Главная » 2 Распространение и сезон сбора » Строение и свойства молекул. Молекулярное строение вещества

Строение и свойства молекул. Молекулярное строение вещества


Молекулярное строение, т.е. химический состав и способ соединения атомов в молекулу, однозначно не определяет поведение полимерного материала, построенного из макромолекул. Свойства полимеров, особенно в кристаллическом фазовом состоянии, зависят от их надмолекулярной структуры, т.е. способа упаковки макромолекул в пространственно выделенных элементах, размера и формы таких элементов и их взаимного расположения в пространстве. Другими словами, под надмолекулярной структурой понимают сложные агрегаты из большого числа макромолекул, образующиеся в результате действия межмолекулярных сил.

Для полимеров типичны твердое и жидкое агрегатные состояния, характеризующиеся колебательным и вращательным движением частиц и небольшими расстояниями между частицами. В газообразном состоянии полимеры не бывают, т.к. для того, чтобы раздвинуть макромолекулы на большие расстояния, необходимо преодолеть сильные межмолекулярные взаимодействия цепных макромолекул, требующие энергий, сравнимых с энергиями химических связей в полимерной цепи, т.е. произойдет деструкция полимера.

Фазовое состояние определяется порядком в расположении молекул. Различают два вида фазового состояния: аморфное и кристаллическое. Аморфное фазовое состояние характеризуется ближним порядком на расстояниях 10-15Ǻ. Термодинамически устойчивое состояние отличается изотропностью, хотя в аморфных полимерах возможны локальные упорядоченные образования флуктуационного характера. Одна из первых моделей структуры аморфного состояния полимеров «пачечная» модель Каргина. Предполагалось, что для оптимальной упаковки длинных цепных молекул в аморфных полимерах существуют упорядоченные области в виде межмолекулярных пачек (ММП), образованных параллельно ориентированными соседними макромолекулами развернутой вытянутой конформации. Следовательно, основным структурным элементом линейных гибкоцепных полимеров в аморфном состоянии является не собственно макромолекула, а ММП или другая надмолекулярная структура, в составе которой отдельные макромолекулы теряют свою индивидуальность.

Кристаллическое фазовое состояние характеризуется дальним трехмерным порядком на расстояниях 1000Ǻ. Это состояние отличается анизотропией свойств, скачками свойств на границе раздела фаз. В кристаллических полимерах практически всегда имеется доля аморфной фазы, часто встречаются дефекты, дислокации. Трудности в получении кристаллов полимеров и особенности кристаллического состояния макромолекул связаны с разнообразием надмолекуляных структур, существующих еще в аморфном состоянии.

Кроме аморфного и кристаллического, известно также мезофазное промежуточное жидкокристаллическое состояние полимеров. Оно отличается постоянной устойчивой анизотропией некоторых физических свойств. В обычных изотропных жидкостях может возникать временная «наведенная» анизотропия под влиянием электрического поля, механических воздействий и т. д. В отличие от этого у полимеров вследствие малой подвижности макромолекул и больших времен релаксации «наведенная» анизотропия сохраняется бесконечно долго, т.е. является устойчивой.

Надмолекулярная структура аморфных полимеров

Наиболее полное представление о процессах образования надмолекулярных структур и их типичных форм можно получить в том случае, если проследить весь процесс структурообразования. Существуют два пути образования структур. Если макромолекулы достаточны гибкие, то они могут сворачивать сферические частицы (клубки), так называемые глобулы.

Взаимное расположение отдельных участков цепной макромолекулы внутри такой глобулы, как правило беспорядочно, и почти любой полимер, переведенный в форму глобул, находится в аморфном состоянии. Например, полиэтилен, полиамиды.

В очень разбавленных растворах подавляющее большинство полимеров находится в виде таких клубков. Наиболее общим способом получения полимеров в глобулярном состоянии является испарение растворителей из растворов при возможно низких температурах. В глобулярном состоянии находятся и макромолекулы ряда белков. Глобулярное строение выгодно только для переноса полимерного вещества в растворенном состоянии, это очень важно для биологических процессов. Для всех остальных случаев оно означает потерю основных свойств, связанных с линейным цепным строением макромолекулы.

Способность глобулярных полимеров к образованию более сложных структур весьма ограничена. Если полимер монодисперсен, т.е. все его макромолекулы одинаковы, то глобулы укладываются с образованием структуры с плотной упаковкой шаров. Так образуются одиночные кристалы глобулярных белков. Например, вирус табачной мозаики.

Глобулы образуются в результате превышения силы внутримолекулярного взаимодействия над силами межмолекулярного взаимодействия.

Кроме того, для перехода от вытянутой формы к глобулярной, молекулярная цепь должна обладать достаточно высокой гибкостью для того, чтобы она могла свернуться.

Рис. 1. Молекула суперклея

Если полимер находится в высокоэластичном состоянии, то отдельные глобумерные частицы могут сливаться в одну частицу большего размера. Возникают глобулы, содержащие больше (десяти, сотни, тысячи) частиц. Этот процесс заканчивается или расслоением системы, или стабилизацией образовавшихся больших глобул, вследствие покрытия их поверхности примесями или перестройкой их в линейные структуры. Аналогичные процессы происходят и при полимеризации. В зависимости от условий проведения полимеризации могут быть термодинамически более выгодными те или иные конформации. Поэтому из одного и того же полимера можно получить множество различных по физическим структурам полимеров, крайними типами которых будут глобулярный и фибриллярный.

Известно, что существуют отдельные развернутые линейные цепи полимерных веществ. Развернутые макромолекулярные цепи образуют линейные агрегаты - пачки цепей. Типичной особенностью этих образований является то, что длины их значительно превосходят длину отдельных цепей. В каждую из таких пачек входят десятки, сотни отдельных макромолекул. Эти пачки цепей являются независимые структурными элементами, из которых строятся затем более сложные структуры.

Пачечную модель в последнее время подверглась критическому пересмотру. Вайнштейн, изучил дифракцию рентгеновских лучей на аморфном полимере, пришел к выводу, что структура такого полимера не может быть пачечной. Длина участков параллельности полимерных молекул, по его мнению, не велика и примерно равна их ширине. Эти участки постепенно переходят друг в друга, внутри них и в переходных зонах между ними образуются "косые" контакты молекул. Кроме того, пачечная модель находится в противоречии с основными положениями кинетической теории высокоэластичности, которая хорошо подтверждается экспериментом.

Йех предложил другую модель надмолекулярной организаци аморфного полимера. Он предположил, что аморфное состояние полимеров характеризуется наличием упорядоченных областей - доменов («зерен»), образованных макромолекулами, имеющие складчатые конформации.

Домены соединяются между собой с помощью проходных цепей. Междоменные области состоят из звеньев неупорядоченно расположенных цепей, а также включают в себя проходные цепи и свободные концы цепей, не вошедшие в домены.

Различают три возможных вида доменов: складчатые (гофрированные), снопообразные (мицеллорные) и глобулярные. Последние два вида хорошо согласуются с пачечной и глобулярной теориями. В этом проявляется достоинство доменной теории, как более общей и объединяющей.

Существование доменов в расплавах полимеров носит флуктуационный характер. Домены - совокупность межмолякулярных связей, возникают и разрушаются под действием теплового движения. Чем выше температура, тем короче время жизни домена и меньше его размеры. С уменьшением гибкости цепей, их регулярности, тенденция к формированию доменов снижается.

В расплавах полимеров с жесткими нерегулярными цепями не всегда удается обнаружить домены. Считается, что в подобных условиях они не образуются, а цепи имеют форму статистических клубков-глобул. Клубки проникают друг в друга, образуя прямые контакты.

В отличие от Йеха, Арисаков, Бакеев и Кабанов, используя модели Йеха, считают, что аморфный полимер состоит из плотно упакованных фибрилл. Каждая фибрилла состоит из складчатых доменов, соединенных проходными цепями. Но экспериментальные данные не позволяют рассматривать фибриллу, как основную форму надмолекулярной организации аморфного полимера.

Для объяснения надмолекулярной организации аморфных полимеров была предложена также кластерная модель.

Кластеры-области, в которых имеет место более плотная упаковка молекул или частиц, а также более упорядоченное их расположение по сравнению с основной, более рыхлой и разупорядоченной массой вещества. Поэтому плотность кластера несколько превышает среднюю плотность полимера в целом. Но по сравнению с кристаллами, кластеры являются менее упорядоченными и менее плотно упакованными областями. В связи с этим выделяют два вида кластеров:

1. Кристаллические - кластеры, в которых при определенных условиях может достигаться более упорядоченное расположение макромолекул. Они способны кристаллизоваться.

2. Антикристаллические - кластеры, которые принципиально не кристаллизуются.

Аморфный полимер является совокупностью антикристаллических кластеров, окруженных менее упорядоченными и более рыхлыми областями. Следовательно, плотность аморфных полимеров прямо пропорциональна объемной доле кластеров. Это совпадает с таким опытным фактом, как увеличение плотности аморфных полимеров при их отжиге. Отжиг приводит к увеличению числа антикристаллических кластеров, росту средних размеров этих образований и более упорядоченному расположению полимерных цепей в них.

Аморфные полимеры имеют случайную ориентацию их полимерных цепей, в то время как кристаллические полимеры образуют высоко упорядоченной кристаллической структуры в аморфной матрице (рис. 2). Термин полу-кристаллические полимеры используются для полимеров, содержащих как кристаллических и аморфных областей.

Рис. 2. Аморфные полимеры

Отличительной чертой кластерной модели является то, что в ней отсутствует регламентированный характер расположения цепей внутри кластера (Он определяется химическим строением полимера, его молекулярной массой). Кластер может состоять как из макромолекул, имеющих складчатую конформацию, так и из развернутых элементов полимерных цепей, не образующих складок. Еще одна особенность - флуктуационный характер кластеров.

Описанные выше организации макромолекул в аморфных полимерах являются лишь простейшими представлениями форм упорядочивания макромолекул. Они важны тем, что являются первым этапом процессов организации макромолекул, без которых невозможны разнообразные надмолекулярные структуры кристаллических полимеров

Надмолекуляная структура кристаллических полимеров

Фазовое состояние полимеров или способности полимеров к кристаллизации зависит от множества условий: температуры и скорости кристаллизации, термической предыстории, присутствие посторонних веществ. В зависимости от условий кристаллизации может быть получено множество морфологических форм кристаллических структур даже для одного и того же полимера. Разнообразие надмолекулярных структур в кристаллических полимерах обусловлено гибкостью и длинно-цепочным строением полимеров.

Одной из особенностей кристаллического состояния полимеров является наличие в них значительной доли неупорядоченности - «доля аморфной фазы». Поэтому и уделяется особенное внимание процессам кристаллизации.

При удалении растворителя из разбавленного раствора полимера в случае достаточно сильного межмолекулярного взаимодействия макромолекулы могут ассоциироваться в пачке. Пачка - первичная надмолекулярная структура.

Если пачка образована регулярными гибкими макромолекулами, то при соответствующих термодинамических условиях в ней произойдет кристаллизация, т. е. макромолекулы расположатся так, чтобы образовать пространственную решётку. Закристаллизовавшаяся пачка обладает границей раздела и характерным для кристаллического вещества поверхностным натяжением. Однако появление избыточной поверхностной энергии должно быть существенным в таких тонких и длинных образованиях.

В результате кристаллическая пачка приобретает способность складываться в ленты, обладающие меньшей плотностью поверхности. Лента - энергетически более выгодная форма. Складывание пачки в ленты происходит самопроизвольно в направлении уменьшения свободной энергии F<О путем многократного поворота пачки на 180°. Лента - вторичная надмолекулярная структура при пластинчатом механизме кристаллизации. Существование складчатых структур было впервые обнаружено и детально исследовано Келлером на примере полиэтилена и полиамидов.

Образование вторичных структур в кристаллическом полимере не прекращается на образовании лент. Требование уменьшения поверхностного натяжения приводит к складыванию «лент» в плоские образования, т.е. в пластины-ламели. Такие пластины образуются путем примыкания отдельных «лент» своими плоскими сторонами, что приводит к дальнейшему уменьшению поверхности. Для линейных полимеров из сложных цепей типичны ламелирные кристаллы, которые получаются достаточно совершенными при низких скоростях кристаллизации (монокристаллы полиэтилена).

Рис. 3. Полоски показывают рост кристаллов полиэтилена

Кроме пластинчатого механизма образования единичных кристаллов существует другой тип структур, который характеризуется наличием фибриллярных элементов.

Наиболее важным практическим примером получения кристаллов, в которых цепи в значительной степени сохраняют выпрямленные конформации, является кристаллизация при охлаждении расплава с одновременным наложением больших напряжений. Возникающие при этом структурные формы, получившие название «шиш-кебаб», характеризуются наличием длинного фибриллярного центрального ствола. На этом стержне растут в поперечном направлении ламели, в которых цепи находятся в складчатых конформациях.

Вместе с пластинчатым механизмом образования единичных кристаллов существует другой тип возникновения ряда высших надмолекулярных структур. Для пластинчатого типа простейшим структурным элементом является пластина из лент, а для фибриллярного типа такая складчатость отсутствует и пачки расположены вдоль фибриллы. Один и тот же полимер может кристаллизоваться и по пластинчатому, и по фибриллярному типу.

Картина образования единичных кристаллов является предельной картиной процесса кристаллизации. Отсюда вытекают неограниченные возможности возникновения неравновесных состояний кристаллических полимеров. Когда кристаллизация задерживается на стадиях образования лент, пластин и фибрилл, это ведет к образованию сферолитных структур - наиболее распространенный элемент крупных структур.

Это агрегаты кристаллов, обладающие одним центром и радиальной ориентацией кристаллов относительно центра.

Представляют собой типичные полукристаллические образования, получающиеся в реальных условиях формирования отливок, пленок и других полимерных изделий на основе кристаллизирующихся высокомолекулярных соединений практически всех классов.

Продукция из полистирола. Фото: Pat Hayes

Сферолиты не являются выгодными с точки зрения термодинамики, но они кинетически предпочтительнее. Размеры сферолитов могут колебаться в широких пределах - от десятков микрон до нескольких миллиметров и более. Мелкие сферолиты обнаруживают способность к агрегации с образованием очень длинных лентоподобных частиц.

Лентам из сферолитов присуща анизотропия оптических свойств из-за радиальной асимметрии их строения. Изменение ориентации происходит в каждом радиальном направлении, что проявляется возникновением картины чередующихся светлых и темных колец.

Сферолиты графита видно под электронным микроскопом

Кроме радиальных существуют также кольцевые сферолиты, характеризующиеся тем, что на картину мальтийского креста накладывается ярко выраженная система чередующихся темных и светлых колец.

В процессе кристаллизации при последовательно понижающейся температуре можно получить различные промежуточные стадии от многогранных ламелей до сильно разветвленных дендритов.

Дендриты - разветвленные кристаллы, иногда похожие на дерево (от греческого «дерево»). Все ветви дендрита кристаллографически связаны друг с другом.


Заключение

Надмолекулярные структуры в полимерах исследуются методами электронной микроскопии, нейтронографии, рентгеновской дифракции, светорассеяния, двойного лучепреломления и др. В частности, методом малолучевой дифракции нейтронов были определены радиусы инерции макромолекул, совпадающие с невозмущенными размерами гауссовых клубков, а невытянутых «пачек». В настоящее время известны альтернативные структурные модели: перекрывающиеся статистические клубки (ПСК); статистически сложные макромолекулы (домены) и др. В частности, предложенная Флори модель ПСК позволила теоретически обосновать концепцию зацеплений, стала основой для статистических теорий течений и термодинамических свойств концентрированных растворов полимеров. Результаты компьютерного моделирования конформаций методом Монте-Карло также подтверждали ПСК, которая характеризуется достаточно плотной упаковкой.

Методы исследования структуры полимеров можно разделить на две группы. К первой относятся визуальные методы: оптическая и электронная микроскопия, в которых используемая длина волны (источника света или пучка электронов) гораздо меньше размеров структурных элементов (макромолекул или их агрегатов).

Ко второй группе относятся интерференционно-дифракционные методы: дифракция рентгеновских лучей, дифракция электронов, нейтронов, светорассеяние. В этих методах используются электромагнитные колебания с длиной волны, сравнимой с размером исследуемых структурных элементов. Например, один из самых распространенных методов - рентгеноструктурный анализ - основан на явлении дифракции рентгеновских лучей с l=0,5-2,5Å. Если пучок рентгеновских лучей падает на кристаллы, линейные размеры которых сравнимы с, то можно оценить период идентичности, установить относительное расположение различных плоскостей кристаллической решетки, оценить степень кристалличности, размеры кристаллов, их ориентацию.

С помощью электронной микроскопии можно наблюдать отдельные макромолекулы и их агрегаты. Именно этим методом были получены представленные выше на рисунках основные типы надмолекулярных структур: фибриллярные кристаллы, монокристаллы и сферолиты. Тонкие детали строения сферолитов удается исследовать только при помощи электронного микроскопа.

Присутствие сферолитов оказывает влияние на механические (прочность) и другие свойства полимеров. Например, непрозрачность полиэтилена, нейлона и других кристаллических полимеров объясняется наличием сферолитов. Разнообразие надмолекулярных структур - основная причина особенных свойств кристаллических полимеров.

Одна из основных причин интереса к физике макромолекул заключается в том, чтобы с ее помощью постичь тайны живой природы, понять молекулярные основы поведения биологических систем. Прогресс в понимании механизма жизненных процессов невозможен без применения физических и химических идей и методов к изучению биологических процессов на молекулярном уровне.



В любой из больших библиотек мира комнаты и полки с книгами тянутся, кажется, бесконечно. Количество томов в Библиотеке конгресса США исчисляется десятками миллионов. В каждом из них представлены различные истории, детальные анализы, исторические документы – все со своим мнением. Но все эти миллионы книг, написанные по-английски, состоят всего лишь из нескольких десятков тысяч слов, а каждое слово состоит из комбинации всего 26 букв – от A до Z [плюс пробелы, знаки препинания и цифры – прим. перев. ].

Тем временем все мы живём в окружении огромного и поразительного разнообразия материалов – включая и то, из чего создано множество типов биологических структур, входящих в состав наших тел и всех тел животных, растений и других живых существ. Планета, на которой мы обитаем, состоит из разного рода камней, некоторые из которых жёсткие и хрупкие, некоторые пластичные, обладающих различными цветами и текстурами. Кроме воды у нас есть алкоголь, кислоты, сахара и масла в различных видах. Готовящаяся в духовках еда выдаёт различные ароматы, которые мы вдыхаем из воздуха. К солям, мелу и сплавам нужно добавить синтетические материалы, включая разнообразные пластики. Но важно помнить, что огромные богатства Библиотеки материалов состоят из небольшого (хотя и довольно разнообразного) ассортимента молекул, которые, в свою очередь, состоят всего из сотни атомов – элементов от H до U и далее (от водорода до урана и далее).

Сложность такого письменного языка, как английский, зиждется на словах, а сложность материалов начинается с молекул. Точно так же инструкции по постройке огромного набора биологических форм можно закодировать в ДНК – дезоксирибонуклеиновой кислоте – а конкретно, в нитях её трёхмолекулярных слогов, составленных из четырёх простых молекул, нуклеобаз. Причина сложности зиждется на простом математическом факте – большое разнообразие комбинаций может возникнуть из небольшого числа ингредиентов. Одного ингредиента недостаточно. Из буквы «а» можно составить всего десять разных слов, длина которых не будет превышать десяти букв: «а», «аа», «ааа», и так далее. Но из 26 букв уже может получиться 26 2 двухбуквенных слов, то есть 676, а десятибуквенных слов – и вовсе 141 167 095 653 376, гораздо больше, чем требуется для языка. Всего нескольких десятков тысяч слов, выбранных из множества миллионов или миллиардов потенциальных, достаточно для создания всей английской литературы. Те же принципы экспоненциального роста количества комбинаций позволяют нашему окружению формироваться из всего сотни разновидностей атомов, которые могут составляться в бесчисленное множество молекул, по размеру разнящихся от нескольких атомов до сотен и тысяч.

Начав со слов, или молекул, можно в исследовательских целях двигаться в двух направлениях. Можно попытаться понять, как сложные объекты собираются из их ингредиентов: что лежит за существованием отдельной книги или набора книг? Откуда взялся этот материал или класс материалов? Или же можно двигаться в другом направлении, определяя источник букв и атомов, основных строительных блоков.

Цель данной и последующих статей – ответ на второй вопрос, от молекул и вниз, до их истоков. Конечно, очень интересно изучать огромное разнообразие материалов, встречающихся в природе, коих так же много, как книг в Библиотеке Конгресса. Но, с другой стороны, происхождение молекул и атомы оказываются менее необъятной темой. Конечно, нельзя сказать, что ответ на эти вопросы простой и прямолинейный. Он вскрывает множество удивительных и неожиданных деталей атомной, ядерной физики и физики частиц (или высоких энергий). Как и в случае с источником букв алфавита, оказываются больше и интереснее, чем это можно было бы представить изначально. Он ведёт к открытиям, не ограничивающимся простыми свойствами материалов. Он ведёт физику к пониманию света, Солнца и других звёзд, истории Земли, пространства и времени, и Вселенной, по которой путешествуют Земля и Солнце.

Но перед этим необходимо рассмотреть ещё пару вопросов. Откуда нам известно, что все материалы состоят из молекул? Исторически, ответ на этот вопрос получали посредством сложных логических цепочек и огромного разнообразия научных опытов. До недавнего времени о существовании молекул можно было только догадываться, не напрямую, но довольно убедительно говорить на основании хитрых научных анализов и химических экспериментов. Сегодня же можно дать более прямолинейный ответ – поскольку сегодня мы можем «увидеть» молекулы . Мы видим их через микроскопы, хотя и не такие классические их виды, которые можно поставить на стол и заглянуть в них через окуляры. Это атомно-силовые микроскопы , и их способ рассматривания больше напоминает чтение шрифта Брайля; но свою задачу они выполняют. Они позволяют учёным делать фотографии материалов, детально разглядывать их структуру, подтверждая предыдущие предсказания, сделанные на её счёт. Они даже позволили разрешить предыдущие загадки конкретных молекул. Новые методы позволяют напрямую проверить все непрямые аргументы. Не то, чтобы мы сомневались на их счёт, поскольку они так часто успешно применялись в предсказаниях результатов химических реакций и в разработке и создании новых материалов! И, тем не менее, приятно знать, что эта дискуссия не абстрактна: молекулы и вправду существуют, и с помощью современных технологий мы можем обнаружить их напрямую.

В следующей статье мы рассмотрим атомы, то, из чего они состоят, и как из них получаются молекулы.

В этом разделе мы приступим к изучению химической связи в соединениях углерода и их молекулярной структуры. Атом углерода имеет электронную конфигурацию . В разд. 2.1 было рассказано о том, что четыре электрона на и 2р-орбиталях в атоме углерода могут гибридизоваться в результате образования четырех эквивалентных -орбиталей, которые отличаются друг от друга только пространственной ориентацией. Эти четыре орбитали позволяют атому углерода образовывать тетраэдрическую структуру. Классическим примером структуры такого типа может служить молекула метана (рис. 17.18). В молекуле метана каждая из четырех гибридных орбиталей атома углерода перекрывается с -орбиталью атома водорода, образуя -связь. Каждая -связь включает два электрона - один от атома углерода и один от атома водорода.

2s-орбиталь и две из трех -орбиталей в атоме углерода тоже могут гибридизоваться, образуя три гибридные -орбитали. Эти орбитали ориентированы в одной плоскости и позволяют атому углерода создавать плоские структуры. В таком случае у атома углерода остается еще один, не участвующий в гибридизации, электрон на -орбитали. Он может обобществляться с таким же -электроном соседнего атома углерода, образуя с ним пару связывающих электронов на -орбитали. Такой случай имеет место в молекуле этилена (рис. 17.19). Двойная связь в этой молекуле состоит из одной -связи и одной -связи. На рис. 17.19 -связь схематически изображена в виде двух электронных облаков.

В молекуле ацетилена (рис. каждого атома углерода и одна из его -орбиталей гибридизуются, образуя две -орбитали. Эти орбитали ориентированы вдоль одной линии и позволяют атомам углерода создавать линейную структуру. У каждого атома углерода остается еще по два электрона на разных -орбиталях. С

Рис. 17.18. Молекула метана.

Рис. 17.19. Молекула этена (этилена)

Рис. 17.20. Молекула этина (ацетилена).

помощью этих электронов атомы углерода образуют между собой две -связи, ориентированные в двух взаимно перпендикулярных плоскостях, которые проходят через эти атомы. Таким образом, тройная связь в молекуле ацетилена состоит из одной -связи и двух -связей.

В ароматических соединениях -электроны шести атомов углерода каждого углеродного цикла делокализуются, образуя -электронное облако (см. рис. 2.8).

Все насыщенные органические соединения содержат только ковалентные -связи. На рис. 17.21 и 17.22 схематически изображена химическая связь в молекулах пропана и метанола. На этих рисунках каждая пара перекрывающихся атомных орбиталей представляет одну -связь. На рис. 17.22, кроме того, показаны две несвязывающие орбитали атома кислорода. На каждой из них находится по два несвязывающих электрона. В формулах Льюиса каждая пара несвязывающих электронов на атоме кислорода изображается парой точек:

Трехмерное расположение атомов в молекулах органических соединений часто изображают с помощью моделей одного из двух типов: моделей из шариков и стерженьков либо объемных моделей. На рис. 17.21 и 17.22 показаны модельные изображения обоих типов для молекул пропана и метанола соответственно.

При записи структуры органических молекул иногда используется их развернутое

Рис. 17.21. Модели молекул пропана: а - орбитальная, б - из стержней и шаров, в - объемная.

Рис. 17.22. Модели молекул метанола: а - орбитальная, б - из стержней и шаров, в - объемная.

изображение, показывающее трехмерное расположение атомов (см. рис. 17.23, а) либо только его двумерное представление (рис. 17.23, б). Последнее используется в тех случаях, когда не рассматривается геометрическое строение молекулы. Однако во многих случаях достаточно указать всего лишь структурную формулу соединения (рис. 17.23, в). Она не дает информации о трехмерном расположении атомов в молекуле.

Рис. 17.23. Развернутые и обычные структурные формулы.

(молекулярная структура), взаимное расположение атомов в молекулах. В ходе химических реакций происходит перегруппировка атомов в молекулах реагентов и образуются новые соединения. Поэтому одна из фундаментальных химических проблем состоит в выяснении расположения атомов в исходных соединениях и характера изменений при образовании из них других соединений.

Первые представления о структуре молекул основывались на анализе химического поведения вещества. Эти представления усложнялись по мере накопления знаний о химических свойствах веществ. Применение основных законов химии позволяло определить число и тип атомов, из которых состоит молекула данного соединения; эта информация содержится в химической формуле. Со временем химики осознали, что одной химической формулы недостаточно для точной характеристики молекулы, поскольку существуют молекулы-изомеры, имеющие одинаковые химические формулы, но разные свойства. Этот факт навел ученых на мысль, что атомы в молекуле должны иметь определенную топологию, стабилизируемую связями между ними. Впервые эту идею высказал в 1858 немецкий химик Ф.Кекуле. Согласно его представлениям, молекулу можно изобразить с помощью структурной формулы, в которой указаны не только сами атомы, но и связи между ними. Межатомные связи должны также соответствовать пространственному расположению атомов. Этапы развития представлений о строении молекулы метана отражены на рис. 1. Современным данным отвечает структура г : молекула имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода.

Подобные исследования, однако, ничего не говорили о размерах молекул. Эта информация стала доступна лишь с разработкой соответствующих физических методов. Наиболее важным из них оказалась рентгеновская дифракция. Из картин рассеяния рентгеновских лучей на кристаллах появилась возможность определять точное положение атомов в кристалле, а для молекулярных кристаллов удалось локализовать атомы в отдельной молекуле. Среди других методов можно отметить дифракцию электронов при прохождении их через газы или пары и анализ вращательных спектров молекул.

Вся эта информация дает только общее представление о структуре молекулы. Природу химических связей позволяет исследовать современная квантовая теория. И хотя с достаточно высокой точностью молекулярную структуру рассчитать пока не удается, все известные данные о химических связях можно объяснить. Было даже предсказано существование новых типов химических связей.

Кондратьев В.Н. Структура атомов и молекул . М., 1959
Коулсон Ч. Валентность . М., 1965
Слэтер Дж. Электронная структура молекул . М., 1965
Картмелл Э., Фоулс Г. Валентность и строение молекул . М., 1979

Найти "МОЛЕКУЛ СТРОЕНИЕ " на

ХИМИЯ ОРГАНИЧЕСКАЯ. МОЛЕКУЛЯРНАЯ СТРУКТУРА
А. ХИМИЧЕСКИЕ СВЯЗИ УГЛЕРОДА
Химическая природа углерода, промежуточная между металлами и типичными неметаллами, позволяет ему образовывать ковалентные связи с большим числом элементов, чаще всего с водородом, кислородом, азотом, галогенами, серой и фосфором. Углерод образует связи с высокой степенью ионного характера с более электроположительными металлами, но такие вещества являются высокореакционноспособными и используются как промежуточные соединения в синтезе. Углерод-углеродные связи имеют ковалентный характер и бывают простые (одинарные), двойные, тройные и ароматические
(см. МОЛЕКУЛ СТРОЕНИЕ).
Ароматические системы. Бензол - родоначальник класса ароматических соединений - имеет уникальную стабильность и вступает в химические реакции, отличные от реакций неароматических систем. Есть и другие ароматические системы, наиболее обычные из которых имеют p-орбитали, доступные для образования p-связей, на каждом атоме кольца. Пятичленные кольцевые системы с двумя сопряженными (т.е. чередующимися с простыми) двойными связями и пятым атомом, несущим неподеленную пару электронов, являются также ароматическими по своим свойствам. Ниже представлены некоторые из таких систем:

Понятие ароматичности обобщил немецкий химик Э. Хюккель. Согласно правилу Хюккеля, плоские циклические сопряженные системы с числом p-электронов, равным 4n + 2, ароматичны и стабильны, а такие же системы с числом p-электронов 4n - антиароматичны и неустойчивы.
Стабильность циклических систем. Валентный угол (угол между связями) в ненапряженном фрагменте С-С-С составляет 109°, и кольца, в которых сохраняется это значение, более стабильны, чем те, где углы сильно отклоняются от этого значения. Напряжение, возникающее в циклических системах в результате искажения валентных углов, носит название байеровского - по имени немецкого химика А. Байера, впервые предложившего такое объяснение устойчивости насыщенных колец. Так, в трехчленных кольцах, где валентный угол составляет всего 60°, кольца сильно напряжены и легко разрываются; некоторые из их реакций напоминают реакции двойной связи С=С. Четырехчленные кольца также напряжены (валентный угол 90°), но не столь сильно. Пятичленные кольца почти плоски и их углы равны 108°; поэтому они ненапряжены и стабильны. В таких шестичленных кольцах, как циклогексан, атомы углерода не лежат в одной плоскости; такие циклы являются складчатыми, что уменьшает напряжение кольца. Пяти- и шестичленные кольца являются наиболее обычными. Большие кольца также способны снижать угловое напряжение путем образования складок, но в некоторых из них (от семи- до двенадцатичленных) атомы водорода на противоположных сторонах кольца сближаются настолько, что их отталкивание делает соединение менее стабильным (прелоговское напряжение, по имени швейцарского химика В.Прелога, открывшего этот эффект).
Таутомерия. Если молекулу или ион можно представить в виде нескольких структур, отличающихся друг от друга только распределением электронов, эти структуры называются резонансными, причем резонансные формы не находятся в равновесии одна с другой, просто действительная электронная структура молекулы является чем-то средним между этими крайностями. Однако есть ситуации, в которых атомы перемещаются в молекуле при обычных условиях так быстро, что между различными молекулярными формами самопроизвольно устанавливается равновесие. Такое явление называется таутомерией. Примером служит равновесие между кетоном и энолом (кето-энольная таутомерия):


Здесь два соединения различаются только расположением катиона водорода и пары электронов (в p-связи). Равновесие устанавливается быстро, но сильно сдвинуто в сторону кетоформы. Следовательно, спирты со структурой -C=C-OH обычно неустойчивы и быстро превращаются в кетоформу, если нет каких-то структурных особенностей, стабилизирующих энольную форму, например в фенолах, которые при переходе в кетоформу теряли бы свой ароматический характер:


Таутомерия обычна в молекулах, которые имеют структуру -CH=X или -C=XH, где X - это S, О или N. Так, молекула H2C=C(NH2)-CH3 быстро перегруппировывается в H3C-C(=NH)-CH3, а имиды R-C(OH)=NH перегруппировываются в амиды R-C(=O)NH2. Таутомерия обычна в таких биологически важных гетероциклических системах, как барбитуровая кислота и родственные ей соединения:


Такие вещества, находящиеся в таутомерном равновесии, часто вступают в реакции, характерные для обеих форм.
Другие быстрые равновесия. Известны и другие быстрые равновесия между молекулами с родственными структурами. Если при одном и том же углеродном атоме находятся любые две из групп OH, SH или NH2, соединение обычно неустойчиво по сравнению с двоесвязной формой:


Есть случаи, когда это равновесие сдвинуто в сторону дигидрокси-соединения. Газообразный формальдегид имеет структуру CH2=O, но в водном растворе он присоединяет молекулу воды, обретая HO-CH2-OH в качестве преобладающей формы. Хлоральгидрат Cl3CCH(OH)2 стабилен в дигидроксильной форме в результате электроноакцепторного влияния трех атомов хлора.
Б. ИЗОМЕРИЯ
Изомерия углеродной цепи. Молекулы, которые отличаются только разветвлением углеродной цепи, называют цепными изомерами. Пример уже был дан - это изомерная пара н-бутан и изобутан.
Изомерия функциональных групп. Молекулы с одинаковыми брутто-формулами, но различными функциональными группами являются функциональными изомерами, например этиловый спирт C2H5OH и диметиловый эфир CH3-O-CH3.
Изомерия положения. Позиционные изомеры имеют одинаковые брутто-формулы и функциональные группы, но положения функциональных групп в их молекулах различны. Так, 1-хлорпропан CH3CH2CH2Cl и 2-хлорпропан CH3CHClCH3 являются позиционными изомерами.
Геометрическая изомерия. Геометрические изомеры состоят из одинаковых атомов, соединенных в одной и той же последовательности, но отличаются пространственным расположением этих атомов относительно двойных связей или колец. Цис-транс-изомерия олефинов и син-анти-изомерия оксимов относятся к этому типу.


Оптическая изомерия. Молекулы называются оптическими изомерами, когда они состоят из одинаковых атомов, соединенных одним и тем же путем, но различаются пространственным расположением этих атомов так же, как правая рука отличается от левой. Такая изомерия возможна только тогда, когда молекула асимметрична, т.е. когда она не имеет плоскости симметрии. Простейший путь к такой ситуации - присоединение четырех разных групп к атому углерода. Тогда молекула становится асимметричной и существует в двух изомерных формах. Молекулы отличаются только порядком присоединения к центральному углеродному атому, который называется асимметрическим атомом углерода или хиральным центром, так как соединен с четырьмя разными группами. Отметим, что два оптических изомера являются зеркальным отражением друг друга; они называются "энантиомерами" или "оптическими антиподами" и имеют одинаковые физические и химические свойства, за исключением того, что вращают плоскость поляризованного света в противоположных направлениях и по-разному реагируют с соединениями, которые сами являются оптическими изомерами. Изомер, который вращает плоскость поляризованного света по часовой стрелке, называют d- (от "декстро" - правый) или (+)-изомером; изомер, который вращает свет против часовой стрелки, называют l- (от "лево" - левый) или (-)-изомером. Когда в молекуле присутствует более одного асимметрического центра, максимально возможное число оптических изомеров составляет 2n, где n - число асимметрических центров. Иногда некоторые из этих изомеров оказываются идентичными, и это сокращает число оптических изомеров. Так, мезо-изомеры - это оптические изомеры, которые оптически неактивны, поскольку имеют плоскость симметрии. Оптические изомеры, которые не являются зеркальными изображениями, называются "диастереомерами"; они отличаются по физическим и химическим свойствам так же, как отличаются по ним геометрические изомеры. Эти различия можно проиллюстрировать на примере шестиуглеродных сахаров с прямой цепью, имеющих следующую структуру: CH2OH-*CHOH-*CHOH-*CHOH-*CHOH-CHO. Здесь четыре асимметрических атома, отмеченных звездочкой, соединены каждый с четырьмя разными группами; таким образом, возможно 24, или 16, изомеров. Эти 16 изомеров составляют 8 пар энантиомеров; любая пара, не являющаяся энантиомерами, представляет собой диастереомеры. Шесть из этих 16 сахаров представлены ниже в виде т.н. проекций Фишера.


Обозначения D- и L- для энантиомеров относятся не к направлению вращения (обозначаемого d или l), а к положению OH при самом нижнем (в проекции Фишера) асимметрическом углероде: когда OH справа, изомер обозначается как D, когда слева - L. D- и L-формы глюкозы имеют одинаковые точки плавления, растворимость и т.д. С другой стороны, глюкоза и галактоза, будучи диастереомерами, имеют различные точки плавления, растворимости и т.д.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ХИМИЯ ОРГАНИЧЕСКАЯ. МОЛЕКУЛЯРНАЯ СТРУКТУРА" в других словарях:

    Энциклопедия Кольера

    Раздел химии, изучающий соединения углерода, к которым относятся, во первых, вещества, составляющие большую часть живой материи (белки, жиры, углеводы, нуклеиновые кислоты, витамины, терпены, алкалоиды и т.д.); во вторых, многие вещества,… … Энциклопедия Кольера

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта