Главная » 2 Распространение и сезон сбора » Системы уравнений с параметром. Решение задачи с параметрами

Системы уравнений с параметром. Решение задачи с параметрами

Найдите все значения параметра а, при которых система имеет ровно два решения.

Первое уравнение системы перепишем иначе, выделив квадраты двучленов:

Первое слагаемое есть расстояние между точками (x; y) до точки А(-1; 2).
Второе слагаемое есть расстояние между точками (x; y) до точки В(2; 6).
Сумма расстояний от точки (x; y) до двух других должна быть равна 5.

Расстояние между точками А и В легко вычислить, оно равно 5.

Точке (x; y) ничего не остаётся, как лежать на отрезке АВ. Это значит, что
первое уравнение системы задаёт отрезок АВ (отрезок - график уравнения).

Второе уравнение задаёт параболу. Она должна пересекать отрезок в двух точках.
При маленьких а пересечений нет. Первое пересечение возникнет в тот момент,
когда парабола пройдёт через точку А(-1; 2). Найдите это значение а (а = 1).

Если а капельку увеличить, пересечение останется единственным... до тех пор,
пока парабола не пройдёт через точку В(2; 6). Найдите это значение а (а = 2).

Сейчас и с этого момента пересечений ровно два. Но до тех пор, пока...
парабола не коснётся отрезка. Напишем сначала уравнение АВ.

Прямая y = kx + b проходит через А(-1; 2) и В(2; 6). Выполняется система:

Найдя из этой системы значения k и b, напишем уравнение прямой АВ:

Теперь потребуем, чтобы квадратное уравнение имело один корень:

Единственный корень при этом находится в пределах отрезка АВ.

При найденном значении параметра решение у начальной системы одно.
При а, больших найденного, пересечений у параболы с отрезком нет.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О .

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Задача 2

Найдите все значения а , при каждом из которых уравнение

x − 2a _____ x + 2 + x − 1 ____ x a = 1

Имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и x a .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
- Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
- Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
- Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: "дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю".

После раскрытия скобок и приведения подобных членов получим

x 2 − 2ax + 2a 2 − x − 2 = −2a .

Окончательно приведём к виду, характерному для квадратного уравнения:

x 2 − (2a + 1)·x + (2a 2 + 2a − 2) = 0.

Дискриминант этого уравнения

D = (2a + 1) 2 − 4·(2a 2 + 2a − 2) = −4a 2 − 4a + 9.

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10__ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a , ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a x = а .

a 2 − (2a + 1)·a + (2a 2 + 2a − 2) = 0.
a 2 + a − 2 = 0.
a = 1 и a = −2.

Определим те значения a , при которых корнем квадратного уравнения является x = −2.

(−2) 2 − (2a + 1)·(−2) + (2a 2 + 2a − 2) = 0.
a 2 + 3a + 2 = 0.
a = −1 и a = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

a = −1

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

a = −2

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Ответ: a ∈{(−1 − √10__ )/2; −2; −1; 1; (−1 + √10__ )/2.}

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

Найдите все значения а, при каждом из которых система уравнений

имеет ровно два решения.

Решение.

Запишем 1-ое уравнение системы в виде: x 2 + 5x + y 2 -y -52 = |x-5y +5|. (*)

1) Так как правая часть равенства неотрицательна, то и левая часть равенства должна быть таковой, а именно: x 2 + 5x + y 2 -y-52 ≥ 0. Выделим из алгебраических сумм (x 2 + 5x) и (y 2 - y) полные квадраты двучленов.

x 2 + 2 х 2,5 + 2,5 2 -2,5 2 + y 2 -2∙y∙0,5 + 0,5 2 -0,5 2 -52 ≥ 0;

(x 2 + 2 х 2,5 + 2,5 2) + (y 2 -2 y 0,5 + 0,5 2) ≥ 52 + 2,5 2 + 0,5 2 ;

(х + 2,5) 2 + (у-0,5) 2 ≥ 52 + 6,25 + 0,25;

(х + 2,5) 2 + (у-0,5) 2 ≥ 58,5. ОДЗ : решения системы находятся среди множества точек, лежащих вне окружности с центром в точке Q(-2,5; 0,5) и радиусом

2) Раскроем модульные скобки в уравнении (*), считая, что выражение под знаком модуля неотрицательно, т.е. х-5у +5 ≥ 0 или 5у ≤ х + 5, отсюда у ≤ 0,2х+1. Тогда равенство (*) запишется в виде:

x 2 + 5x + y 2 -y-52 = x-5y +5. Перенесём все в левую часть и упростим её.

x 2 + 5x + y 2 -y-52-x + 5y-5 = 0;

x 2 + 4x + y 2 + 4у-57 = 0. Выделим из алгебраических сумм (x 2 + 4x) и (y 2 + 4y) полные квадраты двучленов.

x 2 + 4x + 4-4 + y 2 + 4у +4-4-57 = 0;

(x 2 + 4x + 4) + (y 2 + 4у +4) = 57 + 4 + 4;

(х + 2) 2 + (у + 2) 2 = 65. Это уравнение окружности с центром в точке О 1 (-2; -2) и радиусом

Рассматривать будем только те точки этой окружности, которые лежат ниже прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии, что х-5у +5 ≥ 0, т.е. при у ≤ 0,2х+1. Заметим, что все точки этой окружности, лежащие ниже прямой х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5), поэтому удовлетворяют ОДЗ.

3) Теперь раскроем модульные скобки в уравнении (*), считая, что выражение под знаком модуля отрицательно, т.е. х-5у +5 < 0 или 5у > х + 5, отсюда у>0,2х+1. Тогда равенство (*) запишется в виде:

x 2 + 5x + y 2 -y-52 = -x + 5y +5. Перенесём все в левую часть и упростим её.

x 2 + 5x + y 2 -y-52 + x-5y + 5 = 0;

x 2 + 6x + y 2 -6у-47 = 0. Выделим из алгебраических сумм (x 2 + 6x) и (y 2 -6y) полные квадраты двучленов.

x 2 + 6x + 9-9 + y 2 -6у + 9-9-47 = 0;

(x 2 + 6x + 9) + (y 2 -6у +9) = 47 + 9 + 9;

(х + 3) 2 + (у-3) 2 = 65. Это уравнение окружности с центром в точке О 2 (-3; 3) и радиусом

Рассматривать будем только те точки этой окружности, которые лежат выше прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии х-5у +5 < 0, т.е. при условии у > 0,2х+1. Заметим, что все точки этой окружности, лежащие выше прямой х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5), поэтому удовлетворяют ОДЗ.

4) Найдем точки пересечения окружностей с центрами в точках О 1 и О 2 . Это также точки пересечения любой из этих окружностей с прямой х-5у +5 = 0. Для определенности возьмем уравнение первой из окружностей и решим систему:

Из 2-го уравнения выразим х через у и подставим в 1-ое уравнение.

Упростим и решим 2-ое уравнение полученной системы.

(5у-3) 2 + (у + 2) 2 = 65;

25у 2 -30у + 9 + у 2 +4у + 4-65 = 0;

26у 2 -26у-52 = 0;

у 2 -у-2 = 0. По теореме Виета у 1 + у 2 =1, у 1 у 2 = -2. Отсюда у 1 = -1, у 2 = 2.

Тогда х 1 = 5 у 1 -5 = 5 (-1)-5 = -10; х 2 = 5 у 2 -5 = 5 2-5 = 2.

Точки пересечения окружностей с центрами О 1 и О 2 лежат на прямой х-5у +5 = 0, и это точки Т(-10; -1) и А(5; 2).

5) Разберемся, что представляет собой прямая у-2 = а(х-5). Запишем это уравнение в виде у = а(х-5) + 2 и вспомним, как получается график функции y = f (x- m ) + n из графика функции y = f (x ). Он получается переносом графика функции y = f (x ) на m единичных отрезков вдоль оси Ох и на n единичных отрезков вдоль оси Оу. Следовательно, график функции у = а(х-5) + 2 можно получить из графика функции у = ах переносом на 5 единиц вправо и на 2 единицы вверх. Другими словами, прямая пройдет через точку А(5; 2) и должна иметь такой угловой коэффициент а , чтобы пересечь наши окружности с центрами в точках О 1 и О 2 ровно в двух точках. Это произойдет только в тех случаях, когда прямая, проходя через точку А, общую для обеих окружностей, далее будет пересекать только одну из них. Предельными положениями нашей прямой (с параметром а ) будут касательные к окружностям в точке А. Нам понадобятся не сами уравнения касательных, но их угловые коэффициенты. Как мы их получим?

6) Радиус О 1 А, проведенный в точку касания будет перпендикулярен касательной. Угловые коэффициенты k 1 и k 2 двух взаимно перпендикулярных прямых y = k 1 x + b 1 и y = k 2 x + b 2 подчиняются закону: k 1 k 2 = -1. Составим уравнения прямой О 1 А и прямой О 2 А, определим угловой коэффициент каждой прямой, а затем найдем угловые коэффициенты касательных, являющихся предельными положениями прямой у = а(х-5) + 2. Промежуток между найденными значениями параметра а и будет ответом задачи.

Используем формулу уравнения прямой, проходящей через две данные точки (х 1 ; у 1) и (х 2 ; у 2). Эта формула имеет вид:

Составим уравнение прямой, проходящей через точки О 1 (-2; -2) и А(5; 2). У нас х 1 = -2, у 1 = -2, х 2 = 5, у 2 = 2. Подставляем эти значения в формулу:

Итак, уравнение касательной в точке А к окружности с центром в точке О 1 имеет вид.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта