции этих процессов происходит "принятие решения". Именно оно определяет конечный результат процесса: на основе афферентного синтеза выбирается один из множества вариантов ответа организма. Как следствие этого уменьшается число степеней свободы в действии функциональных систем других уровней и формируется программа действий. Параллельно с ней создается так называемый "акцептор результатов действия", т.е. нервная модель будущих (ожидаемых) результатов, некий идеальный образ. Возникающее на следующей стадии эфферентное возбуждение ведет к определенному действию и результату. Информация о параметрах результата через обратную связь (обратную афферентации)) воспринимается акцептором результатов действия для сопоставления с ранее сформированной ("идеальной") моделью. Если параметры результата не соответствуют предсуществующей модели, то возникает новое возбуждение, которое должно произвести соответствующую коррекцию. Акцептор результатов действия направляет активность организма вплоть до момента достижения желаемой цели.

Поведенческий акт может иметь разную степень сложности, а формируясь и осуществляясь в конкретных условиях, он не может не зависеть от них. В процессе научения животные усваивают новые формы поведения.

С точки зрения П. К. Анохина, структура поведенческого акта представляет собой последовательную смену следующих стадий:

  • афферентный синтез;
  • принятие решения;
  • акцептор результатов действия;
  • эфферентный синтез;
  • формирование самого действия;
  • оценка достигнутого результата.

Стадия афферентного синтеза представляет собой анализ совокупности информационных сигналов, поступающих в ЦНС и дающих животному основание принять решение о возможном поведении. Во время этой стадии учитывается потребность организма в чем-либо, а также наличие возможных путей ее удовлетворения, имеющихся в памяти животного; воздействие разнообразных факторов внешней среды (обстановочная афферентация) и сигналов, запускающих поведение (пусковая афферентация). Любой поведенческий акт направлен на удовлетворение какой-либо потребности организма.

Доминирующая потребность активирует соответствующие отделы памяти, хранящие информацию о возможных путях удовлетворения данной потребности, а также активизирует двигательные системы организма, способствующие ее скорейшему удовлетворению. Кроме наличия соответствующей потребности, возможность осуществления поведенческого акта зависит также от условий, в которых приходится действовать животному. Факторы внешней среды, или обстановочная афферентация, влияют на проявление и характер поведенческого акта, а иногда и сами могут вызывать привычное для данной ситуации поведение. Значение обстановочной афферентации заключается в том, что создавая скрытое возбуждение, она приурочивает поведение к определенному месту, наиболее целесообразному для удовлетворения соответствующей потребности. Как правило, поведение в несвойственной для животного обстановке, не связанное с удовлетворением данной потребности, протекает менее выражено, неполно или неэффективно. В результате взаимодействия информации о потребности, обстановке и данных памяти формируется готовность организма к определенному действию, которое запускается соответствующими сигналами или стимулами, т.е. пусковой афферентацией.

Пусковая афферентация привязывает поведение к конкретному времени, конкретной обстановке и конкретной ситуации. Стадия афферентного синтеза завершается переходом в стадию принятия решения, которая определяет тип и направление поведения. При этом формируется так называемый акцептор результата действия, представляющий собой образ будущих событий, результата, программы действия и представление о средствах достижения необходимого результата.

На стадии эфферентного синтеза формируется конкретная программа поведенческого акта, которая переходит в действие – с какой стороны забежать, какой лапой толкнуться и с какой силой. Полученный животным результат действия по своим параметрам сравнивается с акцептором результата действия. Если происходит совпадение, удовлетворяющее животное, поведение в данном направлении заканчивается; если нет – поведение возобновляется с изменениями, необходимыми для достижения цели.

Большую роль в целенаправленном поведении играют эмоции. Если параметры выполненного действия не соответствуют акцептору действия (поставленной цели), то возникает отрицательное эмоциональное состояние, создающее дополнительную мотивацию к продолжению действия, его повторению по скорректированной программе до тех пор, пока полученный результат не совпадет с поставленной целью (акцептором действия). Если же это совпадение произошло с первой попытки, то возникает положительная эмоция, прекращающая его.

Таким образом, наиболее важным компонентом, определяющим поведение, является достижение биологически полезного результата, удовлетворение ведущих биологических потребностей: голода, жажды, агрессии, половой потребности, родительской и т.п. Только при наличии биологически важной цели поведение становится целесообразным для животного, необходимым для него и повторяющимся с большой вероятностью в будущем. Согласно теории функциональных систем, хотя поведение и строится по рефлекторному принципу, оно определяется как последовательность или цепь условных рефлексов. Действие животных определяется не только внешними раздражителями, но и внутренними потребностями, и возникает на основе опережающего отражения действительности – программирования, а ведущим фактором организации поведения, его целью является получение биологически полезного результата.

Теория функциональной системы П. К. Анохина расставляет акценты в решении вопроса о взаимодействии физиологических и психологических процессов и явлений. Она показывает, что те и другие играют важную роль в совместной регуляции поведения, которое не может получить полного научного объяснения ни на основе только знания физиологии высшей нервной деятельности, ни на основе исключительно психологических представлений. Для многочисленных учеников и последователей П. К. Анохина теория функциональных систем служила и служит теоретической базой для формулировки определенных физиологических задач и для объяснения полученных в экспериментах результатов, однако ее прогностические возможности оказываются, как правило, невысокими, по-видимому, в связи с чрезвычайно общим характером исходных формулировок. Тем не менее концепция функциональной системы была и остается одним из принятых в отечественной науке подходов к рассмотрению механизмов целостного поведения.

  • Анохин П. К. Биология и нейрофизиология условного рефлекса. М., 1968.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта