Главная » 2 Распространение » Что такое диэлектрики в физике. Современные электроизоляционные материалы

Что такое диэлектрики в физике. Современные электроизоляционные материалы

Электроизоляционный материал – это диэлектрический материал, предназначенный для электрической изоляции. Величина электрического сопротивления находится в диапазоне от 10 6 Ом∙м до 10 17 Ом∙м, для неионизированных газов еще выше.

Электроизоляционные материалы в зависимости от агрегатного состояния подразделяют на газообразные, жидкие и твердые. По химическому составу – на органические (полиэтилен, полистирол и др.) и неорганические (слюда, мрамор и т.д.).

Под действием приложенного электрического поля проявляется важнейшее свойство диэлектриков – способность к поляризации. Поляризация – это процесс ограниченного смеще­ния или ориентации имеющих электрические заряды частиц ди­электрика, причем диэлектрик приобретает индуцированный электрический момент. По этому свойству диэлектрики делятся на «полярные», молекулы которых имеют постоянный, не равный нулю электрический момент, и «неполярные», молекулы которых приобретают электрический момент только при воздействии внешнего электрического поля.

Основные свойства диэлектриков:

- удельное объемное и поверхностное сопротивление (проводимость).

Температурный коэффициент удельного электрического сопротивления ТКρ определяет изменение удельного сопротивления материала с изменением его температуры, 0 С -1:

ТКρ=(1/ ρ 2)(dρ / dt ),

где ρ2 – удельное сопротивление при температуре t 2; dρ – изменение удельного сопротивления; dt – изменение температуры с начальной до t 2.

Диэлектрическая проницаемость диэлектрика ε. Различают относительную диэлектрическую проницаемость ε r , абсолютную ε и диэлектрическую проницаемость вакуума ε0 (электрическая посто­янная e 0= 8,85 × 10 -12 Ф/м ) . Их связывает соотношение:

ε=ε r ∙ε0 или ε r =ε/ε0.

Относительная диэлектрическая проницаемость показывает во сколько раз диэлектрическая проницаемость среды больше диэлектрической проницаемости вакуума.

Диэлектрическая проницаемость газообразных диэлектриков составляет около 1, для неполярных жидких и твердых диэлектриков она обычно равна 2-2,5, для полярных – обычно в пределах 3-8, но может и достигать нескольких десятков и сотен.

Температурный коэффициент диэлектрической проницаемости ТКε r – позволяет оценить изменение диэлектрической проницаемости с изменением температуры:

ТКε r =(1/ ε r )(d ε r / dt ).

Диэлектрические потери - мощность,рассеиваемая в диэлектрике при действии на него переменного электромагнитного поля. Диэлектрические потери могут быть обусловлены как токами проводимости (потери проводимости), так и запаздыванием поляризации при изменении поля (релаксационные, миграционные и резонансные потери). Кроме того, в сильных электрических полях приналичии в диэлектрике воздушных включений наблюдаются дополнительные потери энергии (ионизационные потери). Диэлектрические потери зависят от приложенного напряжения U , В, частоты f , Гц, емкости C , Ф и тангенса угла диэлектрических потерь tgδ , Вт:

P = U 2∙ C ∙2 πf ∙ tgδ .

Тангенс угла диэлектрических потерь tgδ определяет рассеиваемую в диэлектрике мощность при переменном электромагнитном поле. Произведение tgδ на величину относительной диэлектрической проницаемости называется фактором потерь:

e" = e r ∙ tg δ .

Электрическая прочность диэлектрика E пр – напряженность электрического поля, при достижении которой в какой-либо точке диэлектрика происходит пробой:

E пр= U пр/ h ,

где U пр – пробивное напряжение, наибольшее значение напряжения, которое было приложено к диэлектрику в момент пробоя, h – толщина диэлектрика. Размерность электрической прочности – В/м.

Нагревостойкость. ГОСТ 21515-76 определяет нагревостойкость как способность диэлектрика длительно выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком эксплуатации, без недопустимого ухудшения его свойств.

По нагревостойкости диэлектрики делятся на 7 классов. Температурные индексы, классы нагревостойкости приведены в табл. 1.

Таблица 1. Классы нагревостойкости электроизоляционных материалов.

ТИКласс нагревостойкостиТемпература, 0 С

90 Y 90

105A105

120E120

130B130

155F155

180H180

180C Более 180

Указанные температуры являются предельно допустимыми при их длительном использовании.

Удельное объемное электрическое сопротивление, относительная диэлектрическая проницаемость, тангенс угла диэлектрических потерь, электрическая прочность основных электроизоляционных материалов приведены в табл. 2.

Таблица 2. Электрические свойства основных электроизоляционных материалов (при 20 0 С)

Названиеρ, Ом∙мε r tgδ E пр, кВ/мм

При 50 Гц При 50 Гц

Полистирол 10 13 - 10 15 2,4-2,7(2-4)∙10 -4 25-30

Полиэтилен 10 13 - 10 15 2,3(2-3)∙10 -4 40-42

низкой плотности

Полиэтилен 10 13 - 10 15 2,45∙10 -4 40-42

высокой плотности

Полипропилен10 13 - 10 15 2,1(2-3)∙10 -4 30-35

Поли-10 12 - 10 13 3,7(3-5)∙10 -4 24

формальдегид

Полиуретан 10 12 - 10 13 4,612∙10 -3 20-25

Полиметил-10 10 - 10 12 3,66∙10 -2 15-18

Метакрилат

ПВХ10 10 - 10 12 4,7(3-8)∙10 -2 15-20

ПЭТФ10 12 - 10 13 3,5(2-6)∙10 -4 30

(лавсан)

Фторопласт-410 16 - 10 18 2,0(1-3)∙10 -4 27-40

Обозначения: ρ - удельное объемное электрическое сопротивление, ε r - относительная диэлектрическая проницаемость, tgδ - тангенс угла диэлектрических потерь, E пр - электрическая прочность.

Диэлектрики — это вещество, которое не проводит, или плохо проводит электрический ток. Носители заряда в диэлектрике имеют плотность не больше 108 штук на кубический сантиметр. Одним из основных свойств таких материалов является способность поляризации в электрическом поле.

Параметр, характеризующий диэлектрики, называется диэлектрической проницаемостью, которая может иметь дисперсию. К диэлектрикам можно отнести химически чистую воду, воздух, пластмассы, смолы, стекло, различные газы.

Свойства диэлектриков

Если бы вещества имели свою геральдику, то герб сегнетовой соли непременно украсили бы виноградные лозы, петля гистерезиса, и символика многих отраслей современной науки и техники.

Родословная сегнетовой соли начинается с 1672 года. Когда французский аптекарь Пьер Сегнет впервые получил с виноградных лоз бесцветные кристаллы и использовал их в медицинских целях.

Тогда еще невозможно было предположить, что эти кристаллы обладают удивительными свойствами. Эти свойства дали нам право из огромного числа диэлектриков выделить особые группы:

  • Пьезоэлектрики.
  • Пироэлектрики.
  • Сегнетоэлектрики.

Со времен Фарадея известно, что во внешнем электрическом поле диэлектрические материалы поляризуются. При этом каждая элементарная ячейка обладает электрическим моментом, аналогичным электрическому диполю. А суммарный дипольный момент единицы объема определяет вектор поляризации.

В обычных диэлектриках поляризация однозначно и линейно зависит от величины внешнего электрического поля. Поэтому диэлектрическая восприимчивость почти у всех диэлектриков величина постоянная.

P/E=X=const

Кристаллические решетки большинства диэлектриков построены из положительных и отрицательных ионов. Из кристаллических веществ наиболее высокой симметрией обладают кристаллы с кубической решеткой. Под действием внешнего электрического поля кристалл поляризуется, и симметрия его понижается. Когда внешнее поле исчезает, кристалл восстанавливает свою симметрию.

В некоторых кристаллах электрическая поляризация может возникать и при отсутствии внешнего поля, спонтанно. Так выглядит в поляризованном свете кристалл молибдената гадолиния. Обычно спонтанная поляризация неоднородная. Кристалл разбивается на домены – области с однородной поляризацией. Развитие многодоменной структуры уменьшает суммарную поляризацию.

Пироэлектрики

В пироэлектриках спонтанная поляризация экранирует со свободными зарядами, которые компенсируют связанные заряды. Нагревание пироэлектрика изменяет его поляризацию. При температуре плавления пироэлектрические свойства исчезают вовсе.

Часть пироэлектриков относится к сегнетоэлектрикам. У них направление поляризации может быть изменено внешним электрическим полем.

Существует гистерезисная зависимость между ориентацией поляризации сегнетоэлектрика и величиной внешнего поля.

В достаточно слабых полях поляризация линейно зависит от величины поля. При его дальнейшем увеличении все домены ориентируются по направлению поля, переходя в режим насыщения. При уменьшении поля до нуля кристалл остается поляризованным. Отрезок СО называют остаточной поляризацией.

Поле, при котором происходит изменение направления поляризации, отрезок ДО называют коэрцитивной силой.

Наконец, кристалл полностью меняет направление поляризации. При очередном изменении поля кривая поляризации замыкается.

Однако, сегнетоэлектрическое состояние кристалла существует лишь в определенной области температур. В частности, сегнетова соль имеет две точки Кюри: -18 и +24 градусов, в которых происходят фазовые переходы второго рода.

Группы сегнетоэлектриков

Микроскопическая теория фазовых переходов разделяет сегнетоэлектрики на две группы.

Первая группа

Титанат бария относится к первой группе, и как ее еще называют, группе сегнетоэлектриков типа смещения. В неполярном состоянии титанат бария имеет кубическую симметрию.

При фазовом переходе в полярное состояние ионные подрешетки смещаются, симметрия кристаллической структуры понижается.

Вторая группа

Ко второй группе относят кристаллы типа нитрата натрия, у которых в неполярной фазе имеется разупорядоченная подрешетка структурных элементов. Здесь фазовый переход в полярное состояние связан с упорядочением структуры кристалла.

Причем в различных кристаллах может быть два или несколько вероятных положений равновесия. Существуют кристаллы, в которых цепочки диполя имеют антипараллельные ориентации. Суммарный дипольный момент таких кристаллов равен нулю. Такие кристаллы называют антисегнетоэлектриками.

В них зависимость поляризации линейная, вплоть до критического значения поля.

Дальнейшее увеличение величины поля сопровождается переходом в сегнетоэлектрическую фазу.

Третья группа

Существует еще одна группа кристаллов – сегнетиэлектриков.

Ориентация дипольных моментов у них такова, что по одному направлению они имеют свойства антисегнетоэлектриков, а по-другому сегнетоэлектриков. Фазовые переходы у сегнетоэлектриков бывают двух родов.

При фазовом переходе второго рода в точке Кюри спонтанная поляризация плавно уменьшается до нуля, а диэлектрическая восприимчивость, меняясь резко, достигает огромных величин.

При фазовом переходе первого рода поляризация исчезает скачком. Также скачком изменяется электрическая восприимчивость.

Большая величина диэлектрической проницаемости, электрополяризации сегнетоэлектриков, делает их перспективными материалами современной техники. Например, уже широко используют нелинейные свойства прозрачной сегнетокерамики. Чем ярче свет, тем сильнее он поглощается специальными очками.

Это является эффективной защитой зрения рабочих в некоторых производствах, связанных с внезапными и интенсивными вспышками света. Для передачи информации с помощью лазерного луча применяют сегнетоэлектрические кристаллы с электрооптическим эффектом. В пределах прямой видимости лазерный луч моделируется в кристалле. Затем луч попадает в комплекс приемной аппаратуры, где информация выделяется и воспроизводится.

Пьезоэлектрический эффект

В 1880 году братья Кюри обнаружили, что в процессе деформации сегнетовой соли на ее поверхности возникают поляризационные заряды. Это явление было названо прямым пьезоэлектрическим эффектом.

Если на кристалл воздействовать внешним электрическим полем, он начинает деформироваться, то есть, возникает обратный пьезоэлектрический эффект.

Однако эти изменения не наблюдаются в кристаллах, имеющих центр симметрии, например, в сульфиде свинца.

Если на такой кристалл воздействовать внешним электрическим полем, подрешетки отрицательных и положительных ионов сместятся в противоположные стороны. Это приводит к поляризации кристаллов.

В данном случае мы наблюдаем электрострикцию, при которой деформация пропорциональна квадрату электрического поля. Поэтому электрострикцию относят к классу четных эффектов.

ΔX1=ΔX2

Если такой кристалл растягивать или сжимать, то электрические моменты положительных диполей будут равны по величине электрическим моментам отрицательных диполей. То есть, изменение поляризации диэлектрика не происходит, и пьезоэффект не возникает.

В кристаллах с низкой симметрией при деформации появляются дополнительные силы обратного пьезоэффекта, противодействующие внешним воздействиям.

Таким образом, в кристалле, у которого нет центра симметрии в распределении зарядов, величина и направление вектора смещения зависит от величины и направления внешнего поля.

Благодаря этому можно осуществлять различные типы деформации пьезокристаллов. Склеивая пьезоэлектрические пластинки, можно получить элемент, работающий на сжатие.

В этой конструкции пьезопластинка работает на изгиб.

Пьезокерамика

Если к такому пьезоэлементу приложить переменное поле, в нем возбудятся упругие колебания и возникнут акустические волны. Для изготовления пьезоэлектрических изделий применяют пьезокерамику. Она представляет собой поликристаллы сегнетоэлектрических соединений или твердые растворы на их основе. Изменяя состав компонентов и геометрические формы керамики, можно управлять ее пьезоэлектрическими параметрами.

Прямые и обратные пьезоэлектрические эффекты находят применение в разнообразной электронной аппаратуре. Многие узлы электроакустической, радиоэлектронной и измерительной аппаратуры: волноводы, резонаторы, умножители частоты, микросхемы, фильтры работают, используя свойства пьезокерамики.

Пьезоэлектрические двигатели

Активным элементом пьезоэлектрического двигателя служит пьезоэлемент.

В течение одного периода колебаний источника переменного электрического поля он растягивается и взаимодействует с ротором, а в другом возвращается в исходное положение.

Великолепные электрические и механические характеристики позволяют пьезодвигателю успешно конкурировать с обычными электрическими микромашинами.

Пьезоэлектрические трансформаторы

Принцип их действия также основан на использовании свойств пьезокерамики. Под действием входного напряжения в возбудителе возникает обратный пьезоэффект.

Волна деформации передается в генераторную секцию, где за счет прямого пьезоэффекта изменяется поляризация диэлектрика, что приводит к изменению выходного напряжения.

Так как в пьезотрансформаторе вход и выход гальванически развязаны, то функциональные возможности преобразования входного сигнала по напряжению и току, согласование его с нагрузкой по входу и выходу, лучше, чем у обычных трансформаторов.

Исследования разнообразных явлений сегнетоэлектричества и пьезоэлектричества продолжаются. Нет сомнений, что в будущем появятся приборы, основанные на новых и удивительных физических эффектах в твердом теле.

Классификация диэлектриков

В зависимости от различных факторов они по-разному проявляют свои свойства изоляции, которые определяют их сферу использования. На приведенной схеме показана структура классификации диэлектриков.

В народном хозяйстве стали популярными диэлектрики, состоящие из неорганических и органических элементов.

Неорганические материалы – это соединения углерода с различными элементами. Углерод обладает высокой способностью к химическим соединениям.

Минеральные диэлектрики

Такой вид диэлектриков появился с развитием электротехнической промышленности. Технология производства минеральных диэлектриков и их видов значительно усовершенствована. Поэтому такие материалы уже вытесняют химические и натуральные диэлектрики.

К минеральным диэлектрическим материалам относятся:

Стекло (конденсаторы, лампы) – аморфный материал, состоит из системы сложных окислов: кремния, кальция, алюминия. Они улучшают диэлектрические качества материала.
Стеклоэмаль – наносится на металлическую поверхность.
Стекловолокно – нити из стекла, из которых получают стеклоткани.
Световоды – светопроводящее стекловолокно, жгут из волокон.
Ситаллы – кристаллические силикаты.
Керамика – фарфор, стеатит.
Слюда – микалекс, слюдопласт, миканит.
Асбест – минералы с волокнистым строением.

Разнообразные диэлектрики не всегда заменяют друг друга. Их сфера применения зависит от стоимости, удобства применения, свойств. Кроме изоляционных свойств, к диэлектрикам предъявляются тепловые, механические требования.

Жидкие диэлектрики

Нефтяные масла

Трансформаторное масло заливается в . Оно наиболее популярно в электротехнике.

Кабельные масла применяются при изготовлении . Ими пропитывают бумажную изоляцию кабелей. Это повышает электрическую прочность и отводит тепло.

Синтетические жидкие диэлектрики

Для пропитки конденсаторов необходим жидкий диэлектрик для увеличения емкости. Такими веществами являются жидкие диэлектрики на синтетической основе, которые превосходят нефтяные масла.

Хлорированные углеводороды образуются из углеводородов заменой в них молекул атомов водорода атомами хлора. Большую популярность имеют полярные продукты дифенила, в состав которых входит С 12 Н 10 -nC Ln.

Их преимуществом является стойкость к горению. Из недостатков можно отметить их токсичность. Вязкость хлорированных дифенилов имеет высокий показатель, поэтому их приходится разбавлять мене вязкими углеводородами.

Кремнийорганические жидкости обладают низкой гигроскопичностью и высокой температурной стойкостью. Их вязкость очень мало зависит от температуры. Такие жидкости имеют высокую стоимость.

Фторорганические жидкости имеют аналогичные свойства. Некоторые образцы жидкости могут долго работать при 2000 градусов. Такие жидкости в виде октола состоят из смеси полимеров изобутилена, получаемых из продуктов газа крекинга нефти, имеют невысокую стоимость.

Природные смолы

Канифоль – это смола, имеющая повышенную хрупкость, и получаемая из живицы (смола сосны). Канифоль состоит из органических кислот, легко растворяется в нефтяных маслах при нагревании, а также в других углеводородах, спирте и скипидаре.

Температура размягчения канифоли равна 50-700 градусов. На открытом воздухе канифоль окисляется, быстрее размягчается, и хуже растворяется. Растворенная канифоль в нефтяном масле используется для пропитки кабелей.

Растительные масла

Эти масла представляют собой вязкие жидкости, которые получены из различных семян растений. Наиболее важное значение имеют высыхающие масла, которые могут при нагревании отвердевать. Тонкий слой масла на поверхности материала при высыхании образует твердую прочную электроизоляционную пленку.

Скорость высыхания масла повышается при возрастании температуры, освещении, при использовании катализаторов – сиккативов (соединения кобальта, кальция, свинца).

Льняное масло имеет золотисто-желтый цвет. Его получают из семян льна. Температура застывания льняного масла составляет -200 градусов.

Тунговое масло изготавливают из семян тунгового дерева. Такое дерево растет на Дальнем Востоке, а также на Кавказе. Это масло не токсично, но не является пищевым. Тунговое масло застывает при температуре 0-50 градусов. Такие масла используются в электротехнике для производства лаков, лакотканей, пропитки дерева, а также в качестве жидких диэлектриков.

Касторовое масло используется для пропитки конденсаторов с бумажным диэлектриком. Получают такое масло из семян клещевины. Застывает оно при температуре -10 -180 градусов. Касторовое масло легко растворяется в этиловом спирте, но нерастворимо в бензине.

Диэлектрическая проницаемость может иметь дисперсию.

Ряд диэлектриков проявляют интересные физические свойства.

Ссылки

  • Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»

Wikimedia Foundation . 2010 .

Смотреть что такое "Диэлектрики" в других словарях:

    ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом?м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Современная энциклопедия

    Диэлектрики - ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом´м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Иллюстрированный энциклопедический словарь

    Вещества, плохо проводящие электрический ток (удельное электросопротивление 108 1012 Ом?см). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках… … Большой Энциклопедический словарь

    - (англ. dielectric, от греч. dia через, сквозь и англ. electric электрический), вещества, плохо проводящие электрич. ток. Термин «Д.» введён Фарадеем для обозначения в в, в к рые проникает электрич. поле. Д. явл. все газы (неионизованные), нек рые … Физическая энциклопедия

    ДИЭЛЕКТРИКИ - ДИЭЛЕКТРИКИ, непроводники, или изоляторы тела, плохо проводящие или совершенно не проводящие электричества. Такими телами являются напр. стекло, слюда, сера, парафин, эбонит, фарфор и т. п. В течение долгого времени при изучении электричества… … Большая медицинская энциклопедия

    - (изоляторы) вещества, не проводящие электрического тока. Примеры диэлектриков: слюда, янтарь, каучук, сера, стекло, фарфор, различные сорта масел и др. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза … Морской словарь

    Название, данное Михаилом Фарадеем телам непроводящимили, иначе, дурно проводящим электричество, как, напр., воздух, стекло,различные смолы, сера и т. д. Подобные тела называются такжеизоляторами. До исследований Фарадея, произведенных в 30 х… … Энциклопедия Брокгауза и Ефрона

    ДИЭЛЕКТРИКИ - вещества, практически не проводящие электрический ток; бывают твёрдыми, жидкими и газообразными. Во внешнем электрическом поле Д. поляризуются. Их используют для изоляции электротехнических устройств, в электрических конденсаторах, в квантовой… … Большая политехническая энциклопедия

    Вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

    Вещества, плохо проводящие электрический ток (электропроводность диэлектрики10 8 10 17 Ом 1·см 1). Существуют твёрдые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых… … Энциклопедический словарь

Книги

  • Диэлектрики и волны , А. Р. Хиппель. Автор предлагаемой вниманию читателей монографии, известный исследователь в области диэлектриков американский ученый А. Хиппель неоднократно выступал в периодической печати и в…
  • Действие лазерного излучения на полимерные материалы. Научные основы и прикладные задачи. В 2 книгах. Книга 1. Полимерные материалы. Научные основы лазерного воздействия на полимерные диэлектрики , Б. А. Виноградов, К. Е. Перепелкин, Г. П. Мещерякова. Предлагаемая книга содержит сведения о структуре и основных термических и оптических свойствах полимерных материалов, механизме воздействия на них лазерного излучения в инфракрасном, видимом…

Изоляционные материалы предназначены для ограничения конструкций и отдельных элементов от контакта с теми или иными средами. По этому принципу работают строительные водо-, паро- и теплоизоляционные материалы. В сферах, где используются электротехнические проводники, требуется изоляция другого рода - в виде диэлектриков. Их задача заключается в исключении контактов между активными эксплуатируемыми проводниками тока и материалами, которые не рассчитываются на обеспечение данной функции. В качестве целевых объектов могут выступать технические средства, прибора, строительные конструкции и даже декоративные покрытия. В свою очередь, электроизоляционные материалы создают барьер для прохождения электрического тока независимо от того, переменный он или постоянный.

Классификации изоляторов

Электроизоляторы различаются по своему происхождению и агрегатному состоянию. Что касается происхождения, то в качестве признаков выделяют принадлежность к органическим и неорганическим материалам, а также к натуральному и синтетическому сырью. К природным материалам можно отнести слюду, которая характеризуется прочностью, гибкостью и способностью к расщеплению. Это неорганический диэлектрик естественного происхождения. И напротив, в группе синтетических органических материалов можно отметить химические высокомолекулярные соединения. В готовом к использованию виде они предлагаются как пластмассы и эластомеры. Основные эксплуатационные различия определяет классификация электроизоляционных материалов по агрегатному состоянию. Выделяются твердые и жидкостные, а также газообразные диэлектрики.

Свойства изоляторов тока

Основная задача диэлектрика заключается в обеспечении изоляционной функции. Поэтому в качестве базовых эксплуатационных свойств можно отметить повышенное удельное сопротивление, небольшой тангенс потерь диэлектрика и высокое пробивное напряжение - уже упомянутый пробой. Сопротивление определяет, насколько материал сможет препятствовать проводимости тока при разных параметрах контактирующей электрической цепи. Потери диэлектрика, в свою очередь, указывают на влияние изолятора на показатели активного проводника - нормативно это значение должно стремиться к нулю, но чаще всего высокая сопротивляемость как раз приводит и к повышению потерь в основной цепи. Немаловажны и пробивные свойства электроизоляционных материалов, которые определяются напряжением. В данном случае можно говорить о непосредственной проницаемости целевого материала. При этом все перечисленные свойства фиксируются лишь в том случае, если была отмечена стабильность их «работы» во времени и при заданной температуре. Иногда в качестве параметра стабильности при испытаниях указывается и частота электрического поля.

Характеристики электроизоляторов

Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика. В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики. Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.

Газообразные изоляторы

Практически все газообразные электроизоляционные материалы обеспечивают диэлектрическую проницаемость, в коэффициенте равную 1. К плюсам таких изделий можно отнести небольшую долю диэлектрических потерь, хотя и степень пробоя тоже невелика. Как правило, основной газообразной средой с функцией электрического изолятора выступает воздух, дополненный специальными включениями. Но к сегодняшнему дню получил широкое распространение и элегаз, который применяется в качестве диэлектрической основы. Газообразные виды электроизоляционных материалов базируются на гексафториде серы, что обеспечивает более высокую защиту в показателе пробоя, а в некоторых случаях наблюдается и дугогасительная способность. Когда речь идет о сложных условиях эксплуатации целевого объекта защиты, газовая среда может дополняться органическими изоляторами.

Твердые диэлектрики

Традиционно под изоляторами данного типа понимаются такие материалы, как стекло, кварц, фарфор, пластики и резина. Их происхождение может быть натуральным и синтетическим. В тонких слоях изоляторов могут быть повышенные показатели удельного сопротивления и напряжения пробоя - эти значения зависят от диэлектрической проницаемости и электрической прочности структуры. Увеличение разности потенциалов по отношению к твердому или жидкому диэлектрику будет повышать ток, проходящий целевой объект. В итоге это явление способствует формированию вблизи катода положительного пространственного заряда на фоне отрыва электронов. Электрический пробой можно будет рассматривать как результат искажения заряженного поля в структуре самого изолятора. Твердотельные электроизоляционные материалы подвергаются поляризации, поэтому их диэлектрическая постоянная превышает единицу. Также в момент приложения переменных электрических полей поляризация способствует образованию диэлектрических потерь. В этом контексте стоит выделить материалы, которые даже в высокочастотных полях имеют минимальные диэлектрические потери. К таким можно отнести полиэтилен и кварц.

Жидкие диэлектрики

К жидким изоляторам относятся синтетические жидкости, масла, пасты, лаки и смолы. Особенно распространены минеральные масла, являющиеся продуктом нефтяной переработки и представляющие собой комбинацию жидких углеводородов. Они используются в масляных выключателях, небольших трансформаторах, конденсаторах и кабелях. Популярна и жидкая электроизоляция в виде пропитки. Ее часто применяют при подготовке кабелей и тех же конденсаторов к работе. Материал представляет собой бумажную изоляцию, в которой бумага является носителем, а пропитка - активной защитной средой.

Гильзовая электроизоляция

Это материал из группы механических защитных устройств, который обеспечивает внешнюю физическую защиту. Обычно используются гибкие гильзы, которыми защищаются проводники силовых агрегатов, трансформаторы и кабели. По этому же принципу работает традиционная изоляционная лента, задача которой заключается в создании физической преграды. Гильзы также выступают прослойкой, никак не взаимодействующей с на электрохимическом уровне. Однако среди недостатков этого материала отмечается быстрый износ.

Конденсаторы

Электрическая изоляция является важным условием полноценной работоспособности конденсаторов. В некоторых случая сам конденсатор выступает как диэлектрик в составе сложной электротехнической цепи. Такие приборы имеют разное применение, в том числе выделяется нейтрализация индукционных эффектов в линиях с переменным током, накопление заряда, а также получение токовых импульсов для всевозможных приложений. Для использования конденсатора в качестве изоляционной точки необходимо иметь представление о требуемой емкости. В приборах она рассчитывается исходя из характеристик системы или посредством вычисления размера заряда на обкладке. В самой конструкции для обеспечения защитной функции могут применяться электроизоляционные материалы в виде лаков и масел. В зависимости от типа конденсатора определяется и набор вторичных функций - например, учитывается горючесть, влагостойкость, износостойкость и т.д.

Вакуум как изолятор

Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.

Компаунд как основной диэлектрик в радиотехнике

Довольно практичный в использовании и недорогой способ диэлектрической защиты. Компаунд наносится на рабочую зону, после чего застывает, в полной мере обретая свои основные функциональные качества. При этом нельзя сказать, что компаунды - это обязательно твердые электроизоляционные материалы, так как встречаются и разновидности жидкостного типа. Даже в рабочем состоянии они не отвердевают. Также существуют заливочные и пропиточные виды данного материала. Отличительной чертой всех компаундов является полное отсутствие растворителей в составе. Это дает возможность обеспечивать деликатную пропитку сложных электромеханических деталей и аппаратов.

Современные электроизоляционные материалы

К электроизоляторам нового поколения относится широкая группа полимерных материалов. В основном это пленочные изделия, которые обеспечивают эффект диэлектрика путем создания соответствующей оболочки. Пленка производится в формате рулонов, толщина которых варьируется от 5 до 250 мкм. Помимо основных электроизоляционных свойств, такие пленки характеризуются гибкостью, эластичностью, прочностью и стойкостью на разрыв. Удобна в применении и полимерная изоляционная лента, которая имеет толщину 0,2-0,3 мм. Такие материалы проигрывают многим традиционным диэлектрикам лишь в одном качестве - экологической безопасности. Это не самый безобидный материал в плане токсической угрозы, поэтому его используют по большей части в промышленности, хотя бывают и исключения.

Сферы применения электроизоляторов

Практически все сферы, в которых задействуется электропроводка, в том или ином виде применяют и диэлектрические средства. Базовым примером можно назвать кабели, которые получают несколько слоев изоляции - как электрической, так и механической. Приборостроение можно назвать второй по популярности сферой использования данной изоляции. От воздействия токов ограничивают как отдельные детали аппаратной части, так и технологические узлы в электротехнических машинах. В строительстве также востребованы средства изоляции от тока. Например, в прокладке домашней и уличной проводки тоже задействуются электроизоляционные материалы. Применение диэлектриков позволяет сохранить материалы, которые находятся рядом с токопроводящим контуром. В некоторых случаях подобная изоляция себя оправдывает и как средство понижения потерь в напряжении основной линии.

Заключение

Спектр вариантов электрической изоляции довольно широк, что дает возможность целенаправленно подобрать материал специально под конкретные нужды. Например, в быту распространены твердотельные виды электроизоляционных материалов, а также диэлектрики в форме деталей. В промышленности и строительстве могут применяться газовые и жидкостные среды. Коммунальная же сфера охватывает практически весь диапазон электрической изоляции, поскольку условия защиты могут быть очень разными.

Классификация по строению молекул

Классификация по химическому составу

Классификация по способу получения

Классификация по агрегатному состоянию

Активные и пассивные диэлектрики

Определение диэлектрических материалов

Классификация и области использования диэлектрических материалов

Диэлектриками называются вещества, основным электрическим свойством которых является способность поляризоваться в электрическом поле.

Электроизоляционными материалами называют диэлектрические материалы, предназначенные для создания электрической изоляции токоведущих частей электротехнических установок.

Изолятором называется изделие из электроизоляционного материала, задачами которого являются крепление и изоляция друг от друга проводников, находящихся под различными потенциалами (например, изоляторы воздушной ЛЭП).

Электрической изоляцией называется электроизоляционная система определенного конкретного электротехнического изделия, выполненная из одного или нескольких электроизоляционных материалов.

Используемые в качестве электроизоляционных материалов диэлектрики называются пассивными диэлектриками. В настоящее время широко применяются, так называемые, активные диэлектрики, параметры которых можно регулировать, изменяя напряженность электрического поля, температуру, механические напряжения и другие параметры воздействующих на них факторов.

Например, конденсатор, диэлектрическим материалом в котором служит пьезоэлектрик, под действием приложенного переменного напряжения изменяет свои линейные размеры и становится генератором ультразвуковых колебаний. Емкость электрического конденсатора, выполненного из нелинейного диэлектрика – сегнетоэлектрика, изменяется в зависимости от напряженности электрического поля; если такая емкость включена в колебательный LC-контур, то изменяется и его частота настройки.

Диэлектрические материалы классифицируют:

По агрегатному состоянию: газообразные, жидкие и твердые;

По способу получения: естественные и синтетические;

По химическому составу: органические и неорганические;

По строению молекул: нейтральные и полярные.

ГАЗООБРАЗНЫЕ ДИЭЛЕКТРИКИ

К газообразным диэлектрикам относятся: воздух, азот, водород, углекислый газ, элегаз, хладон (фреон), аргон, неон, гелий и др. Они используются при изготовлении электрических аппаратов (воздушные и элегазовые выключатели, разрядники)


Наиболее широко в качестве электроизолирующего материала используется воздух. Воздух содержит: пары воды и газы: азот(78%), кислород (20,99%), углекислый газ (0,03%), водород(0,01%), аргон (0,9325%), неон (0,0018%), а также гелий, криптон, и ксенон, которые по объему в сумме составляют десятитысячные доли процента.

Важными свойствами газов являются их способность восстанавливать электрическую прочность, малая диэлектрическая проницаемость, высокое значение удельного сопротивления, практически отсутствие старения, инертность ряда газов по отношению к твердым и жидким материалам, нетоксичность, способность их работать при низких температурах и высоком давлении, негорючесть.

ЖИДКИЕ ДИЭЛЕКТРИКИ

Жидкие диэлектрики предназначены для отвода теплоты от обмоток и магнитопроводов в трансформаторах, гашение дуги в масляных выключателях, усиление твердой изоляции в трансформаторах, маслонаполненых вводах, конденсаторах, маслопропитанных и маслонаполненных кабелях.

Жидкие диэлектрики делят на две группы:

Нефтяные масла (трансформаторное, конденсаторное, кабельное);

Синтетические масла (совтол, жидкие кремнийорганические и фтороорганические соединения).

4.1.7 Области использования диэлектриков как ЭТМ

Применение в электроэнергетике:

- линейная и подстанционная изоляция - это фарфор, стекло и кремнийорганическая резина в подвесных изоляторах ВЛ, фарфор в опорных и проходных изоляторах, стеклопластики в качестве несущих элементов, полиэтилен, бумага в высоковольтных вводах, бумага, полимеры в силовых кабелях;

- изоляция электрических приборов - бумага, гетинакс, стеклотекстолит, полимеры, слюдяные материалы;

- машин, аппаратов - бумага, картон, лаки, компаунды, полимеры;

- конденсаторы разных видов - полимерные пленки, бумага, оксиды, нитриды.

С практической точки зрения в каждом случае выбора материала электрической изоляции следует анализировать условия работы и выбирать материал изоляции в соответствии с комплексом требований. Для ориентировки целесообразно разделить основные диэлектрические материалы на группы по условиям применения.

1. Нагревостойкая электрическая изоляция. Это в первую очередь изделия из слюдяных материалов, некоторые из которых способны работать до температуры 700 ° С. Стекла и материалы на их основе (стеклоткани, стеклослюдиниты). Органосиликатные и металлофосфатные покрытия. Керамические материалы, в частности нитрид бора. Композиции из кремнийорганики с термостойким связующим. Из полимеров высокой нагревостойкостью обладают полиимид, фторопласт.

2. Влагостойкая электрическая изоляция. Эти материалы должны быть гидрофобны (несмачивание водой) и негигроскопичны. Ярким представителем этого класса является фторопласт. В принципе возможна гидрофобизация путем создания защитных покрытий.

3. Радиационно стойкая изоляция. Это, в первую очередь, неорганические пленки, керамика, стеклотекстолит, слюдинитовые материалы, некоторые виды полимеров (полиимиды, полиэтилен).

4. Тропикостойкая изоляция. Материал должен быть гидрофобным, чтобы работать в условиях высокой влажности и температуры. Кроме того, он должен быть стойким против плесневых грибков. Лучшие материалы: фторопласт, некоторые другие полимеры, худшие - бумага, картон.

5. Морозостойкая изоляция. Это требование характерно, в основном для резин, т.к. при понижении температуры все резины теряют эластичность. Наиболее морозостойка кремнийорганическая резина с фенильными группами (до -90° С).

6. Изоляция для работы в вакууме (космос, вакуумные приборы). Для этих условий необходимо использовать вакуумно-плотные материалы. Пригодны некоторые, специально приготовленные керамические материалы, малопригодны полимеры.

Электротехнический картон используется в качестве диэлектрических дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз).

В последнее время бурно развивается производство изоляторов для ВЛ на основе кремнийорганической резины . Этот материал относится к каучукам, основное свойство которых - эластичность. Это позволяет изготовлять из каучуков не только изоляторы, но и гибкие кабели. В энергетике используются разные типы каучуков: натуральные каучуки, бутадиеновые, бутадиен-стирольные, этиленпропиленовые и кремнийорганические.

Электротехнический фарфор является искусственным минералом, образованным из глинистых минералов, полевого шпата и кварца в результате термообработки по керамической технологии. К числу наиболее ценных его свойств относится высокая стойкость к атмосферным воздействиям, положительным и отрицательным температурам, к воздействию химических реагентов, высокие механическая и электрическая прочность, дешевизна исходных компонентов. Это определило широкое применение фарфора для производства изоляторов.

Электротехническое стекло в качестве материала для изоляторов имеет некоторые преимущества перед фарфором. В частности у него более стабильная сырьевая база, проще технология, допускающая большую автоматизацию, возможность визуального контроля неисправных изоляторов.

Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. В электротехнике используют два вида слюд: мусковит КАl 2 (АlSi 3 О 10)(ОН) 2 и флогопит КMg 3 (АlSi 3 О 10 (ОН) 2 . Высокие электроизоляционные характеристики слюды обязаны ее необычному строению, а именно - слоистости. Слюдяные пластинки можно расщеплять на плоские пластинки вплоть до субмикронных размеров. Разрушающие напряжения при отрыве одного слоя от другого слоя составляют примерно 0.1 МПа, тогда как при растяжении вдоль слоя - 200-300 МПа. Из других свойств слюды отметим невысокий tg , менее чем 10 -2 ; высокое удельное сопротивление, более 10 12 Ом·м; достаточно высокую электрическую прочность, более 100 кВ/мм; термостойкость, температура плавления более 1200° С.

Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.

Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны. Применение - пазовая и витковая изоляция электрических машин.

Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.

Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов.

Наибольшее применение из газов в энергетике имеет воздух. Это связано с дешевизной, общедоступностью воздуха, простотой создания, обслуживания и ремонта воздушных электроизоляционных систем, возможностью визуального контроля. Объекты, в которых применяется воздух в качестве электрической изоляции - линии электропередач, открытые распределительные устройства, воздушные выключатели и т.п.

Из электроотрицательных газов с высокой электрической прочностью наибольшее применение нашел элегаз SF6. . Свое название он получил от сокращения “электрический газ”. Уникальные свойства элегаза были открыты в России, его применение также началось в России. В 30х годах известный ученый Б.М. Гохберг исследовал электрические свойства ряда газов и обратил внимание на некоторые свойства шестифтористой серы SF6. Электрическая прочность при атмосферном давлении и зазоре 1 см составляет Е=89 кВ/см. Молекулярная масса составляет 146, характерным является очень большой коэффициент теплового расширения и высокая плотность. Это важно для энергетических установок, в которых проводится охлаждение каких-либо частей устройства, т.к. при большом коэффициенте теплового расширения легко образуется конвективный поток, уносящий тепло. Из теплофизических свойств: температура плавления= -50 ° С при 2 атм, температура кипения (возгонки)= -63° С, что означает возможность применения при низких температурах.

Из других полезных свойств отметим следующие: химическая инертность, нетоксичность, негорючесть, термостойкость (до 800° С), взрывобезопасность, слабое разложение в разрядах, низкая температура сжижения . В отсутствие примесей элегаз совершенно безвреден для человека. Однако продукты разложения элегаза в результате действия разрядов (например, в разряднике или выключателе) токсичны и химически активны. Комплекс свойств элегаза обеспечил достаточно широкое использование элегазовой изоляции. В устройствах элегаз обычно используется под давлением в несколько атмосфер для большей компактности энергоустановок, т.к. электрическая прочность увеличивается с ростом давления. На основе элегазовой изоляции созданы и эксплуатируются ряд электроустройств, из них кабели, конденсаторы, выключатели, компактные ЗРУ (закрытые распределительные устройства).

Наиболее распространенный в энергетике жидкий диэлектрик - это трансформаторное масло.

Трансформаторное масло - очищенная фракция нефти, получаемая при перегонке, кипящая при температуре от 300 ° С до 400 ° С. В зависимости от происхождения нефти обладают различными свойствами и эти отличительные свойства исходного сырья отражаются на свойствах масла. Оно имеет сложный углеводородный состав со средним весом молекул 220-340 а.е., и содержит следующие основные компоненты.

Из родственных трансформаторному маслу по свойствам и применению жидких диэлектриков стоит отметить конденсаторные и кабельные масла.

Конденсаторные масла. Под этим термином объединена группа различных диэлектриков, применяемая для пропитки бумажно-масляной и бумажно-пленочной изоляции конденсаторов. Наиболее распространенное конденсаторное масло по ГОСТ 5775-68 производят из трансформаторного масла путем более глубокой очистки. Отличается от обычных масел большей прозрачностью, меньшим значением tg  (более, чем в десять раз). Касторовое масло растительного происхождения, оно получается из семян клещевины. Основная область использования - пропитка бумажных конденсаторов для работы в импульсных условиях.
Плотность касторового масла 0,95-0,97 т/м3, температура застывания от -10 ° С до -18 ° С. Его диэлектрическая проницаемость при 20° С составляет 4,0 - 4,5, а при 90° С -  = 3,5 - 4,0; tg  при 20° С равен 0,01- 0,03, а при 100° С tg  = 0,2- 0,8; Епр при 20° С равно 15- 20 МВ/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте. В отличие от нефтяных масел касторовое не вызывает набухания обычной резины. Этот диэлектрик относится к слабополярным жидким диэлектрикам, его удельное сопротивление при нормальных условиях составляет 108 - 1010 Oм·м.

Кабельные масла предназначены для пропитки бумажной изоляции силовых кабелей. Основой их также является нефтяные масла. От трансформаторного масла отличаются повышенной вязкостью, увеличенной температурой вспышки и уменьшенными диэлектрическими потерями. Из марок масел отметим МН-4 (маловязкое, для заполнения кабелей низкого давления), С-220 (высоковязкое для заполнения кабелей высокого давления), КМ-25 (наиболее вязкое).

Второй тип жидких диэлектриков - трудногорючие и негорючие жидкости. Жидких диэлектриков с такими свойствами достаточно много. Наибольшее распространение в энергетике и электротехнике получили хлордифенилы . В зарубежной литературе они называются хлорбифенилами . Это вещества, имеющие в своем составе двойное бензольное кольцо, т.н. ди(би)фенильное кольцо и присоединенные к нему один или несколько атомов хлора. В России применяются диэлектрики этой группы в виде смесей, в основном смеси пентахлордифенила с трихлордифенилом. Коммерческие названия некоторых из них - “совол”, “совтол”, “калория-2”.

Диэлектрические материалы классифицируются и по ряду внутривидовых признаков, которые определяются их основными характеристиками: электрическими, механическими, физико-химическими, тепловыми.

4.2.1 К электрическим характеристикам диэлектрических материалов относятся:

Удельное объемное электрическое сопротивление ρ, Ом*м или удельная объемная проводимость σ, См/м;

Удельное поверхностное электрическое сопротивление ρ s , Ом, или удельная поверхностная проводимость σ s См;

Температурный коэффициент удельного электрического сопротивления ТК ρ , ˚С -1 ;

Диэлектрическая проницаемость ε;

Температурный коэффициент диэлектрической проницаемости ТКε;

Тангенс угла диэлектрических потерь δ;

Электрическая прочность материала Е пр,МВ/м.

4.2.2 Тепловые характеристики определяют термические свойства диэлектриков.

К тепловым характеристикам относятся:

Теплоемкость;

Температура плавления;

Температура размягчения;

Температура каплепадения;

Теплостойкость;

Нагревостойкость;

Холодностойкость – способность диэлектриков противостоять низким температурам, сохраняя электроизоляционные свойства;

Тропикостойкость – стойкость диэлектриков к комплексу внешних воздействий в условиях тропического климата (резкий перепад температур, высокая влажность, солнечная радиация);

Термоэлатичность;

Температура вспышки паров электроизоляционных жидкостей.

Нагревостойкость – одна из важнейших характеристик диэлектриков. В соответствии с ГОСТ 21515-76 нагревостойкость – это способность диэлектрика длительно выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств.

Классы нагревостойкости. Всего семь. Характеризуются температурным индексом ТИ. Это температура, при которой срок службы материала составляет 20 тыс. Часов.

4.2.3 Влажностные свойства диэлектриков

Влагостойкость – это надежность эксплуатации изоляции при нахождении ее в атмосфере водяного пара близкого к насыщению. Влагостойкость оценивают по изменению электрических, механических и других физических свойств после нахождения материала в атмосфере с повышенной и высокой влажностью; по влаго- и водопроницаемости; по влаго- и водопоглощаемости.

Влагопроницаемость – способность материала пропускать пары влаги при наличии разности относительных влажностей воздуха с двух сторон материала.

Влагопоглощаемость – способность материала сорбировать воду при длительном нахождении во влажной атмосфере близкой к состоянию насыщения.

Водопоглощаемость – способность материала сорбировать воду при длительном погружении его в воду.

Тропикостойкость и тропикализация оборудования – защита электрооборудования от влаги, плесени, грызунов.

4.2.4 Механические свойства диэлектриков определяют следующие характеристики:

Разрушающее напряжение при статическом растяжении;

Разрушающее напряжение при статическом сжатии;

Разрушающее напряжение при статическом изгибе;

Твердость;

Ударная вязкость;

Сопротивление раскалывания;

Стойкость к надрыву (для гибких материалов);

Гибкость по числу двойных перегибов;

Пластоэластические свойства.

Механические характеристики диэлектриков определяют соответствующие ГОСТы.

4.2.5 Физико-химические характеристики:

Кислотное число, определяющее количество свободных кислот в диэлектрике, ухудшающих диэлектрические свойства жидких диэлектриков, компаундов и лаков;

Кинематическая и условная вязкость;

Водопоглощаемость;

Водостойкость;

Влагостойкость;

Дугостойкость;

Трекингстойкость;

Радиоционная стойкость и др.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта