Главная » 2 Распространение » Если Вселенная расширяется, почему не расширяемся мы? Лишь в том случае, если вселенная расширяется, то куда.

Если Вселенная расширяется, почему не расширяемся мы? Лишь в том случае, если вселенная расширяется, то куда.

Если Вселенная расширяется, можно понять, почему далёкие галактики удаляются от нас. Но почему не расширяются звёзды, планеты и атомы?


Орбиты планет в системе TRAPPIST-1 не меняются с расширением Вселенной благодаря связующей силе гравитации, преодолевающей все последствия расширения
График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) соответствует Вселенной, быстро расширявшейся в прошлом, но до сих пор расширяющейся и сегодня. Это современная версия работы Хаббла, расширенная на расстояния в тысячи раз большие первоначальных


Холодные флуктуации (синий) реликтового излучения по сути не холоднее, а просто представляют участки, в которых имеется большее гравитационное притяжение из-за большей плотности материи. Горячие участки (красный) горячее, потому что излучение в этих участках живёт в более мелком гравитационном колодце. Со временем более плотные участки превратятся в звёзды, галактики и скопления с большей вероятностью, а менее плотные – с меньшей.


На крупнейших масштабах Вселенная расширяется, и галактики удаляются друг от друга. На маленьких масштабах гравитация пересиливает расширение, что приводит к формированию звёзд, галактик и их скоплений


Искривление пространства-времени гравитационными массами согласно ОТО


Крупный набор из многих тысяч галактик составляет наше ближайшее окружение в пределах 100 000 000 световых лет. Скопление Девы останется гравитационно связанным, но Млечный Путь продолжит со временем отдаляться от него


Размеры стабильных, удерживаемых вместе объектов, будь они связаны гравитацией, электромагнетизмом или другой силой, не изменятся с расширением Вселенной. Если вам удастся преодолеть космическое расширение, вы останетесь связным навечно.

Одним из крупнейших научных сюрпризов XX века стало открытие расширения Вселенной. Удалённые галактики разбегаются от нас и друг от друга быстрее, чем ближе расположенные, будто бы растягивается сама ткань пространства. На крупнейших масштабах плотность материи и энергии Вселенной падали миллиарды лет, и продолжают это делать. А если мы заглянем достаточно далеко, мы увидим галактики, разлетающиеся так быстро, что ничто, что мы могли бы отправить к ним сегодня, не сможет их догнать – не хватит даже скорости света. Но нет ли в этом парадокса? Именно об этом спрашивает читатель:

Если вселенная расширяется быстрее скорости света, почему это не влияет на нашу солнечную систему и расстояния от Солнца до планет? И почему относительное расстояние между звёздами нашей галактики не увеличивается… или оно увеличивается?

Мысль читателя верна, и Солнечная система, расстояния между планетами и звёздами не увеличиваются при расширении Вселенной. Так что же расширяется в расширяющейся Вселенной? Давайте разбираться.

Когда Ньютон впервые задумался о Вселенной, он представлял себе пространство в виде сетки. Это была абсолютная, фиксированная сущность, наполненная массами, гравитационно притягивающимися друг к другу. Но когда появился Эйнштейн, он понял, что эта воображаемая сетка не фиксирована, не абсолютна, и не похожа на представление Ньютона. Эта сетка похожа на ткань, и эта ткань искривлена, искажена и меняется со временем из-за присутствия материи и энергии. Более того, материя и энергия определяют её искривление.

Но если бы в вашем пространстве-времени был только набор различных масс, они неизбежно бы схлопнулись и сформировали чёрную дыру. Эйнштейну эта идея не нравилась, поэтому он добавил «поправку» в виде космологической константы. Если существует этот дополнительный член уравнения – дополнительная энергия, пронизывающая пустое пространство – она может отталкивать все эти массы и удерживать Вселенную в неподвижности. Она предотвратит гравитационный коллапс. Добавив её, Эйнштейн позволял Вселенной существовать в почти неподвижном состоянии вечно.

Но не всех привлекала идея статичной Вселенной. Одно из первых решений получил физик по имени Александр Фридман. Он показал, что если не добавлять эту космологическую константу, и заполнить Вселенную энергией – материей, излучением, пылью, жидкостями, и т.д. – то существует два класса решений: один для сжимающейся Вселенной, а другой для расширяющейся.

Математика даёт вам возможные решения, но вам нужно посмотреть на физическую Вселенную, чтобы узнать, какое из них её описывает. Это произошло в 1920-х годах благодаря работам Эдвина Хаббла. Хаббл первым открыл, что можно измерить характеристики отдельных звёзд в других галактиках и определить расстояние до них. Скомбинировав эти измерения с работами Весто Слайфера, показавшего, что у этих объектов происходит сдвиг атомного спектра, он получил удивительный результат.

Либо вся теория относительности неверна, мы находимся в центре Вселенной и всё симметрично убегает от нас, либо теория относительности верна, Фридман прав, и чем дальше от нас галактика, тем быстрее она в среднем удаляется от нас. Одним движением теория расширяющейся Вселенной перешла от простой идеи к лидирующему описанию Вселенной.

Расширение работает немного контринтуитивно. Выглядит всё так, будто ткань пространства со временем растягивается, и все объекты в этом пространстве растаскиваются друг от друга. Чем дальше объект отстоит от другого, тем больше между ними растяжения, тем быстрее они удаляются друг от друга. Если бы у нас была однородно заполненная материей Вселенная, то материя просто становилась бы менее плотной и каждый её участок со временем отдалялся бы от всех остальных.

Но Вселенная не является идеально равномерной. В ней есть участки повышенной плотности, типа планет, звёзд, галактик, скоплений галактик. В ней есть участки пониженной плотности, такие, как огромные космические войды, где практически не встретить массивных объектов. Тому причиной наличие других физических явлений, кроме расширения Вселенной. На мелких масштабах, размером с животных и меньше, преобладают электромагнетизм и ядерные силы. На крупных масштабах – планеты, солнечные системы и галактики – преобладает гравитационное воздействие. На крупнейших масштабах – размерах, сравнимых со Вселенной – главная борьба разворачивается между расширением Вселенной и гравитационным притяжением всей имеющейся в ней материи и энергии.

На крупнейших масштабах расширение побеждает. Самые удалённые галактики удаляются так быстро, что никакие сигналы, которые мы могли бы отправить к ним, даже со скоростью света, никогда до них не дойдут. Сверхскопления Вселенной – длинные, нитевидные структуры, вдоль которых выстраиваются галактики, тянущиеся на миллиарды световых лет – растягиваются и раздвигаются из-за расширения Вселенной. В относительно короткие сроки они исчезнут. И даже ближайшее к Млечному Пути скопление галактик, скопление Девы, находящееся всего в 50 миллионах световых лет от нас, не притянет нас к себе. Несмотря на гравитационное притяжение, более чем в тысячу раз превышающее наше собственное, расширение Вселенной растащит нас в стороны.

Но есть и масштабы поменьше, где расширение было побеждено – по крайней мере, локально. Скопление Девы останется связанным гравитационно. Млечный Путь и вся местная группа галактик останется связанной, и в итоге сольётся под действием гравитации. Земля так и будет двигаться по орбите вокруг Солнца на том же расстоянии, Земля останется того же размера, и атомы, из которых состоит всё, расширяться не будут. Почему? Потому, что расширение Вселенной работает только там, где другие взаимодействия – гравитационное, электромагнитное, ядерное – его не преодолели. Если какая-то сила способна удерживать объект в целости, даже расширение Вселенной не сможет его изменить.

Этому есть неочевидная причина, связанная с тем, что расширение – это не взаимодействие, а больше скорость. Пространство расширяется на всех масштабах, но расширение воздействует только на все объекты совокупно. Между двумя точками пространство будет расширяться с определённой скоростью, но если эта скорость меньше скорости убегания между двумя объектами – если между ними действует связующая их сила – тогда расстояние между ними увеличиваться не будет. Нет увеличения расстояния, нет эффекта от расширения. В любой момент расширение преодолевается с запасом, поэтому оно никогда не приобретёт суммарный эффект, наблюдаемый между несвязанными между собой объектами. В результате стабильные, связные объекты могут выжить без изменений в расширяющейся Вселенной вечно.

Пока Вселенная обладает измеренными нами свойствами, так всё и будет продолжаться. Тёмная энергия может существовать и заставлять удалённые галактики двигаться от нас с ускорением, но действие расширения на фиксированном расстоянии меняться не будет. Только в варианте Большого Разрыва – на который не указывают свидетельства – это заключение может измениться.

Ткань пространства может расширяться повсюду, но это не оказывает измеряемого эффекта на объекты. Если какая-то сила удерживает вас в связном состоянии, расширяющаяся Вселенная не будет на вас влиять. Только на самых крупных масштабах, на которых все силы, связующие объекты, слишком слабы, чтобы победить скорость Хаббла, и происходит это расширение. Как однажды сказал физик Ричард Прайс: «Если ваша талия расширяется, вы не можете винить в этом расширение Вселенной».

Cовременная астрофизика базируется на предсказаниях релятивизма, относительности и квантовой теории.

Каждая из перечисленных выше теорий ввела в современное естествознание свою фундаментальную постоянную:
- скорость света в вакууме (с),
- постоянную тяготения (G)
- и постоянную Планка (h).

Причем, если первые две естественным образом присутствуют в Общей теории относительности, характеризуя общие свойства гравитации и материи, то квантовая физика, базируясь на принципиально иной по сравнению с ОТО аксиоматикой, стоит как бы особняком. В этой аксиоматике заключен глубокий смысл - для квантовой физики существование классического детерминированого (а не вероятностного) описания свойств пространственно-временного континуума необходимо в той же степени, как и существование классического наблюдателя, состояние которого описывается детерминистически, а не вероятностно.

История развития науки изобилует примерами того, что "новое - это хорошо забытое старое". Почти три века тому назад сэр Исаак Ньютон был первым, кто попытался ответить на вопрос, что же такое пространтсво и время. По Ньютону, пространство и время представляли собой определенный способ упорядочивания событий, происходящих с различными формами материи не зависящий от них. Своеобразная сцена, на которой разыгрывался спектакль, поставленный природой.

В начале ХХ-го века Альберт Эйнштейн подверг сомнению неизменность свойств пространства и времени, показав, что геометрия четырехмерного пространства-времени определяется энергией материи, а гравитация есть не что иное, как отражение факта его кривизны. Однако и ньютоновская теория тяготения, и ее обобщение - ОТО не подвергали сомнению классичность (детерминистичность) свойств пространства и времени. Более того, сам создатель ОТО Альберт Эйнштейн был одним из наиболее последовательных критиков квантовой теории, стимулируя при этом развитие и углубление ее представлений.

По-видимому, первым, кто предпринял попытку соединить квантовую физику и гравитацию, был П.А.М. Дирак, обративший внимание на замечательный факт, что из фундаментальных констант h,c,G естественным образом конструируются величины размерности длины, времени и плотности, получивших название планковских параметров. Значения этих величин экстраординарны - современная физика лишь только-только приближается к исследованию процессов, происходящих на субатомном уровне строения материи, а планковская единица длины меньше характерного размера атома почти на 25 порядков. Нигде на Земле мы не можем воспроизвести и зафиксировать процессы, которые характеризовались бы временными интервалами, на 43 порядка ниже одной секунды. Наконец, нигде в космосе мы не сталкиваемся с выделениями энергии или иными формами материи, которые почти на 93 порядка плотнее обычной воды. Но мы не встречаем нигде в обычных условиях и проявление квантовых свойств пространства- времени, типичных для приведенных выше планковских условий!

На масштабах превышающих планковские параметры для пространственных и временных интервалов, само пространство время обладает классическими свойствами и работает аппарат ОТО. По мере приближения к планковским параметрам детерминистический способ описания пространственно-временного континуума становится неприменим - пространство и время становятся существенно квантовыми объектами, свойства которых так еще до конца и не ясны.

Что является источником расширения Вселенной

Впечатляет и уровень плотности энергии, заключенной в материи и гравитации в экстремальном состоянии, характеризуемом планковскими единицами энергии - (десять в степени 130 эрг в кубическом сантиметре!). Не здесь ли заключен источник расширения Вселенной ? Ведь не случайно хаббловский разлет галактик так напоминает разлет продуктов взрыва атомной бомбы! Невольно напрашивается аналогия с ситуацией в физике атомного ядра, сложившейся в к концу 30-х- началу 40-х годов нашего столетия. Ведь уже тогда физики понимали, какая гигантская энергия состредоточена в атомном ядре. Казалось, что эта энергия надежно скрыта от нас мощным панцирем ядерных сил. Однако для некоторых ядер, например - урана, этот панцирь, образно говоря, имел незначительные "дефекты", проявляющиеся в форме спонтанной радиоактивности. Но не прошло, однако, и десяти лет с момента ее открытия, как человечество познало весь ужас Хиросимы и Нагасаки! Пользуясь этой аналогией, правомерно поставить вопрос, не сталкиваемся ли мы при выяснении причин расширения Вселенной с проявлением "спонтанной радиоактивности" материи и гравитации на экстремально малых пространственных масштабах?

Заметим, что ответ на этот вопрос лежит вне рамок "классической" физики. Мы в полной мере вступаем в мир неизвестного - область, где пока можно говорить лишь о гипотезах, нежели о законченных научных теориях. Однако, как знать, не ожидает ли нас в самом ближайшем будущеми повторение ситуации с атомным ядром, когда самые пессимистические прогнозы были опровергнуты действительностью.

Начало расширения Вселенной

Далее мы подробно остановимся на обсуждении одной из наиболее привлекательных рабочих гипотез современной космологии, в рамках которой проблема "Большого взрыва" - проблема начала расширения Вселенной приобретает вполне законченные контуры. "Безумность" идеи, сформулированной в работах выдающихся физиков нашего столетия - Д. Уиллера, С. Хоукинга, Я.Б. Зельдовича, А.Д. Сахарова, А.Д. Линде, А.А. Старобинского и др., заключается в том, что наша Вселенная - это гигантская флуктуация топологии более общего суперпространства, связанного с вакуумным состоянием физических полей.

Свойства этого состояния должны радикально отличаться от свойств обычного пространства-времени. Во первых, его размерность не обязательно должна равняться 4 (три пространственные и одна временная координаты). Более того, вакуум, как основное состояние материи, характеризуется нулевыми физическими зарядами - следовательно, не существует и классического прибора, способного зафиксировать какую-то упорядоченность событий, а, значит - не существует и самих понятий пространства и времени, как впрочем и причинности. И, наконец, будучи сугубо квантовым объектом, вакуум физических полей флуктуирует, порождая топологические аномалии - "пузырьки", которые рождаются и гибнут. Внутри каждого такого пузырька можно ввести понятие собственного времени, направление которого фиксирует эволюцию материи внутри от момента рождения и до момента "схлопывания". Подавляющая доля таких "пузырьков" имеет время жизни, сравнимое с планковским временем и внешне проявляют себя, как замкнутые мини- Вселенные. Такое своего рода "кипение" вакуума - рождение и гибель виртуальных Вселенных является обобщением на гравитацию хорошо известного в квантовой физике эффекта поляризации вакуума - рождения и гибели виртуальных пар частиц - античастиц. В атомной физике этот эффект приводит к так называемому Лембовскому сдвигу уровней энергии в атоме водорода.

Однако, применительно к нашей Вселенной планковское время, типичное для виртуальных мини-Вселенных, оказывается почти на 60 порядков меньше современного возраста галактик. Что же задержало наш "пузырек" от практически мгновенного схлопывания? Очевидно, что Вселенные типа нашей являются ярко выраженными аномалиями. Первично устойчивое состояние вакуума в результате флуктуации топологии (образования "пузырька") стало неустойчивым по отношению к нашей Вселенной. Эта неустойчивость приводит к тому, что внутри "пузырька" вакуум начинает изменять свои своийства, стремясь к новому устойчивому пределу. Этот процесс перестройки вакуума сопровождается гигантским выделением энергии, в результате чего "пузырек"- Вселенная начинает расширяться с колоссальной скоростью. Этот процесс можно интерпретировать, как своеобразный взрыв вакуума - взрыв "пустоты"!

Естественно, что грандиозность масштаба такого взрыва, его обусловленность квантово-гравитационными свойствами пространства-времени, лежащщими за пределами современной "классической физики", могут вызвать определенный скепсис по отношению к обсуждаемой гипотезе. Однако исторический опыт науки, особенно последних десятилетий, показывает плодотворность подобных "безумных" попыток заглянуть за границу известного. В принципе - вопрос поставлен и ответ на него ждет своего исследователя.

Все знают, что Вселенная расширяется. Но куда? Что это за расширение? Наблюдая за тем, как растет ядерный гриб, мы точно можем ограничить пространство, в котором он увеличивается. Вопрос может быть очень глупым, с одной стороны, но с другой - очень интересным.

Итак, Вселенная расширяется или сжимается (соответственно, проявляя красное и синее смещение) с момента Большого Взрыва. Но где наступит конец ее расширению? Не может же она находиться в бесконечности, в конце концов. Почему мы должны говорить о том, что вселенная расширяется так, будто это самая нормальная и естественная вещь в мире?

Для начала несколько простых истин.

1. Сейчас вы не расширяетесь. Земля тоже нет. Ни Солнечная система, ни Млечный Путь. Расширение вселенной зависит от гравитации, что означает только то, что в регионах с высокой плотностью наблюдаются локальные эффекты доминирования гравитации. Получается так, что не все галактики удаляются от Млечного Пути. Наша ближайшая соседка - галактика Андромеды - мчится к нам со скоростью 80 км/с и столкнется с нами в течение нескольких миллиардов лет.

2. Не верьте метафорам. Вам может показаться, что вселенная расширяется как воздушный шар, который накачивают воздухом. «Смотрите, в точности как Вселенная!», - скажет вам модный британский ученый. Но вы, будучи умным, заметите, что за пределами шарика имеется пространство, и что 2-мерная поверхность шарика расширяется в 3-мерном пространстве. Однако наша вселенная имеет три измерения.

3. У вселенной нет ни конца ни края. Мы на самом деле не уверены, является ли вселенная бесконечно большой или просто очень большой, но даже если это так, путешествуя в одном направлении достаточно долго, вы все равно вернетесь на круги своя. Вспомните «пакмана», но без фруктов и призраков. Что касается центра вселенной, вот где аналогия шарика нам поможет. Нам кажется, что все галактики удаляются от нас, но с их точки зрения они также будут центром вселенной. Это всего лишь иллюзия.

Так куда на самом деле расширяется вселенная? Да в никуда. Нет никакого космического шкафа, наполненного вещами. Но чтобы понять это, давайте посмотрим, что общая теория относительности говорит о пространстве-времени.

В ОТО (как говорят профессионалы), наиболее важным свойством пространства (и времени) является дистанция (и временной интервал) между двумя точками. На самом деле, дистанция в полной мере определяет пространство. Эволюция шкалы дистанции определяется количеством материи и энергии в пространстве, и по мере того как время идет, шкала увеличивается и дистанция между галактиками тоже. Однако - и в этом странность - это происходит и без фактического движения галактик.

Возможно, в этой точке ваша интуиция дала сбой. Но это не помешает нам разобраться в странностях.

Мы уже сказали о том, что галактики удаляются от нас. На самом деле нет. Просто ученым так проще объяснить происходящее на самом деле. Они обманывают вас.

«Но погодите!», - скажет самый научно подкованный из вас. - «Мы же измеряем допплеровский сдвиг удаленных галактик». Это так называемое «красное смещение», о котором вы знаете, фиксируется на Земле, и подобно сирене проезжающей скорой помощи, дает нам знать, что движение имеется. Но это не то, что происходит в космологических масштабах. Просто с тех пор, как далекие галактики испустили свет, и он добрался до нас, шкала пространства серьезно изменилась, выросла. Поскольку пространство расширилось, увеличилась и длина волны фотонов, поэтому свет отдает красным.

Из такого подхода вытекает другой вопрос: «Действительно ли Вселенная расширяется быстрее скорости света?». Абсолютно верно то, что большинство далеких галактик увеличивают свою дистанцию по отношению к нам быстрее скорости света, ну и что? Они не движутся быстрее света (они вообще стоят на месте). Более того, знание этого никак не поможет вам: информация-то не передается. Если вы отправите пакет с едой в другую галактику, быстрее, чем со скоростью света, этого не сделать (да и тут, в принципе, придется постараться). Скорость света остается универсальным ограничителем скорости.

Мы привели самое распространенное (ну или утвердившееся в сфере релятивистов) мнение по поводу космологического расширения, но будет логичным закончить на том, что мы вообще не понимаем. Все описанное выше, работает замечательно, если у вас есть место для шага вперед и растяжки. Но что произошло в самом начале такое, отчего образовалось пространство буквально из ничего? На этот вопрос у физики нет ответа. И придется ждать до тех пор, пока не появится теория квантовой гравитации и не прольет свет на этот вопрос.

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта