Главная » 2 Распространение » Размер обозримой вселенной. Возраст и размеры

Размер обозримой вселенной. Возраст и размеры

В предлагаемой работе на основе общепризнанных данных приводится прямое, численное определение видимого радиуса Вселенной, который отличается от общепризнанного. Известные на сегодняшний день инфляционные модели Большого Взрыва предсказывают различные значения начального размера Вселенной после завершения этапа инфляции:

«… период «раздувания» … называется инфляционным периодом. За это вре¬мя размеры Вселенной увеличились в 10^50 раз, от миллиардной доли размера протона до размеров спичечного коробка» .

«В конце инфляционного периода наша Вселенная приобрела размер около 1 см в диаметре…» .

«Вселенная расширилась на 50 порядков – была меньше протона, а стала размером с грейпфрут» .

«к окончанию инфляционного периода вселенная приобрела размер примерно 1 см» .

«зародыш Вселенной вырос от нуля до размеров мячика для игры в пинг-понг» .

Сам процесс инфляционного раздувания длится мельчайшую долю секунды, после чего начинается многомиллиардный в годах процесс хаббловского расширения Вселенной. До настоящего времени Вселенная по приведённым ниже оценкам расширилась от 10^8 до 10^30 метров. Сейчас принято, что после инфляционного расширения прошло порядка 10^17 секунд или 13,8 млрд. лет.

В соответствии со стандартной моделью Большого Взрыва начальный радиус Вселенной должен был быть порядка нескольких сантиметров, а дальнейшее расширение было линейным. Инфляция позволяла устранить некоторые проблемы, возникающие в стандартной модели Большого Взрыва. Однако, первые инфляционные сценарии также не были лишены недостатков, что привело к дальнейшему их развитию и появлению новых инфляционных моделей, в которых на стадии инфляции Вселенная расширилась существенно сильнее.

Например, в приводится величина расширения пространства в 10 в степени 10^5 – 10^12 раз, что практически означает размер Вселенной точно с этими же числовыми значениями: 10 в степени 10^5 – 10^12 см. Число 10^12 – это 10 в степени триллион. Наибольший размер Вселенной по завершению стадии инфляции из этого диапазона предсказывает новая инфляционная теория А.Линде:

«Главное отличие инфляционной теории от старой космологии становится очевидным, если посчитать размер типичной инфляционной области в конце инфляции. Даже если начальный размер инфляционной вселенной был очень мал (порядка планковской длины lp~10^ 33 см), после 10^-35 секунды инфляции вселенная достигает огромных размеров – l~10^1`000`000`000`000 см» .

«Согласно некоторым моделям раздувания, масштаб Вселенной (в см) достигнет 10 в степени 10^12» .

Такой разброс размеров Вселенной, очевидно, должен привести к различным итоговым параметрам Вселенной.

Радиус наблюдаемой Вселенной

«Наблюдаемая Вселенная – понятие в космологии Большого Взрыва, описывающее часть Вселенной, являющуюся абсолютным прошлым относительно наблюдателя. С точки зрения пространства, это область, из которой материя (в частности, излучение, и, следовательно, любые сигналы) успела бы за время существования Вселенной достичь нынешнего местоположения (в случае человечества – современной Земли), то есть быть наблюдаемыми» .

По имеющимся общепризнанным данным возраст вселенной составляет T=13,8 млрд. лет. Из этого следует, как считается, что до Земли уже должны долетать фотоны, рождённые в момент возникновения Вселенной. Другими словами, любой фотон реликтового излучения провёл в пути Т лет. Однако, в связи с расширением Вселенной также очевидно, что до Земли должны долететь и фотоны, которые излучены с меньшего расстояния, чем Т световых лет. Действительно, на протяжении этого времени Земля постоянно удалялась от источника излучения. Поэтому дошедшие до Земли фотоны, имея возраст Т лет, рождены на удалении от Земли, меньшем, чем Т световых лет.

Расчеты показывают, что в начальный момент времени (после того, как были сформированы галактики) самый удалённый от Земли источник, фотоны от которого в настоящее время достигли Земли, находился от Земли на расстоянии приблизительно 5х10^9 св. лет.

В вычислениях мы исходили из следующих вполне приемлемых допущений. Основное допущение – это принятие за истину закона Хаббла.

Второе допущение - за всё время пост-инфляционного расширения Вселенной постоянная Хаббла была не менее принятой ныне величины. Причём, чем больше средняя величина постоянной Хаббла, тем меньше будет фактический радиус наблюдаемой Вселенной. Поэтому, в связи с открытием ускоренного расширения Вселенной, полученный результат следует считать несколько завышенным, поскольку ранее постоянная Хаббла, по всей видимости, была меньше. То есть, Земли достигли фотоны от источников, удалённых несколько более чем на 5 млрд. световых лет.

Третье допущение – это приблизительное постоянство постоянной Хаббла, её независимость от времени. Это приемлемое, можно сказать, общепринятое допущение, поскольку это следует из графиков расширения Вселенной практически всех авторитетных исследователей и теоретиков.

Из приведённых доводов должно следовать, что в астрономических наблюдениях невозможно «увидеть» галактики, удалённые более чем на 5 млрд. световых лет. Фотоны от любой галактики в возрасте, близком к возрасту Вселенной, достигшие Земли, были испущены, когда галактика находилась не дальше 5 млрд. световых лет.

Далее из этого должно следовать, что никакое красное смещение не может соответствовать удалённости более чем на это расстояние и приводимые в космологической литературе сведения о том, что обнаружены галактика или квазар, удалённые на 10-12 млрд. световых лет, вызывают недоверие.

Собственно говоря, это достаточно очевидное обстоятельство. Поскольку возраст Вселенной 14 млрд. лет, любой фотон мог быть в пути не дольше этого времени. Если фотон двигался к Земле из точки с удалённостью 12-14 млрд. лет, то со скоростью света он прошёл бы это расстояние и достиг бы Земли за время жизни Вселенной только в случае, если бы Земля не удалялась. Но Земля удалялась, причём с достаточно высокой скоростью, как показано на прилагаемой к статье анимации.

Анимацию и упомянутые выше расчеты можно увидеть в интернете по адресу URL: http://samlib.ru/p/putenihin_p_w/rw99.shtml

Поскольку Земля удаляется от Звезды, фотон за время жизни Вселенной достигнет только точки, где Земля находилась в момент его испусканий (бледный синий кружок) – на расстоянии 13,7 млрд. световых лет. Это очевидно, поскольку за это время в 13,7 млрд. лет Земля удалится от этой точки. Достичь Земли смогут только фотоны, удалённые от неё в момент излучения не более чем на 5 млрд. световых лет (приблизительно). Это расстояние, видимо, и следует считать наблюдаемой границей Вселенной.

Тем не менее, в космологической литературе указывается радиус наблюдаемой Вселенной, близкий по величине к её возрасту – около 14 млрд. световых лет. Как показано в выше приведённых расчетах, за 13 с лишним миллиардов световых лет свет от таких галактик, видимо, не мог достичь Земли. То есть, получается, наблюдать галактики на таком удалении от Земли вряд ли возможно.

Это значит, что космологические способы вычисления расстояний до галактик, вызывают определённые сомнения. Более того, очевидно, что за 14 млрд. лет фотоны от галактик, удалённых на 14 млрд. световых лет, достичь Земли могли лишь в случае стационарной (не расширяющейся) Вселенной.

По-видимому, полученный вывод о радиусе видимой Вселенной в 5 млрд. световых лет является очередным космологическим парадоксом, поскольку ставятся под сомнения множество общепризнанных теорий и выводов: общая теория относительности, закон Хаббла, теория Большого взрыва…

Литература

1. Большой взрыв: Инфляционная модель, Студопедия, 2014, URL:
(дата обращения 11.12.2015)
2. Гусев А., Как возникла Вселенная?, 2008, URL:
http://shkolazhizni.ru/archive/0/n-14628/ (дата обращения 11.12.2015)
3. Инфляционная стадия расширения Вселенной. Элементы, URL:
http://elementy.ru/trefil/21082?context=20444 (дата обращения 11.12.2015)
4. Казютинский В.В., Инфляционная космология: теория и научная картина мира, URL: http://maxpark.com/community/5654/content/2561589 (дата обращения 11.12.2015)
5. Кокин А.В. Стандартная модель вселенной. Модель Большого взрыва, 2011, URL: http://www.avkokin.ru/documents/584 (дата обращения 11.12.2015)
6. Левин А., Всемогущая инфляция, «Популярная механика» №7, 2012, URL:
http://www.sibai.ru/vsemogushhaya-inflyacziya.html (дата обращения 11.12.2015)
7. Левин А., Теория инфлантонов, 2012, URL:
8. Линде А.Д., Инфляция, квантовая космология и антропный принцип, 2002, URL:
http://www.astronet.ru/db/msg/1181084 (дата обращения 11.12.2015)
9. Линде А.Д., Многоликая Вселенная (презентация), 2007, URL:
http://elementy.ru/lib/430484 (дата обращения 11.12.2015)
http://www.myshared.ru/slide/380143/
10. Метагалактика, Википедия, 2015, URL:
https://ru.wikipedia.org/wiki/Метагалактика (дата обращения 11.12.2015)
11. Модель инфляционной вселенной, База документов Reftrend.ru, URL:
http://reftrend.ru/685191.html (дата обращения 11.12.2015)
12. Раздувающаяся вселенная, Физическая энциклопедия, URL:
http://dic.academic.ru/dic.nsf/enc_physics/4465/РАЗДУВАЮЩАЯСЯ (дата обращения 11.12.2015)
13. Эймос Дж., Обнаружена гравитационная волна Большого взрыва, 2014, URL:
(дата обращения 11.12.2015)

Звезды распределяются по просторам Вселенной неравномерно. Они объединяются в скопления, которые принято называть галактиками. Однако будет ошибкой считать, что видимые на небосклоне созвездия - это Те светила, которые человек видит на одном участке небосклона, на самом деле могут быть удалены друг от друга на гигантское расстояние.

Определение вселенского масштаба

Согласно астрономическому словарю, метагалактика - это часть всей Вселенной, которую можно наблюдать и исследовать при помощи современных научных методов и приборов. В ней находится порядка миллиарда звездных систем. Есть и другое определение. Например, в Большой советской энциклопедии говорится, что метагалактика - это совокупность галактик, в которую включается множество галактик (порядка 1 млрд), которые можно наблюдать при помощи телескопов. Чем мощнее становится современная техника, тем больше расширяются границы человеческого знания о неведомой Вселенной. Материя Вселенной является материей, из которой состоит вся метагалактика. Иногда можно увидеть и такое определение: Вселенная и метагалактика - это синонимы.

Понятия «метагалактика» и «наблюдаемая Вселенная»

Чтобы более детально разобраться с тем, что такое метагалактика, нужно объяснить другой термин - «наблюдаемая Вселенная». Астрономы этим словосочетанием называют ту часть Вселенной, за которой человек может наблюдать с Земли. При этом ученые могут наблюдать и исследовать самые разные ее части - не только звезды и планеты, но и волны, и сигналы - все, что проходит относительно нашего дома во Вселенной. Наблюдаемая Вселенная является лишь частью необъятного Космоса. Она имеет собственную границу - космологический горизонт. Ученые считают, что общее число звездных скоплений в наблюдаемой Вселенной превышает 170 млрд.

Поскольку в понятие наблюдаемой Вселенной входит гораздо большее число объектов, чем возможно увидеть простому человеку, было введено понятие метагалактики. Звезды и галактики, наблюдаемые при помощи ультрасовременной техники, являются частью обозримой Вселенной. Если же ведется речь о тех объектах, которые находятся за этой границей досягаемости, то такие объекты носят название метагалактических. Многие астрономы полагают, что действительные значительно превышают те, что доступны наблюдению.

Но и обозримая Вселенная не может наблюдаться астрономами полностью, ведь она ограничивается особым излучением. Из-за него практически невозможно наблюдать за тем, что находится за горизонтом. Это излучение - самый дальний объект, до которого «добралась» современная астрономия.

Галактические скопления

Галактики группируются в скопления различного типа точно так же, как это делают звезды. Различают два типа галактических скоплений - шарообразные и рассеянные. Все звезды, которые можно наблюдать невооруженным глазом или при помощи телескопов (исключая самые мощные из них), образуют одну систему - нашу Галактику. Ученые считают, что в ней порядка 100 млрд составляющих.

Обнаружение новых галактик

За границами Млечного Пути астрономы обнаружили большое число других По своему строению они похожи на нашу. Точно также они состоят из миллиардов звезд, некоторые их которых похожи на Солнце. Структура метагалактики стала предметом исследования уже на рубеже XIX и XX веков. Тогда некоторые астрономы были убеждены, что туманности в действительности являются звездными системами, которые удалены от Млечного Пути на миллиарды световых лет.

Галактика Андромеды - пример самостоятельной звездной системы

В начале XX века Эдвином Хабблом было доказано, что подобные туманности на самом деле являются отдельными, зачастую гигантских размеров, звездными системами. Примером такой обособленной галактики является скопление звезд Андромеды. Наблюдать ее можно в ясную, но безлунную ночь. Она видна как светлое туманное пятнышко величиной с лунный диск. Во многом галактика похожа на Млечный Путь. Она видна для наблюдателей немного наклоненной по отношению к углу зрения. Самые яркие ее части построены по типу спирали, а сама она больше, чем наша галактика. Туманность Андромеды находится от нас на расстоянии более, чем 1 млн световых лет.

Теория расширяющейся Вселенной

Эта теория является одной из самых грандиозных в науке. Ее другие названия - «теория расширяющейся метагалактики», или же попросту Теория большого взрыва. Ее основное положение заключается в том, что Вселенная родилась около 20 млрд лет назад. Это произошло по причине гигантского взрыва сгустка материи огромной плотности. Как возникла Когда-то до нее были популярны так называемые изотропные модели Вселенной. Автором одной из них был А. Эйнштейн.

Что значит этот термин? Каждая галактика (и метагалактика) может быть разбита на несколько элементарных областей. То же самое можно проделать со всей Вселенной. Изотропия означает, что свойства метагалактики являются одинаковыми во всех таких областях. Согласно модели, предложенной Эйнштейном, метагалактика - это стационарная система, в которой не происходит никаких изменений. В дальнейшем эта теория была опровергнута отечественным ученым А. А. Фридманом. Он предложил модель расширяющейся Вселенной.

Квазары - самые яркие объекты Вселенной

Важный вклад в изучение различных объектов метагалактики дает изучение квазаров - необычных и завораживающе красивых формирований. Квазары подпитываются от неизведанных черных дыр, своим ярким сиянием они затмевают соседние галактики. Квазары обладают массой, в миллиарды раз превосходящие массу Солнца.

Когда ученые впервые получили данные о квазарах, они не могли поверить в их существование. Здоровое стремление к скептицизму заставляло их найти научное объяснение этим объектам. Однако последующие астрономические исследования показали, что перед учеными действительно находятся самые яркие формирования метагалактики. Сверхмассивные черные дыры являются лучшими источниками питания для квазаров. Черные дыры такого типа - это участки в космическом пространстве, гравитационные силы которых сильны настолько, что даже солнечный свет не может вырваться за их границы. также являются загадкой для астрономов. Их размер может достигать размеров Солнечной системы. Как они формируются, никто из ученых пока не может понять.

Инструкция

«Открылась бездна, звезд полна; звездам числа нет, бездне – дна», - писал в одном из стихотворений гениальный российский ученый Михаил Васильевич Ломоносов. Это и есть поэтическое утверждение бесконечности Вселенной.

Возраст «бытия» обозримой Вселенной - около 13,7 миллиардов земных лет. Свет, который приходит от далеких галактик «с края мира», идет до Земли более 14 миллиардов лет. Получается, диаметральные размеры Вселенной можно вычислить, если примерно 13,7 умножить на два, то есть 27,4 миллиарда световых лет. Радиальный размер сферической модели - примерно 78 млрд световых лет, а диаметр – 156 млрд световых лет. Это - одна из последних версий американских ученых, результат многолетних астрономических наблюдений и расчетов.

В обозримой вселенной 170 миллиардов галактик, подобных нашей. Наша как бы находится в центре гигантского шара. От самых дальних космических объектов виден реликтовый свет – фантастически древний с точки зрения человечества. Если проникнуть очень глубоко в систему пространство-время, можно увидеть юность планеты Земля.

Существует конечный предел возраста наблюдаемых с Земли светящихся космических объектов. Вычислив предельный возраст, зная время, которое понадобилось свету для того, чтобы пройти расстояние от них до поверхности Земли, и зная константу, скорость света, по известной со школы формуле S=Vxt (путь = скорость, умноженная на время) ученые и определили вероятные размеры наблюдаемой Вселенной.

Представлять Вселенную в форме трехмерного шара – не единственный путь построения модели Вселенной. Есть гипотезы, предполагающие, что Вселенная имеет не три, а бесконечное число измерений. Есть версии, что она, подобно матрешке, состоит из бесконечного множества вложенных друг в друга и отстоящих друг от друга шарообразных образований.

Есть предположение, что Вселенной неисчерпаема по различным критериям и разным осям координат. Люди считали мельчайшей частицей материи «корпускулу», потом «молекулу», потом «атом», потом «протоны и электроны», потом заговорили об элементарных частицах, которые оказались совсем не элементарными, о квантах, нейтрино и кварках… И никто не даст гарантию, что внутри очередной супермикроминичастицы материи не находится очередная Вселенная. И наоборот – что видимая Вселенная не представляет собой только микрочастицу материи Супер-Мега-Вселенной, размеры которой никому не дано даже вообразить и подсчитать, настолько они велики.

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Сфера Хаббла

Согласно закону Хаббла, описывающего расширение Вселенной, радиальные скорости галактик пропорциональны расстоянию до них с коэффициентом Н 0 , который сегодня называется постоянной Хаббла .

Значение Н 0 определяется по наблюдениям галактических объектов, расстояния до которых измерены, главным образом, по ярчайшим звёздам или цефеидам.

Большинство независимых оценок Н 0 дают для этого параметра в настоящее время значение приблизительно около 70 км/с на мегапарсек.

Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью примерно 7000 км/с.

В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, возраст Вселенной оценивается приблизительно в 13,8 млрд лет.

Относительно центра сферы Хаббла скорость расширения пространства внутри нее меньше световой, а вне ее – больше. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом – горизонтом фотонов .

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая – в пространстве - времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах.

Горизонт частиц

Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых.

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной. Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Для нерасширяющейся Вселенной размер горизонта частиц растет с возрастом, и рано или поздно все области Вселенной окажутся доступными для изучения. Но в расширяющейся Вселенной это не так. Более того, в зависимости от скорости расширения размер горизонта частиц может зависеть от времени, прошедшего с момента начала расширения, по более сложному закону, чем простая пропорциональность. В частности, в ускоренно расширяющейся Вселенной размер горизонта частиц может стремиться к постоянной величине. Это означает, что есть области принципиально ненаблюдаемые, есть процессы принципиально непознаваемые.

Кроме того, размер горизонта частиц ограничивает размер причинно-связанных областей. Действительно, две пространственные точки, разделенные расстоянием больше размера горизонта, никогда не взаимодействовали в прошлом. Поскольку самое быстрое взаимодействие (обмен лучами света) еще не произошло, то и любое другое взаимодействие исключено. Поэтому никакое событие в одной точке не может иметь в качестве своей причины событие, произошедшее в другой точке. В случае, когда размер горизонта частиц стремится к постоянной величине, Вселенная разбивается на причинно-несвязанные области, эволюция в которых протекает независимо.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение. Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению – Зх10 7 . Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» (10 -43 секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента большого взрыва общая теория относительности уже неприменима.

Горизонт событий

Горизонт событий – это поверхность в пространстве-времени . Такой горизонт возникает не во всякой космологической модели. Например, в замедляющейся Вселенной горизонта событий нет – любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Почему такое возможно? Причин может быть несколько. Самая простая – модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант – расширение с ускорением.

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий . Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно – свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий.

Прошлое и будущее

«Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, - рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе. - Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния - Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий. Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах.

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности. Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц - самым первым. Из такого определения становится понятным, что

горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем.

Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

Обычно, когда говорят о размерах Вселенной, подразумевают локальный фрагмент Вселенной (Мироздания) , который доступен нашему наблюдению.

Это так называемая наблюдаемая Вселенная – область пространства, видимая для нас с Земли.

А так как возраст Вселенной около 13 800 000 000 лет, то независимо от того в каком мы направлении смотрим, мы видим свет, который достиг нас за 13,8 миллиарда лет.

Так что, исходя из этого, логично думать, что наблюдаемая Вселенная должна быть 13,8 х 2 = 27 600 000 000 световых лет в поперечнике.

Но это не так! Потому что с течением времени космос расширяется. И те далекие объекты, которые испустили свет 13,8 млрд. лет назад, за это время улетели еще дальше. Сегодня они уже более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет.

Таким образом, реальный диаметр наблюдаемой вселенной составляет 93 млрд. св. лет.

Визуальное (в виде сферы) представление трёхмерной структуры наблюдаемой Вселенной, видимой с нашей позиции (центр круга).

Белыми линиями обозначены границы наблюдаемой Вселенной.
Пятнышки света - это скопления скоплений галактик – суперкластеры (supercluster) – самые большие известные структуры в космосе.
Масштабная линейка: одно деление сверху - 1 миллиард световых лет, снизу – 1 миллиард парсек.
Наш дом (в центре) здесь обозначен как Сверхскопление Девы (Virgo Supercluster) – это система, включающая десятки тысяч галактик, в том числе нашу собственную – Млечный Путь (Milky Way).

Более наглядное представление о масштабах обозримой Вселенной даёт следующее изображение:

Схема расположения Земли в наблюдаемой Вселенной – серия из восьми карт

слева направо верхний ряд: Земля – Солнечная система – Ближайшие звезды – Галактика Млечный Путь, нижний ряд: Местная группа галактик – Скопление Девы – Местное Сверхскопление – Обозримая (наблюдаемая) Вселенная.

Чтобы лучше прочувствовать и осознать, о каких колоссальных, не сопоставимых с нашими земными представлениями, масштабах идет речь, стоит посмотреть увеличенное изображение этой схемы в медиа просмотрщике .

А что можно сказать о всей Вселенной? Размер всей Вселенной (Мироздания, Метавселенной), надо полагать, гораздо больше!

Но, вот какая она эта вся Вселенная и как устроена, это пока остается для нас загадкой…

А как насчет центра Вселенной? Наблюдаемая Вселенная имеет центр - это мы! Мы находимся в центре наблюдаемой Вселенной, потому что наблюдаемая Вселенная - это просто участок космоса, видимый нам с Земли.

И подобно тому, как с высокой башни мы видим круглую область с центром в самой башне, также мы видим область космоса с центром от наблюдателя. На самом деле, если говорить точнее, каждый из нас - центр своей собственной наблюдаемой Вселенной.

Но это не значит, что мы находимся в центре всей Вселенной, как и башня - отнюдь не центр мира, а только центр того кусочка мира, который с нее видно - до горизонта.

То же и с наблюдаемой Вселенной.

Когда мы смотрим в небо, мы видим свет, который 13,8 миллиарда лет летел к нам из мест, которые уже в 46,5 миллиардах световых лет от нас.

Мы не видим то, что за этим горизонтом.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта