Главная » 2 Распространение и сезон сбора » Зависимость между величинами характеризующие процессы. Прямая пропорциональная зависимость

Зависимость между величинами характеризующие процессы. Прямая пропорциональная зависимость

Тема: «Моделирование зависимостей между величинами»

Цели урока:

1. Познакомиться с понятиями:

«величины»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Развивающие:

Создать условия для развития умения выделять главное, сравнивать, анализировать, обобщать.

Воспитательные:

Воспитывать внимательность, стремление довести дело до намеченного результата;

Установление взаимных контактов и обмен опытом между учащимися и преподавателем.

Оборудование: компьютер учителя с мультимедийным проектором.

План урока

Организационный момент (2 мин) Постановка целей урока. Объяснение нового материала. (17 мин) Закрепление нового материала (5 мин) Решение заданий из демоверсии ЕГЭ 2010г (15 мин) Подведение итогов (3 мин) Задание на дом (3 мин)

Ход урока

Сообщить учащимся тему урока. (слайд 1) Постановка цели урока

(слайд 2)

Цели урока:

1. Познакомиться с понятиями:

«величины»,

« зависимости между величинами»,

«математическая модель»,

«табличная модель»,

«графическая модель»

Рассмотреть на примерах зависимости между величинами.

2. Совершенствовать навыки решения заданий из КИМов ЕГЭ.

Объяснение нового материала. (17 мин)

(слайд 3)

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

1. Время падения тела на землю зависит от первоначальной высоты;

2. Давление газа в баллоне зависит от его температуры;

3. Частота заболеваний жителей бронхиальной астмой зависит от качества городского воздуха

(слайд 4)

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. Со всякой величиной связаны три основных свойства: имя, значения, тип.

Имя величины может быть полным (давление газа), а может быть символическим (Р). Для определенных величин используются стандартные имена: время – T, скорость – V, сила – F…

(слайд 5)

Если значение величины не меняется, то она называется постоянной величиной или константой

(π =3,14159…).

Величина, меняющая свое значение, называется переменной.

(слайд 6)

Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Так как мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.

(Слайд 7)

Вернемся к примерам и обозначим переменные величины, зависимости между которыми нас интересуют.

В примере 1:

Т (сек) – время падения; Н (м) – высота падения. Ускорения свободного падения g (м/сек2) – константа.

В примере 2: Р(н/м2) – давление газа; C - температура газа.

В примере 3:

Загрязненность воздуха характеризуется концентрацией примесей С(мг/куб. м). Уровень заболеваемости характеризуется числом хронических больных астмой на 1000 жителей данного города – Р(бол/тыс.)

(Слайд 8)

Рассмотрим Методы представления зависимостей

Математическая модель Табличная модель Графическая модель

(Слайд 9)

Математическая модель

Это совокупность количественных характеристик некоторого объекта(процесса) и связей между ними, представленных на языке математики.

Для первого примера математическая модель представляется в виде формулы:

455 " style="width:341.25pt">

(Слайд 11)

Графическая модель

и нарисуем график

(Слайд 12)

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели.

В физике динамические информационные модели описывают движение тел; в биологии – развитие организмов и популяций животных; в химии – протекание химических реакций и т. д

(слайд 13)

Решение задачи: (1 ученик у доски, остальные в тетрадях)

Построить математическую, табличную и графическую модели задачи:

Тело движется по закону x (t)=5 t2+2 t-5,

где x – перемещение в метрах, t – время в секундах. Найти скорость тела в момент времени t=2.

Построить таблицу, отражающую зависимость скорости тела от времени движения тела с интервалом в 3 секунды.

Закрепление изученного материала.

Ответьте на Вопросы:

1. Какие вам известны формы представления зависимостей между величинами? (ответ 1 ученика )

2. Обоснуйте преимущества и недостатки каждой из трёх форм представления

зависимостей. (ответ 1 ученика )

Решение заданий из демоверсии ЕГЭ 2010г (15 мин)

Повторение 10-ой, 2-ой, 8-ой и 16-ой систем счисления.

Решение задания из демоверсии ЕГЭ (1 )

1. Как представлено число 26310 в восьмеричной системе счисления?

Решение:

Как записывается число 5678 в двоичной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Как записывается число А8716 в восьмеричной системе счисления?

(1 ученик у доски, остальные в тетрадях )

Решение:

Задание А1 из демоверсии 2010г. (1 ученик у доски, остальные в тетрадях )

Дано: а=9D16, b=2378 . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству

Решение:

Подведение итогов (3 мин) Задание на дом (3 мин) §36, вопросы. Пример.

Дано: а= 3328, b= D416. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a

Предварительная подготовка. Вопросы и задания

При решении каких информационных задач используются
электронные таблицы?

а) Как адресуются данные в электронной таблице?

б) Данные каких типов могут храниться в ячейках ЭТ?

в) Что такое принцип относительной адресации?

г) Как можно отменить действие относительной адресации?

В чем состоит назначение диаграмм?

Как определяется область выбора данных из таблицы для построения диаграммы и порядок выбора? Какие величины откладываются по горизонтальной (ОХ) оси и вертикальной (OY) оси?

В каких ситуациях предпочтительнее использовать: гистограммы; графики; круговые диаграммы?


Информационное моделирование в планировании и управлении производством

Изучаемые вопросы

Наиболее распространенные типы задач планирования и управления

Представление зависимостей между величинами

Статистика и статистические данные

Метод наименьших квадратов

Построение регрессионных моделей с помощью табличного процессора

Прогнозирование по регрессионной модели

Понятие о корреляционных зависимостях. Расчет корреляционных зависимостей в электронной таблице

Оптимальное планирование. Использование MS Excel для решения задачи оптимального планирования

Наиболее распространенные типы задач планирования и управления

В управлении и планировании существует целый ряд ти­повых задач, которые можно переложить на плечи компью­тера. Пользователь таких программных средств может даже и не знать глубоко математику, стоящую за применяемым аппаратом. Он лишь должен понимать суть решаемой проб­лемы, готовить и вводить в компьютер исходные данные, интерпретировать полученные результаты.

В данной теме рассмотрим три типа задач, которые часто приходится решать специалистам в области планирования и управления:

1) прогнозирование - поиск ответа на вопросы «Что будет через какое-то время?», или «Что будет, если...?»;

2) определение влияния одних факторов на другие - поиск ответа на вопрос «Как сильно влияет фактор Б на фактор А?», или «Какой фактор - Б или В - влияет сильнее на фактор А?»;

3) поиск оптимальных решений - поиск ответа на вопрос «Как спланировать производство, чтобы достичь оптимального значения некоторого показателя (например, максимума прибыли, или минимума расхода электроэнергии)? ».

Инструментом информационных технологий, который мы будем использовать, является табличный процессор MS Excel.

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других. Примеры зависимостей:

‒ время падения тела на землю зависит от первоначальной высоты;

‒ давление зависит от температуры газа в баллоне;

‒ частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.

Рассмотрим различные методы представления зависимостей .

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления). Такие характеристики называются величинами.

Со всякой величиной связаны три основные свойства : имя, значение, тип.

Имя величины может быть полным (подчеркивающим ее смысл), а может быть символическим. Примером полного имени является «Давление газа»; а символическое имя для этой же величины - Р. В базах данных величинами явля­ются поля записей. Для них, как правило, используются полные имена, например: «Фамилия», «Вес», «Оценка» и т. п. В физике и других науках, использующих математи­ческий аппарат, применяются символические имена для обозначения величин.

Если значение величины не изменяется, то она называет­ся постоянной величиной или константой. Пример кон­станты - число Пифагора π=3,14159... Величина, меняю­щая свое значение, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t).

Третьим свойством величины является ее тип . Тип определяет множество значений, которые может прини­мать величина. Основные типы величин: числовой, символь­ный, логический.

А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные ве­личины, зависимости между которыми нас будут интересо­вать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1. t (сек) - время падения; Н (м) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек 2) - константа.

2. Р (кг/м 2) - давление газа; t (С) - температура газа. Давление при нуле градусов Р о считается константой для данного газа.

3. Загрязненность воздуха будем характеризовать концентрацией примесей - С (мг/куб. м). Единица измерения - масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящимся на 1000 жителей данного города - Р (бол./тыс).

Если зависимость между величинами удается предста­вить в математической форме, то мы имеем математическую модель.

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке ма­тематики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают фи­зические законы, и представляется в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально тем­пературе).

В более сложных задачах математические модели пред­ставляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости вели­чин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, ко­торая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического . Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом: бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы со­ставили таблицу и нарисовали график.

Величинами являются количественные значения предметов, длин отрезков, времени, углов и т.д.

Определение. Величина - результат измерения, представленный числом и наименованием единицы измерения.

Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °.

Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.).

Основа метрической системы мер длины - метр - была введена в России в начале XIX века, а до этого для измерения длин использовались: аршин (= 71 см), верста (= 1067 м), косая сажень (= 2 м 13 см), маховая сажень (= 1 м 76 см), простая сажень (= 1 м 52 см), четверть (= 18 см), локоть (приблизительно от 35 см до 46 см), пядь (от 18 см до 23 см).

Как видим, было много величин для измерения длины. С вводом метрической системы мер жестко закреплена зависимость величин длины:

  • 1 км = 1 000 м; 1 м = 100 см;
  • 1 дм = 10 см; 1 см = 10 мм.

В метрической системе мер определены единицы измерения времени, длины, массы, объема, площади и скорости.

Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем.

Определение. Две взаимно зависимые величины называются пропорциональными , если отношение их значений остается неизменным.

Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны.

Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении:

где S - путь; V - скорость; t - время.

Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной .

Определение. Две переменные величины прямо пропорциональны, если с увеличением (или уменьшением) в несколько раз одной величины другая величина увеличивается (или уменьшается) во столько же раз; т.е. отношение соответствующих значений таких величин является величиной постоянной.

При неизменном расстоянии скорость и время связаны другой зависимостью, которая называется обратно пропорциональной .

Правило. Две переменные величины обратно пропорциональны, если с увеличением (или уменьшением) одной величины в несколько раз другая величина уменьшается (или увеличивается) во столько же раз; т.е. произведение соответствующих значений таких величин является величиной постоянной.

Из формулы движения можно вывести еще два соотношения, выражающих прямую и обратную зависимости входящих в них величин:

t = S: V - время движения прямо пропорционально пройденному пути и обратно пропорционально скорости движении (для одинаковых отрезков пути чем больше скорость, тем меньше времени требуется для преодоления расстояния).

V = S: t - скорость движения прямо пропорциональна пройденному пути и обратно пропорциональна времени движения (для одинаковых отрезков пути чем больше
времени движется предмет, тем меньшая скорость требуется для преодоления расстояний).

Все три формулы движения равносильны и используются для решения задач.

Конспект урока по информатике и ИКТ в 11 классе

Самарин Александр Александрович, учитель информатики МБОУ Савинской СОШ, п. Савино, Ивановской области.
Тема: «Моделирование зависимостей между величинами».
Описание материала: данный конспект урока будет полезен учителям информатики и ИКТ, реализующих общеобразовательные программы в 11 классах. В ходе урока обучающиеся знакомятся с математическим моделированием и способами моделирования величин. Данный урок является вводным к теме «Технологии информационного моделирования».
Цель: создание условий для овладения детьми знаниями математического моделирования и закрепить умения работы в программе Microsoft Exсеl.
Задачи:
- сформировать знания о математическом моделировании;
- закрепить навыки работы в программе Microsoft Exсel.
Планируемые результаты:
Предметные:
- сформировать представления о математическом моделировании;
- сформировать представления о функциональном, табличном и графическом способах моделированиях.
Метапредметные:
- сформировать умения и навыки использования средств информационных и коммуникационных технологий для создания табличных и графических моделей;
- сформировать навыки рационального использования имеющихся инструментов.
Личностные:
- понимать роль фундаментальных знаний как основы современных информационных технологий.
Ход урока:
Организационный момент и актуализация знаний
Учитель: «Здравствуйте, ребята. Сегодня мы с вами начинаем новую большую тему «Технологии информационного моделирования». Но сначала давайте запишем домашнее задание § 36, вопросы 1,3 подготовить устно, вопрос №2 письменно в тетради». На экран проецируется домашнее задание.
Дети открывают дневники и записывают задание. Учитель объясняет домашнее задание.
Учитель: «Ребята, давайте вспомним, что такое «Модель», «Моделирование», «Компьютерное моделирование». На экран проецируется слайд «Давайте вспомним».
Дети: «Модель – это объект-заменитель, который в определенных условиях может заменять объект-оригинал. Модель воспроизводит интересующие нас свойства и характеристики оригинала.
Моделирование – это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.
Компьютерное моделирование – это моделирование, реализующееся с помощью компьютерной техники».
Учитель: «Как вы думаете, а что такое математическое моделирование? Что оно собой представляет?»
Дети: «Это модели, построенные с помощью математических формул».
Учитель: «Приведите примеры математической модели».
Дети приводят примеры различных формул.
Учитель: «Давайте рассмотрим пример. На экран проецируются примеры.
«Время падения тела зависит от его первоначальной высоты. Уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе». На слайде приведены зависимости одних величин от других. Тема нашего сегодняшнего занятия «Моделирование зависимостей между величинами». На экран проецируется тема занятия «Моделирование зависимостей между величинами».
Дети записывают тему в тетрадь.
Изучение нового материала
Учитель: «Чтобы реализовать математическую модель на компьютере необходимо владеть приемами представления зависимостей между величинами. Рассмотрим различные методы представления зависимостей. Любое исследование необходимо начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. На экран проецируется определение «величины».
Давайте вспомним, какими тремя основными свойствами обладает величина?»
Дети: «Имя, значение, тип»
Учитель: «Правильно. Имя величины может быть смысловым и символическим. Например, «время» - это смысловое имя, а «t» - символическое имя. Ребята, приведите примеры смыслового и символического имен». На экран проецируются виды имён и их примеры.
Примеры детей.
Учитель: «Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы – скорость света в вакууме – с = 2,998*10^8м/с. На экран проецируются значения величины.
А какие постоянные величины вы знаете, ребята?»
Ответы детей.
Учитель: А как вы думаете, какая величина называется переменной?
Ответы детей.
Учитель: Итак, переменная величина – величина, значение которой может меняться. Например, в описании процесса падения тела переменными величинами являются высота H и время падения t.
Третьим свойством величины является ее тип. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Мы будем рассматривать величины, числового типа. На экран проецируются основные типы величин.
А теперь вернемся, к примеру, падения тела на землю. Обозначим все переменные величины, также укажем их размерности (размерности определяют единицы, в которых представляются значения величин). Итак, t (с) – время падения, Н (м) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с2) будем считать константой. В данном примере зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t. На экран проецируется пример 1.
Теперь подробнее рассмотрим пример про уровень заболеваемости жителей города бронхиальной астмой. Загрязнённость воздуха будем характеризовать концентрацией примесей – С (мг/м2), уровень заболеваемости – число хронически больных астмой, приходящихся на 1000 жителей данного города – Р (бол./тыс.). В данном примере зависимость между значениями носит более сложный характер, так как при одном и том же уровне загрязнённости в разные месяцы в одном и том же городе уровень заболеваемости может быть разным, так как на него влияют и другие факторы. На экран проецируется пример 2.
Рассмотрев два этих примера, делаем вывод, в первом примере зависимость является функциональной, а во втором нет. Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель. На экран проецируется вывод.
Математическая модель – это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики. Первый пример отражает физический закон. Данная зависимость является корневой. В более сложных задачах математические модели представляются в виде уравнения или систем уравнений. Во втором примере зависимость можно представить не в функциональной форме, а в иной (это мы будем рассматривать на следующих уроках). На экран проецируется, что отражает пример 1.
Пример падения тела рассмотрим в табличном и графическом виде. Проверим закон всемирного падения тела экспериментальным путем (в табличном и графическом виде). Будем бросать стальной шарик с шести метровой высоты, 9 метровой и так далее (через 3 метра), замеряя начальную высоту положения шарика и время падения. По результатам составим таблицу и нарисуем график. На экран проецируется график и таблица примера 1.
Если каждую пару значений H и t из данной таблицы подставить в формулу для первого примера, то формула превратится в равенство. Значит, модель работает хорошо.
В данном примере рассмотрено три способа моделирования величин: функциональный (формула), табличный и графический; однако математической моделью процесса можно назвать только формулу. На экран проецируются способы моделирования.
Ребята, а как вы думаете, какой способ моделирования наиболее универсальный? На экран проецируется вопрос.
Формула более универсальна, она позволяет определить время падения тела с любой высоты; имея формулу, можно легко создать таблицу и построить график.
Информационные модели, которые описывают развитие систем во времени, называются динамическими моделями. В физике динамические модели описывают движение тел, в биологии – развитие организмов или популяций животных, в химии – протекание химических реакций и т.д.»
Физкультминутка
Учитель: «А сейчас немножко отдохнем. Ребята, сядьте поудобнее на стул, расслабьтесь, расправьте плечи, прогните спину, потянитесь, повертите головой, «поболтайте ножками». А теперь, не поворачивая головы, посмотрите направо, налево, вверх, вниз. А сейчас следить за движения моей руки». Учителя водит рукой в разные стороны.
Практическая работа
Учитель: «Ребята, а теперь полученные знания мы закрепим практической работой на компьютере». На экран проецируется задание на практическую работу.
Задание
Постройте табличную и графическую зависимости скорости от времени
v=v0+a*t, если известно, что при t = 2 с, v = 8 м/с. Первоначальная скорость v0 равняется 2 м/с.
Ребята выполняют задание в программе Microsoft Excel. Затем задание проверяется. На экран проецируется правильный ответ к практической работе.
Рефлексия и подведение итогов
Учитель: «Ребята, что сегодня вы узнали нового? Что было для вас тяжело? С какими затруднениями вы столкнулись при выполнении практической работы?» На экран проецируется рефлексия.
Ответы детей.
Учитель: «Спасибо за работу на уроке. До свидания».
24.02.2019, 16:56 Моделирование зависимостей между величинами Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Cо всякой величиной связаны три основных свойства:
- имя,
- значение,
- тип.
Имя величины может быть смысловым и символическим . Пример смыслового имени - «давление газа», символическое имя для этой же величины - Р.
Если значение величины не изменяется, то она называется постоянной величиной или константой . Пример константы - число Пифагора ¶=3,14259... . Величина, значение которой может меняться, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Тип определяет множество значений, которые может принимать величина. Основные типы величин : числовой, символьный, логический. Размерности определяют единицы, в которых представляются значения величин. Например, t (с) - время падения; Н (м) - высота падения.
Математические модели
Если зависимость между величинами удается представить в математической форме, то это математическая модель .
Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Это пример зависимости, представленной в функциональной форме. Эту зависимость называют корневой (время пропорционально квадратному корню высоты).
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений.

Табличные и графические модели
Это другие, не формульные, способы представления зависимостей между величинами. Например, мы решили проверить закон свободного падения тела экспериментальным путем.

Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график. Если каждую пару значений Н и t из данной таблицы подставить в приведенную ранее формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?

Итак, на этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рисунке. Имея формулу, можно легко создать таблицу и построить график, а наоборот - весьма проблематично.
Точно так же можно отобразить зависимость любого явления физической природы, описываемого известными формулами.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели . В физике динамические информационные модели описывают движение тел, в биологии - развитие организмов или популяций животных, в химии - протекание химических реакций и т. д.

Модели статистического прогнозирования
Статистика - наука о сборе, измерении и анализе массовых количественных данных.
Существуют медицинская статистика, экономическая статистика, социальная статистика и другие. Математический аппарат статистики разрабатывает наука под названием математическая статистика .

Статистические данные всегда являются приближенными, усредненными, они носят оценочный характер, но верно отражают зависимость величин. Для достоверности результатов, полученных путем анализа статистических данных, этих данных должно быть много.
Например, наиболее сильное влияние на бронхиально-легочные заболевания оказывает угарный газ - . Поставив цель определить эту зависимость, специалисты по медицинской статистике проводят сбор данных. Полученные данные можно свести в таблицу, а также представить в виде точечной диаграммы.
А как построить математическую модель данного явления? Очевидно, нужно получить формулу, отражающую зависимость количества хронических больных Р от концентрации угарного газа С. На языке математики это называется функцией зависимости Р от С: Р(С). Вид такой функции неизвестен, ее следует искать методом подбора по экспериментальным данным.


График искомой функции должен проходить близко к точкам диаграммы экспериментальных данных. Строить функцию так, чтобы ее график точно проходил через все данные точки, не имеет смысла. Во-первых, математический вид такой функции может оказаться слишком сложным. Во-вторых, экспериментальные значения являются приближенными.
Отсюда следуют основные требования к искомой функции:
она должна быть достаточно простой для использования ее в дальнейших вычислениях;
график этой функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек от графика были минимальны и равномерны. Полученную функцию в статистике принято называть регрессионной моделью .

Метод наименьших квадратов
Получение регрессионной модели происходит в два этапа:
1) подбор вида функции;
2) вычисление параметров функции.
Первая задача не имеет строгого решения.
Чаще всего выбор производится среди следующих функций:
у = ах + b - линейная функция (полином 1-й степени);
у = ах 2 + bх + с - квадратичная функция

(полином 2-й степени) ;
у = а n х n + a (n-1) х n-1 +...+ а 2 х 2 + a 1 х + a 0 - полином n-й степени ;
у = аln (х) + b - логарифмическая функция;
у = ае bх - экспоненциальная функция;
у = ах b - степенная функция.
После выбора одной из предлагаемых функций нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам, используя метод вычисления параметров. Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК) и очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую функцию. А вот будет ли она нас удовлетворять, это уже вопрос критерия соответствия. Для нашего примера рассмотрим три функции, построенные методом наименьших квадратов.

Данные рисунки получены с помощью табличного процессора Microsoft Excel. График регрессионной модели называется трендом .
Английское слово «trend» можно перевести как «общее направление», или «тенденция».
График линейной функции - это прямая. По этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды правдоподобны.
На графиках присутствует величина, полученная в результате построения трендов. Она обозначена как R 2 . В статистике эта величина называется коэффициентом детерминированности . Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Чем R 2 ближе к 1, тем удачнее регрессионная модель.
Из трех выбранных моделей значение R 2 наименьшее у линейной. Значит, она самая неудачная. Значения же R 2 у двух других моделей достаточно близки (разница меньше 0,01). Они одинаково удачны.

Прогнозирование по регрессионной модели
Получив регрессионную математическую модель можно прогнозировать процесс путем вычислений, т.е.оценить уровень заболеваемости астмой не только для тех значений, которые были получены путем измерений, но и для других значений.
Если прогноз производится в пределах экспериментальных значений, то это называется восстановлением значения .
Прогнозирование за пределами экспериментальных данных называется экстраполяцией.
Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронных таблиц.
В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами
экспериментальной области. В нашем примере при экстраполяции не следует далеко уходить от величины 5 мг/м 3 . Что будет вдали от этой области, мы не знаем. Всякая экстраполяция держится на гипотезе: «предположим, что за пределами экспериментальной области закономерность сохраняется». А если не сохраняется?
Например, квадратичная модель в нашем примере при концентрации, близкой к 0, выдаст 150 человек больных, т. е. больше, чем при 5 мг/м 3 . Очевидно, это нелепость. В области малых значений С лучше работает экспоненциальная модель. Кстати, это довольно типичная ситуация: разным областям данных могут лучше соответствовать разные модели.

Моделирование корреляционных зависимостей
Пусть важной характеристикой некоторой сложной системы является фактор А. На него могут оказывать влияние одновременно многие другие факторы: B,C,D и т. д.


Зависимости между величинами, каждая из которых подвергается неконтролируемому полностью разбросу, называются корреляционными зависимостями.

Раздел математической статистики, который исследует такие зависимости, называется корреляционным анализом. Корреляционный анализ изучает усредненный закон поведения каждой из величин в зависимости от значений другой величины, а также меру такой зависимости.
Оценку корреляции величин начинают с высказывания гипотезы о возможном характере зависимости между их значениями. Чаще всего допускают наличие линейной зависимости. В таком случае мерой корреляционной зависимости является величина, которая называется коэффициентом корреляции .
коэффициент корреляции (обычно обозначаемый греческой буквой
ρ ) есть число из диапазона от -1 до +1;
если
ρ по модулю близко к 1, то имеет место сильная корреляция, если к 0, то слабая;
близость ρ к +1 означает, что возрастанию значений одного набора соответствует возрастание значений другого набора, близость к -1 означает, что возрастанию значений одного набора соответствует убывание значений другого набора;
значение ρ легко найти с помощью Excel, так как в эту программу встроены соответствующие формулы.

В качестве примера сложной системы рассмотрим школу. Пусть хозяйственные расходы школы выражаются количеством рублей, отнесенных к числу учеников в школе (руб./чел.), потраченных за определенный период времени (например, за последние 5 лет). Успеваемость же пусть оценивается средним баллом учеников школы по результатам окончания последнего учебного года.
Итоги сбора данных по 20 школам, введенные в электронную таблицу и
точечная диаграмма представлены на рисунках.
Значения обеих величин: финансовых затрат и успеваемости учеников - имеют значительный разброс и, на первый взгляд, взаимосвязи между ними не видно. Однако она вполне может существовать.

В Excel функция вычисления коэффициента корреляции называется КОРРЕЛ и входит в группу статистических функций. Покажем, как ею воспользоваться. На том же листе Excel, где находится таблица, надо установить курсор на любую свободную ячейку и запустить функцию КОРРЕЛ. Она запросит два диапазона значений. Укажем, соответственно, В2:В21 и С2:С21. После их ввода будет выведен ответ: р = 0,500273843. Эта величина говорит о среднем уровне корреляции.
Теперь рассмотрим какой параметр из 2-х: оснащённость учебниками или компьютерами является коррелирующим в большей степени, т.е. имеет большее влияние на успеваемость
Ниже на рисунке приведены результаты измерения обоих факторов в 11 разных школах.
Для обеих зависимостей получены коэффициенты линейной корреляции. Как видно из таблицы, корреляция между обеспеченностью учебниками и успеваемостью сильнее, чем корреляция между компьютерным обеспечением и успеваемостью (хотя и тот, и другой коэффициенты корреляции не очень большие). Отсюда можно сделать вывод, что пока еще книга остается более значительным источником знаний, чем компьютер.







Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта