Главная » 1 Описание » Работа процесса термодинамика. Работа в термодинамике определение

Работа процесса термодинамика. Работа в термодинамике определение

РАБОТА (в термодинамике) РАБОТА (в термодинамике)

РАБО́ТА, в термодинамике:
1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами;
2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса; работа системы положительна, если она отдает энергию, и отрицательна, если получает.


Энциклопедический словарь . 2009 .

Смотреть что такое "РАБОТА (в термодинамике)" в других словарях:

    работа (в термодинамике) - работа Энергия, передаваемая одним телом другому, не связанная с переносом теплоты и (или) вещества. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики… … Справочник технического переводчика

    1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами; 2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса; работа системы… … Энциклопедический словарь

    Силы, мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения. Если сила F численно и по направлению постоянна, а перемещение М0М1 прямолинейно (рис. 1), то P. A = F s cosa, где s=M0M1, a угол… … Физическая энциклопедия

    - (в термодинамике), 1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физические тела) с окружающими телами; 2) количественная характеристика преобразования энергии в физических процессах; зависит от вида процесса.… … Современная энциклопедия

    В термодинамике:..1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами;..2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса;… … Большой Энциклопедический словарь

    Силы, мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения. Если сила F численно и по направлению постоянна, а перемещение M0M1 прямолинейно (рис. 1), то P. A = F․s․cosα, где s = M0M1 … Большая советская энциклопедия

    РАБОТА - (1) скалярная физ. величина, характеризующая преобразование (см.) из одной формы в др., происходящее в рассматриваемом физ. процессе. Единица работы в СИ (см.). Р. всех внутренних и внешних сил, действующих на механическую систему, равна… … Большая политехническая энциклопедия

    1) величина, характеризующая преобразование энергии из одной формы в другую, происходящее в рассматриваемом физ. процессе. Напр., Р. всех внеш. и внутр. сил, действующих на механич. систему, равна изменению кинетической энергии системы.… … Большой энциклопедический политехнический словарь

    В термодинамике, 1) одна из форм обмена энергией (наряду с теплотой) термодинамич. системы (физ. тела) с окружающими телами; 2) количеств. характеристика преобразования энергии в физ. процессах, зависит от вида процесса; Р. системы положительна,… … Естествознание. Энциклопедический словарь

    Работа Размерность L2MT−2 Единицы измерения СИ Дж СГС … Википедия

Книги

  • Комплект таблиц. Физика. Термодинамика (6 таблиц) , . Учебный альбом из 6 листов. Внутренняя энергия. Работа газа в термодинамике. Первое начало термодинамики. Второе начало термодинамики. Адиабатный процесс. Цикл Карно. Арт. 2-090-661. 6…
  • Основы моделирования молекулярной динамики , Галимзянов Б.Н.. В настоящем учебном пособии представлен базовый материал, необходимый для овладения знаниями и первичными навыками по компьютерному моделированию молекулярной динамики. Пособие включает в…

Внутренняя энергия газа при переходе его из одного состояния в другое изменяется. Рассмотрим, как это изменение связано с работой внешних сил над газом или газа против внешних сил. Для этого рассмотрим цилиндр с подвижным поршнем. На произвольном малом участке при движении поршня изменяется объем газа и совершается работа, равная произведению силы, действующей на поршень со стороны газа, находящегося внутри цилиндра, на перемещение поршня под действием этой силы: ΔА i = F i Δx .Работа положительна, если направление силы и перемещения совпадают и отрицательна, если они противоположны. Из этого следует, что при сжатии газа положительна работа внешних сил, а при расширении положительную работу совершает газ.Для вычисления работы, совершаемой газом при изменении его объема, в определяющем уравнении работы можно заменить силу, действующую на поршень в цилиндре, через произведение давления газа на площадь поршня. Получаем, что работа в термодинамике определяется произведением давления газа на изменение его объема:

ΔA i = p i S Δx = p i ΔV .

Термодинамическая работа - способ передачи энергии, связанный с изменением внешних параметров системы.

Механическая работа определяется как:

δA =(F dr −→), где F → - сила, а dr −→ - элементарное (бесконечно малое) перемещение.Элементарная работа термодинамической системы над внешней средой может быть вычислена так:

δA =(F dr −→)=P (ds −→dr −→)=PdV , где ds −→ - нормаль элементарной (бесконечно малой) площадки, P - давление и dV - бесконечно малое приращение объёма. Работа в термодинамическом процессе 1→2, таким образом, выражается так: A =∫12PdV .

Величина работы зависит от пути, по которому термодинамическая система переходит из состояния 1 в состояние 2, и не является функцией состояния системы. Это легко доказать, если учесть, что геометрический смысл определённого интеграла - площадь под графиком кривой. Так как работа определяется через интеграл, то в зависимости от пути процесса площадь под кривой, а значит, и работа, будет различна. Такие величины называют функциями процесса.Несмотря на то, что до сих пор и в физической химии используется обозначение работы A , в соответствии с рекомендациями ИЮПАК работу в химической термодинамике следует обозначать как W . Впрочем, авторы могут использовать какие угодно обозначения, если только дадут им расшифровку.

Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой . Теплота - это одна из основных термодинамических величин в классической феноменологическойтермодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.Для изменения внутренней энергии системы посредством теплообмена также необходимо совершить работу. Однако это не макроскопическая работа, которая связана с перемещением границы системы. На микроскопическом уровне эта работа складывается из работ сил, действующих на молекулы системы на границе контакта более нагретого тела с менее нагретым, то есть энергия передаётся посредством столкновений молекул. Поэтому с точки зрения молекулярно-кинетической теории различие между работой и теплотой проявляется только в том, что совершение механической работы требует упорядоченного движения молекул на макроскопических масштабах, а передача энергии от более нагретого тела менее нагретому этого не требует.Энергия может также передаваться излучением от одного тела к другому и без их непосредственного контакта.Количество теплоты не является функцией состояния, и количество теплоты, полученное системой в каком-либо процессе, зависит от способа, которым она была переведена из начального состояния в конечное.Единица измерения в Международной системе единиц (СИ) - джоуль. Как единица измерения теплоты используется также калория. В Российской Федерации калория допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «промышленность» .



Определение

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как ΔQ = A + ΔU . Здесь ΔU - изменение внутренней энергии системы, ΔQ - количество теплоты, переданное системе, а A - работа, совершённая системой. Однако определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота - это энергия переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного закона и превращается в бесполезное для расчётов определение количества теплоты.Пусть в системе, состоящей из двух тел X и Y , тело Y (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X . Предположим, что тело X также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь сY . Количеством теплоты , переданным телу X в некотором процессе, называется величина Q X = −ΔU Y , где ΔU Y - изменение внутренней энергии тела Y . Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A = −ΔU x ΔU y , где A - макроскопическая работа, совершенная телом X , что позволяет записать это соотношение в форме первого начала термодинамики: ΔQ = A +ΔU x .Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо.

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца . Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.

Если бесконечно малое расширение системы за счет подвода к ней теплоты, происходит во внешней среде, находящейся повсюду под одним и тем же давлением Р, то увеличение объема системы V на бесконечно малую величину dV сопровождается работой:

которую совершает система над окружающей средой и называемой работой изменения объема (механическая работа ).

При изменении объема тела от значения объема до значения работа, совершаемая системой, будет равняться:

Из формулы (*) следует, что и всегда имеют одинаковые знаки:

Если , то и , т.е. при расширении работа тела положительна, при этом тело само совершает работу;

Если же , то и , т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Теперь, рассмотрим работу, которая производится системой над каким- либо внешним объектом. Пусть рассматриваемое тело представляет собой газ, находящийся в цилиндре под поршнем. Поршень сверху нагружен грузом.


В результате подвода теплоты к газу произошло его расширение от объема до объема . При этом поршень с грузом переместился с высоты на высоту .

В результате расширения телом совершена работа:

а потенциальная энергия груза увеличилась на величину:

Разность между работой расширения и приращением потенциальной энергии представляет собой полезную внешнюю работу (располагаемую или техническую работу) которая произведена телом над внешним объектом:

В термодинамике широко используют -диаграмму. Поскольку состояние термодинамической системы определяется двумя параметрами, то на -диаграмме оно изображается точкой. На рисунке точка 1 соответствует начальному состоянию системы, точка 2 -конечному, а линия 1-2 соответствует процессу расширения рабочего тела от до .

Механическая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью объемов.


Располагаемая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью давлений.

Работа зависит от характера термодинамического процесса.

Первый закон термодинамики .

Первый закон термодинамики представляет собой закон сохранения и превращения энергии.

Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии термодинамической системы.

Формулировка первого закона термодинамики :

Теплота, подведенная к системе, расходуется на изменение энергии системы и совершение механической работы.

Для 1кг вещества уравнение первого закона термодинамики имеет вид:



Первый закон термодинамики может быть записан также в другой форме.

Учитывая то, что энтальпия равна:

а ее изменение:

Выразим из выражения изменение внутренней энергии:

и подставим ее в уравнение первого закона термодинамики

До сих пор мы рассматривали только системы, вещество в которых не перемещалось в пространстве. Однако следует отметить, что первый закон термодинамики имеет общий характер и справедлив для любых термодинамических систем- и неподвижных и движущихся.

Предположим, что рабочее тело подается в тепломеханический агрегат (например, лопатки турбины). Рабочее тело совершает техническую работу, например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок.

Запишем первый закон термодинамики для неподвижной системы:

Работа расширения совершается рабочим телом на поверхностях, ограничивающих выделенный движущийся объем, т. е. на стенках агрегата. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине), и рабочее тело совершает на них техническую работу .

При входе рабочего в агрегат и выходе его из агрегата затрачивается так называемая работа вытеснения :

Часть работы расширения () затрачивается на увеличение кинетической энергии рабочего тела в потоке, равное .

Таким образом:

Подставив данное выражение механической работы в уравнение первого закона термодинамики, получим:

Поскольку энтальпия равна:

Окончательный вид первого закона термодинамики для движущегося потока будет иметь вид:

Теплота, подведенная к потоку рабочего тела, расходуется на увеличение энтальпии рабочего тела, производство технической работы и увеличение кинетической энергии потока.

Второй закон термодинамики .

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту. Работа может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в работу в периодически повторяющемся (непрерывном) процессе нельзя.

Первый закон термодинамики “позволяет” создать тепловой двигатель полностью превращающий подведенную теплоту в работу L, т.е.:

Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты () на величину отведенной теплоты , т.е.:


Вечный двигатель можно осуществить, если теплоту передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно.

Теплота сама собой может переходить только от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом, для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики . Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу. Одна из формулировок второго закона термодинамики :

Для существования теплового двигателя необходимы 2 источника -горячий источник и холодный источник (окружающая среда).

Историческая справка.

1) М.В. Ломоносов, проведя стройные рассуждения и простые опыты, пришел к выводу, что «причина теплоты состоит во внутреннем движении частиц связанной материи… Весьма известно, что тепло возбуждается движением: руки от взаимного трения согреваются, дерево загорается, искры вылетают при ударе кремнием о сталь, железо накаливается при ковании его частиц сильными ударами»

2) Б. Румфорд, работая на заводе по изготовлению пушек, заметил, что при сверлении пушечного ствола он сильно нагревается. Например, он помещал металлический цилиндр массой около 50 кг в ящик с водой и, сверля цилиндр сверлом, доводил воду в ящике до кипения за 2.5часа.

3) Дэви в 1799 году осуществил интересный опыт. Два куска льда при трении одного о другой начали таять и превращаться в воду.

4) Корабельный врач Роберт Майер в 1840 году во время плавания на остров Яву заметил, что после шторма вода в море всегда теплее, чем до него.

Вычисление работы.

В механике работа определяется как произведение модулей силы и перемещения: A=FS. При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.


Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис.). Будем медленно нагревать газ до температуры T 2 . Газ будет изобарно расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле A =F Δ l =pS Δ l =p Δ V , A= p Δ V

где ΔV - изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Почему при сжатии или расширении меняется внутренняя энергия тела? Почему при сжатии газ нагревается, а при расширении охлаждается?

Причиной изменения температуры газа при сжатии и расширении является следующее: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется .

  • Если газ сжимается, то при столкновении движущийся навстречу поршень передаёт молекулам часть своей механической энергии, в результате чего газ нагревается;
  • Если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются. в результате чего газ охлаждается.

При сжатии и расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Работа внешних сил, действующих на газ

  • При сжатии газа, когда ΔV = V 2 – V 1 < 0 , A>0, направления силы и перемещения совпадают;
  • При расширении, когда ΔV = V 2 – V 1 > 0 , A<0, направления силы и перемещения противоположны.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

pV 1 = m/M*RT 1 ; pV 2 =m/M* RT 2 ⇒

p (V 2 − V 1 )= m/M* R (T 2 − T 1 ).

Следовательно, при изобарном процессе

A = m/M* R Δ T .

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A . Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Геометрическое истолкование работы:

На графике p = f(V) при изобарном процессе работа равна площади заштрихованного на рисунке а) прямоугольника.


Если процесс не изобарный (рис. б), то кривую p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке в.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта