Главная » 3 Как собирать » Каковы основные компоненты механизмов физической терморегуляции. Механизмы терморегуляции человека

Каковы основные компоненты механизмов физической терморегуляции. Механизмы терморегуляции человека

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии.

Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным и отсутствует у пойкилотермных, или холоднокровных, животных, температура тела которых переменна и мало отличается от температуры окружающей среды.

Изотермия в процессе онтогенеза развивается постепенно. У новорожденного ребенка способность поддерживать постоянство температуры тела далеко не совершенна. Вследствие этого могут наступать охлаждение (гипотермия) или перегревание (гипертермия) организма при таких температурах окружающей среды, которые не оказывают влияния на взрослого человека. Равным образом даже небольшая мышечная работа, например длительный крик ребенка, может привести к повышению температуры его тела. Организм недоношенных детей еще менее способен поддерживать постоянство температуры тела, которая у них в значительной мере зависит от температуры среды обитания.

Теплообразование происходит вследствие непрерывно совершающихся экзотермических реакций. Эти реакции протекают во всех органах и тканях, но с разной интенсивностью. В тканях и органах, производящих активную работу - в мышечной ткани, печени, почках, - выделяется большее количество тепла, чем в менее активных - соединительной ткани, костях, хрящах.

Потеря тепла органами и тканями зависит в большой степени от места их расположения: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения.

Температура тела у здорового человека равна 36,5-36,9 °С. Покой и сон понижают, а мышечная деятельность повышает температуру тела. Максимальная температура наблюдается в 16-18 ч вечера, минимальная - в 3-4 ч утра. У рабочих, длительно работающих в ночных сменах, колебания температуры могут быть обратными.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. проявляется в результате взаимодействия процессов теплообразования и теплоотдачи, регулируемых нейроэндокринными механизмами. Терморегуляцию принято разделять на химическую и физическую.

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т.е. усиления или ослабления интенсивности обмена веществ в клетках организма, и имеет важное значение для поддержания постоянства температуры тела как в нормальных условиях, так и при изменении температуры окружающей среды.

Наиболее интенсивное теплообразование в организме происходит в мышцах. Даже если человек лежит неподвижно, но мускулатура его напряжена, интенсивность окислительных процессов, а вместе с тем и теплообразование повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50-80%, а тяжелая мышечная работа - на 400-500%.

В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно возбуждает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплообразования. Даже произвольная имитация дрожи увеличивает теплообразование на 200%. Если в организм введены миорелаксанты - вещества, нарушающие передачу нервных импульсов с нерва на мышцу и тем самым устраняющие рефлекторную мышечную дрожь, даже при повышении температуры окружающей среды гораздо быстрее наступает понижение температуры тела.

В химической терморегуляции значительную роль играют также печень и почки. Температура крови печеночной вены выше температуры крови печеночной артерии, что указывает на интенсивное теплообразование в этом органе. При охлаждении тела теплопродукция в печени возрастает.

Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов; поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплообразование.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения {радиационная теплоотдача), или конвекции, т.е. движения и перемещения нагреваемого теплом воздуха, теплопроведения, т.е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких.

У человека в обычных условиях потери тепла путем теплопроведения небольшие, так как воздух и одежда являются плохими проводниками тепла. Радиация, испарения и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды. У человека в состоянии покоя при температуре воздуха около 20 °С и суммарной теплоотдаче, равной 419 кДж (100 ккал) в час, с помощью радиации теряется 66%, за счет испарения воды - 19%, конвекции - 15% от общей потери тепла организмом. При повышении температуры окружающей среды до 35 °С теплоотдача с помощью радиации и конвекции становится невозможной и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол легких.

Одежда уменьшает теплоотдачу. Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух - плохой проводник тепла. Теплоизолирующие свойства одежды тем выше, чем мельче ячеистость ее структуры, содержащая воздух. Этим объясняются хорошие теплоизолирующие свойства шерстяной и меховой одежды. Температура воздуха под одеждой составляет 30 °С. Наоборот, обнаженное тело теряет тепло, так как воздух на его поверхности все время сменяется. Поэтому температура кожи обнаженных частей тела намного ниже, чем одетых.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются: большее количество крови поступает в сосуды брюшной полости, и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла - теплоотдача уменьшается. При сильном охлаждении кожи, кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоде - уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, - способствует сохранению тепла во внутренних органах.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче с помощью радиации и конвекции.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды основное значение имеет испарение пота с поверхности кожи, что зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атмосферного воздуха высокая температура переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе (например, в бане) пот выделяется в большом количестве, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота называется эффективным потоотделением ).

Плохо переносится непроницаемая для воздуха одежда (резиновая и т.п.), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

Человек плохо переносит сравнительно невысокую температуру окружающей среды (32 °С) при влажном воздухе. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 ч при температуре 50-55 °С.

Так как некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух, дыхание также участвует в поддержании температуры тела на постоянном уровне. При высокой окружающей температуре дыхательный центр рефлекторно возбуждается, при низкой - угнетается, дыхание становится менее глубоким.

Таким образом, постоянство температуры тела поддерживается путем совместного действия, с одной стороны, механизмов, регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой - механизмов, регулирующих теплоотдачу (физическая регуляция тепла) (рис. 9.10).

Рис. 9.10.

Регуляция изотермии. Регуляторные реакции, обеспечивающие сохранение постоянства температуры тела, представляют собой сложные рефлекторные акты, которые возникают в ответ на температурное раздражение рецепторов кожи, кожных и подкожных сосудов, а также самой ЦНС. Эти рецепторы, воспринимающие холод и тепло, названы терморецепторами. При относительно постоянной температуре окружающей среды от рецепторов в ЦНС поступают ритмические импульсы, отражающие их тоническую активность. Частота этих импульсов максимальна для холодовых рецепторов кожи и кожных сосудов при температуре 20-30 °С, а для кожных тепловых рецепторов - при температуре 38-43 °С. При резком охлаждении кожи частота импульсации в холодовых рецепторах возрастает, а при быстром согревании становится меньше или прекращается. На такие же перепады температуры тепловые рецепторы реагируют прямо противоположно. Тепловые и холодовые рецепторы ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам (центральные терморецепторы). Основная часть тепла вырабатывается скелетными мышцами и внутренними органами, которые образуют ядро, а кожа создает оболочку, направленную на сохранение или удаление тепла из организма (рис. 9.11).

Рис. 9.11.

В гипоталамусе расположены основные центры терморегуляции, которые координируют многочисленные и сложные процессы, обеспечивающие сохранение температуры тела на постоянном уровне. Это доказывается тем, что разрушение гипоталамуса влечет за собой потерю способности регулировать температуру тела и делает животное пойкилотермным, в то время как удаление коры большого мозга, полосатого тела и зрительных бугров заметно не отражается на процессах теплообразования и теплоотдачи.

В осуществлении гипоталамической регуляции температуры тела участвуют железы внутренней секреции, главным образом щитовидная и надпочечники.

Участие щитовидной железы в терморегуляции доказывается тем, что введение в кровь животного сыворотки крови другого животного, которое длительное время находилось на холоде, вызывает у первого повышение обмена веществ. Такой эффект наблюдается лишь при сохранении у второго животного щитовидной железы. Очевидно, во время пребывания в условиях охлаждения происходит усиленное выделение в кровь гормона щитовидной железы, повышающего обмен веществ и, следовательно, образование тепла.

Участие надпочечников в терморегуляции обусловлено выделением ими в кровь адреналина, который, усиливая окислительные процессы в тканях, в частности в мышцах, повышает теплообразование и суживает кожные сосуды, уменьшая теплоотдачу. Поэтому адреналин способен вызывать повышение температуры тела (адреналиновая гипертермия).

Гипотермия и гипертермия. Если человек длительное время находится в условиях значительно повышенной или пониженной температуры окружающей среды, то механизмы физической и химической терморегуляции тепла, благодаря которым в обычных условиях сохраняется постоянство температуры тела, могут оказаться недостаточными: происходит переохлаждение тела - гипотермия или перегревание - гипертермия.

Гипотермия - состояние, при котором температура тела опускается ниже 35 °С. Быстрее всего гипотермия наступает при погружении в холодную воду. В этом случае вначале наблюдается возбуждение симпатической нервной системы, рефлекторно ограничивается теплоотдача и усиливается теплопродукция. Последней способствует сокращение мышц - мышечная дрожь. Через некоторое время температура тела все же начинает снижаться. При этом наблюдается состояние, подобное наркозу: исчезновение чувствительности, ослабление рефлекторных реакций, понижение возбудимости нервных центров. Резко понижается интенсивность обмена веществ, замедляется дыхание, урежаются сердечные сокращения, снижается сердечный выброс, понижается АД (при температуре тела 24-25 °С оно может составлять 15-20% от исходного).

В последние годы искусственно создаваемая гипотермия с охлаждением тела до 24-28 °С применяется в хирургических клиниках, осуществляющих операции на сердце и ЦНС. Смысл этого мероприятия состоит в том, что гипотермия значительно снижает обмен веществ головного мозга и, следовательно, потребность этого органа в кислороде. В результате становится возможным более длительное обескровливание мозга (вместо 3-5 мин при нормальной температуре до 15-20 мин при 25-28 °С), а это означает, что при гипотермии больные легче переносят временное выключение сердечной деятельности и остановку дыхания.

Криотерапия применяется и при некоторых других заболеваниях.

Гипертермия - состояние, при котором температура тела поднимается выше 37 °С. Она возникает при продолжительном действии высокой температуры окружающей среды, особенно при влажном воздухе и, следовательно, небольшом эффективном потоотделении. Гипертермия может возникать и под влиянием некоторых эндогенных факторов, усиливающих в организме теплообразование (тироксин, жирные кислоты и др.). Резкая гипертермия, при которой температура тела достигает 40-41 °С, сопровождается тяжелым общим состоянием организма и носит название теплового удара.

От гипертермии следует отличать такое изменение температуры, когда внешние условия не изменены, но нарушается собственно процесс терморегуляции. Примером такого нарушения может служить инфекционная лихорадка. Одной из причин ее возникновения является высокая чувствительность гипоталамических центров регуляции теплообмена к некоторым химическим соединениям, в частности к бактерийным токсинам.

Таким образом, баланс факторов, ответственных за теплопродукцию и теплоотдачу, является основным механизмом терморегуляции.

Вопросы и задания

  • 1. Какова роль белков в организме? В чем сущность регуляции белкового обмена?
  • 2. Какова роль углеводов в организме? В чем сущность регуляции углеводного обмена?
  • 3. Какова роль жиров в организме? В чем сущность регуляции жирового обмена?
  • 4. Какое значение имеют витамины в жизни человека?
  • 5. Значение физической и химической терморегуляции в организме. Ответ поясните.
  • 6. В последние годы искусственно создаваемая гипотермия с охлаждением тела до 24-28 °С применяется на практике в хирургических клиниках, осуществляющих операции на сердце и ЦНС. В чем смысл этого мероприятия?

Терморегуляция связана с механизмами регуляции уровня теплопродукции (химическая регуляция) и теплоотдачи (физическая регуляция). Баланс теплопродукции и теплоотдачи контролируется гипоталамусом, интегрирующим сенсорные, вегетативные, эмоциональные и моторные компоненты адаптивного поведения.

Восприятие температуры осуществляется рецепторными образованиями поверхности тела (кожными рецепторами) и глубинными температурными рецепторами в дыхательных путях, сосудах, внутренних органах, в межмышечных нервных сплетениях ЖКТ. По афферентным нервам импульсы от этих рецепторов поступают к центру терморегуляции в гипоталамусе. Он активирует различные механизмы, обеспечивающие или теплопродукцию, или теплоотдачу. Механизм обратной связи с участием нервной системы и кровоток изменяют чувствительность температурных рецепторов (рис. 15.4, 15.5). Термочувствительные образования расположены также в разных областях ЦНС - в моторной коре, в гипоталамусе, в области ствола мозга (ретикулярной формации, продолговатом мозге) и спинном мозге.

В гипоталамусе, который иногда называют «термостатом организма», существует не только центр, интегрирующий различные сенсорные импульсы, связанные с информацией о теп-

Рис. 15.4.

ловом балансе организма, но и центр регуляции двигательных реакций, контролирующих изменения температурного режима. После нарушения функций гипоталамуса способность к регуляции температуры тела утрачивается.

С передним гипоталамусом связан контроль регуляции теплоотдачи для предотвращения перегревания - его нейроны чувствительны к температуре протекающей крови. При нарушении работы этого центра сохраняется контроль за температурой тела в холодной среде, но в жару он отсутствует и температура тела значительно повышается.

Другой центр терморегуляции, расположенный в заднем гипоталамусе, контролирует величину теплопродукции


Рис. 15.5. Участие нервной системы в терморегуляции и тем самым предотвращает излишнее охлаждение. Нарушение работы этого центра снижает способность к усилению энергетического обмена в холодной среде, и температура тела падает.

Передача тепла из внутренних областей тела к конечностям в результате изменения объема кровотока является важным средством регуляции теплоотдачи через вазомоторные реакции. Конечности выдерживают гораздо больший диапазон температур, чем внутренние области тела, и образуют прекрасные температурные «отдушины», т.е. места, которые могут обеспечить потерю больших или меньших количеств тепла в зависимости от притока тепла из внутренних областей тела через кровоток.

Терморегуляция связана с симпатической нервной системой (см. рис. 15.5). Ею регулируется тонус сосудов; в результате приток крови к кожным покровам изменяется (см. гл. 4). Расширение подкожных сосудов сопровождается замедлением кровотока в них и усилением теплоотдачи (рис. 15.6). При сильной жаре резко увеличивается приток крови к коже конечностей, и избыток тепла рассеивается. Близость вен к кожной поверхности увеличивает охлаждение крови, которая возвращается к внутренним областям тела.

При охлаждении сосуды суживаются, снижается приток крови на периферию. У человека по мере прохождения крови по крупным сосудам рук и йог ее температура падает. Охлажденная венозная кровь, возвращаясь внутрь тела по сосудам, расположенным вблизи артерий, захватывает большую


Рис. 15.6. Реакция поверхностных сосудов кожи на холод - сужение (а) и жару - расширение (б)

долю тепла, отдаваемую артериальной кровыо. Такая система называется противоточным теплообменом. Она способствует возвращению большого количества тепла к внутренним областям тела после прохождения крови через конечности. Суммарный эффект такой системы - снижение теплоотдачи. При температуре воздуха, близкой к нулю, такая система не выгодна, так как в результате интенсивного теплообмена между артериальной и венозной кровью температура пальцев на руках и на ногах может значительно снизиться, что может стать причиной обморожения.

Основной источник теплопродукции связан с мышечными сокращениями, которые находятся под произвольным контролем. Другим видом усиления теплопродукции в организме может быть мышечная дрожь - реакция на холод. Небольшое движение мышц при дрожи повышает эффективность теплопродукции. При дрожи ритмически и одновременно с большой частотой сокращаются сгибатели и разгибатели конечностей и жевательные мышцы. Частота и сила сокращения могут варьировать. Дрожь генерируется только в том случае, если указанные мышцы не вовлечены в другой вид деятельности. Она может быть преодолена произвольной мышечной работой. Произвольные движения, например ходьба, связаны с мышечным сокращением, которое преодолевает дрожь. И дрожь, и ходьба сопровождаются образованием тепла. Нейроны заднего гипоталамуса влияют на частоту и силу мышечных сокращений при дрожи. К этому центру поступают импульсы от центра терморегуляции в переднем гипоталамусе и от рецепторов мышц. Импульсы от головного мозга поступают ко всем уровням спинного мозга, где возникают ритмические сигналы, вызывающие в мышцах дрожь.

Кроме того, тепловая энергия образуется при расщеплении жиров, запасенных в жировой ткани. Наиболее эффективен в этом смысле бурый жир, расположенный у новорожденных детей между лопатками и за грудиной. В течение нескольких дней после рождения теплопродукция, которую обеспечивают клетки бурого жира, - главная реакция на холод. Позднее у детей такой реакцией становится дрожь. Бурый жир в больших количествах встречается у животных, которым свойственна зимняя спячка. Расщепление жира из белой жировой ткани менее эффективно. Белый жир способствует не образованию, а сохранению тепла.

Терморегуляция — это процесс, который обеспечивает способность организма поддерживать температуру тела на определенном уровне вне зависимости от температуры окружающей среды.

Терморегуляторный центр может возбуждаться как гуморально (температурой протекающей через него крови), так и рефлекторно (при раздражении теплом или холодом рецепторов кожи). Возбуждение терморегуляторного центра приводит в действие все теплорегуляторные ме-ханизмы: интенсивность окислительных процессов, тонус скелет-ных мышц, сосудодвигательные реакции, секрецию потовых желез, дыхательные движения. Интенсивность окислительных процессов может измениться либо через вегетативную нервную систему, либо путем изменения секреции гормонов щитовидной железы и мозговой части надпочечников. Изменение работы мышц , расши-рение или сужение сосудов, секреция пота, изменение дыхатель-ных движений происходит рефлекторно через сосудодвигательный, дыхательный и потоотделительные центры.

Кора головного мозга

Центр терморегуляции находится, в свою очередь, под контролем коры головного мозга . Если животное подвергается перегреванию в опре-деленной обстановке и у него происходят соответствующие регу-ляторные реакции, то через некоторое время одна только обста-новка (без перегревания) вызовет у него те же реакции, что и перегревание. Таким образом, здесь имеет место условнорефлектор-ная реакция, происходящая при участии коры больших полу-шарий.

Температурные границы жизни очень широки. Споры многих бакте-рий выдерживают нагревание до 150°, а некоторые из них не теряют жизнеспособности при температуре, близкой к абсолютному нулю. С другой сто-роны, в горячих ключах острова Искьи (Италия) при температуре около 85° живут некоторые инфузории. Здесь еще многое остается недостаточно изученным. Рыб, насекомых и даже млекопитающих можно замораживать и затем осторожно оттаивать. Например, карпов замораживали до 15° ниже нуля и снова, постепенно отгнивая, возвращали к жизни, но замораживание хотя бы на одни градус ниже 15 уже гибельно для животного. Однако из-вестно также, чти при замораживании спермиев в до температуры, близкой к минус 200°, и длительном хранении их при этой температуре значитель-ная их часть сохраняет нормальную жизнеспособность и оплодотворяющую силу.

На этой странице материал по темам:


Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды. Это постоянство температуры тела носит название изотермии.

Изотермия свойственна только так называемым гомойотермным, или теплокровным животным. Изотермия отсутствует у пойкилотермных, или холоднокровных животных, температура тела которых переменна и мало отличается от температуры окружающей среды.

Изотермия в процессе развития организма развивается постепенно. У новорожденного ребенка способность поддерживать постоянство температуры тела слабая. Вследствие этого может наступить охлаждение (гипотермия) или перегревание (гипертермия) организма при таких температурах окружающей среды, которые не оказывают влияния на взрослого человека. Кроме того, даже небольшая мышечная работа, например связанная с длительным криком ребенка, может повысить температуру тела.

Температура - один из важнейших факторов, определяющих скорость и направление химических реакций. Суть обмена веществ -главного и неотъемлемого признака жизни - химические ферментативные реакции. Поэтому температура - одна из важнейших констант организма, которая поддерживается на строго постоянном уровне. Температура органов и тканей, как и всего организма в целом, зависит от интенсивности теплопродукции и от величины теплоотдачи.

Теплопродукция происходит вследствие непрерывно совершающихся экзотермических реакций. Эти реакции протекают во всех органах и тканях с разной степенью интенсивности. В тканях и органах, производящих активную работу - в мышечной ткани, печени, почках, выделяется большее количество тепла, чем в менее активных - соединительной ткани, костях, хрящах.

Теплоотдача - отдача тепла в окружающую среду, она идет постоянно и одновременно с процессом теплопродукции.

Потеря тепла осуществляется несколькими путями. Как любое нагретое тело, организм отдает тепло путем излучения. В условиях, когда температура окружающей среды ниже температуры тела, происходит отдача тепла путем конвекции - нагреванием воздуха или предметов, с которыми тело соприкасается. Наконец, теплоотдача осуществляется путем испарения воды - пота с поверхности тела. Часть тепла теряется с выдыхаемым воздухом, мочой и калом.

Температура разных органов различна. Так, печень, расположенная глубоко внутри тела и дающая большую теплопродукцию, имеет у человека более высокую и постоянную температуру (37,8-38°С) по сравнению с кожей, температура которой значительно ниже (на покрытых одеждой участках 29,5-33,9°С) и в большей мере зависит от окружающей среды. При этом различные участки кожной поверхности имеют разную температуру. Обычно температура кожи туловища и головы (33-34°С) выше температуры конечностей. Из изложенного следует, что понятие «постоянная температура тела» является условным. Лучше всего среднюю температуру организма как целого характеризует температура крови в наиболее крупных сосудах, так как циркулирующая в них кровь нагревается в активных тканях (тем самым охлаждая их) и охлаждается в коже (одновременно согревая ее).

О температуре тела человека судят обычно на основании ее измерения в подмышечной впадине. Здесь температура у здорового человека равна 36,5-З6,9°С. В клинике часто (особенно у грудных детей) измеряют температуру в прямой кишке, где она выше, чем в подмышечной впадине, и равна температуре у здорового человека в среднем 37,2-37,5°С.

Температура тела не остается постоянной, а колеблется в течение суток в пределах 0,5-0,7°С. Покой и сон понижают температуру, мышечная деятельность повышает ее. Максимальная температура тела наблюдается в 4-6 ч. вечера, минимальная - в 3-4 ч. утра.

Постоянство температуры тела у человека может сохраняться при условии равенства теплопродукции и теплоотдачи всего организма. Это достигается с помощью физиологических механизмов терморегуляции. Терморегуляция проявляется в форме взаимосочетания процессов теплопродукции и теплоотдачи, регулируемых нервно-эндокринным путем. Терморегуляцию принято разделять на химическую и физическую.

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т.е. усиления или ослабления интенсивности обмена веществ в клетках организма. Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла.

Увеличение продукции тепла при сократительном термогонезе происходит за счет увеличения активности мышечной ткани. При сокращении скелетных произвольных мышц выработка тепла увеличивается. Существует особый вид мышечных сокращений - мышечная дрожь, при которой мышцы не совершают полезной работы и их сокращение направлено исключительно на выработку тепла.

При несократительном термогенезе меняется ход химических реакций. Не вся освобождающаяся в процессах диссимиляции энергия заключается в молекулы АТФ. Число синтезируемых молекул АТФ уменьшается, т.к. часть энергии сразу переходит в тепло. Организм согревается, но его рабочие возможности уменьшаются. Химическая терморегуляция, основанная на изменении обмена веществ, - слишком дорогая цена для поддержания температуры тела на постоянном уровне.

Химическая терморегуляция имеет важное значение для поддержания постоянства температуры тела, как в нормальных условиях, так и при изменении температуры окружающей среды. Механизмы химической терморегуляции включаются тогда, когда органам подвергается длительному и сильному охлаждению.

У человека отмечается усиление теплопродукции вследствие увеличения интенсивности обмена веществ, если температура окружающей среды становится ниже оптимальной температуры или зоны комфорта. При обычной легкой одежде эта зона находится в пределах 18-20°С, а для обнаженного человека - 28°С.

Наиболее интенсивная теплопродукция в организме происходит в мышцах. Даже если человек лежит неподвижно, но с напряженной мускулатурой, окислительные процессы, а вместе с тем и теплопродукция повышаются на 10%. Небольшая двигательная активность ведет к увеличению теплообразования на 50-80%, а тяжелая мышечная работа - на 400-500%.

В условиях холода теплообразование в мышцах увеличивается, даже если человек находится в неподвижном состоянии. Это обусловлено тем, что охлаждение поверхности тела, действуя на рецепторы, воспринимающие холодовое раздражение, рефлекторно обуславливает беспорядочные непроизвольные сокращения мышц, проявляющиеся в виде дрожи (озноб). При этом обменные процессы организма значительно усиливаются, увеличивается потребление кислорода и углеводов мышечной тканью, что и влечет за собой повышение теплопродукции.

В химической терморегуляции, кроме мышц, значительную роль играют печень и почки.

Освобождение энергии в организме совершается за счет окислительного распада белков, жиров и углеводов. Поэтому все механизмы, которые регулируют окислительные процессы, регулируют и теплопродукцию.

Физическая терморегуляция появилась на более поздних этапах эволюции. Ее механизмы не затрагивают процессов клеточного обмена. Механизмы физической терморегуляции включаются рефлекторно и имеют как любой рефлекторный механизм три основных компонента. Во-первых, это рецепторы, воспринимающие изменение температуры внутри организма или окружающей среды. Второе звено - это центр терморегуляции. Третье звено - эффекторы, которые изменяют процессы теплоотдачи, сохраняя температуру тела на постоянном уровне. В организме, кроме потовой железы, нет собственных эффекторов рефлекторного механизма физической терморегуляции.

Физическая терморегуляция - это регуляция теплоотдачи. Ее механизмы обеспечивают поддержание температуры тела на постоянном уровне как в условиях, когда организму грозит перегрев, так и при охлаждении.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), конвекции, т. е. движения и перемешивания нагреваемого телом воздуха, теплопроведения, т.е. отдачи тепла веществом, соприкасающимся с поверхностью тела. Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ.

Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух плохой проводник тепла. В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира.

Температура кожи, а следовательно интенсивность теплоизлучения и теплопроведения могут изменяться в холодных или жарких условиях внешней среды в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются; большее количество крови поступает в сосуды брюшной полости и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла, поэтому теплоотдача уменьшается. Кроме того, при сильном охлаждении кожи происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоде, - уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, - способствует сохранению тепла во внутренних органах, температура которых поддерживается на постоянном уровне.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче посредством радиации и конвекции. Для сохранения постоянства температуры тела при высоких температурах окружающей среды имеет значение и потоотделение, происходящее за счет теплоотдачи в процессе испарения воды.

Регуляторные реакции, обеспечивающие сохранение постоянства температуры тела, представляют собой сложные рефлекторные акты, которые возникают в ответ на температурное раздражение рецепторов.

Рецепторы, с которых запускаютсярефлекторные механизмы химической и физической терморегуляции, подразделяются на рецепторы, реагирующие на тепло и холод, или тепловые и холодовые терморецепторы. Они располагаются как на поверхности, так и внутри тела. Из поверхностных особенно важны терморецепторы кожи, из внутренних - терморецепторы гипоталамуса.

Центральный механизм системы терморегуляции состоит из ряда отделов центральной нервной системы, начиная от спинного мозга и до коры больших полушарий головного мозга включительно. Ее главный отдел расположен в гипоталамусе и подразделяется на центр теплопродукции и центр теплоотдачи. Импульсы из гипоталамуса поступают по нисходящим путям к центрам вегетативной нервной системы, расположенным в продолговатом и спинном мозге, или к нейронам, иннервирующим поперечно-полосатые мышцы. Затем по вегетативным и соматическим нервам информация идет к эффекторам терморегуляции: мышцам, потовым железам, центрам дыхательной и сердечно-сосудистой систем, изменяя их функции в интересах сохранения или отдачи тела. Благодаря связям структур гипоталамуса и гипофиза, центральные структуры терморегуляции через железы внутренней секреции нейрогуморальным путем могут влиять на интенсивность обмена веществ в клетках, увеличивая теплопродукцию. Это, безусловно, рефлекторные механизмы регуляции температуры тела. Тесные связи гипоталамических центров с корой головного мозга обеспечивают условно-рефлекторную регуляцию процессов терморегуляции, тонкое приспособительное изменение деятельности всех органов, принимающих участие в терморегуляции в ответ на многообразные изменения внешней среды.

Единственным собственным эффектором - исполнителем физической терморегуляции - является потовая железа. Потоотделение - наиболее мощный физиологический механизм отдачи тепла, т.е. охлаждения. Человек в спокойном состоянии теряет путем испарения влаги, выделившейся при потоотделении, около 20% тепла, а при мышечной работе - до 80%. Интенсивность процесса испарения зависит от многих факторов: состояния организма, окружающей температуры, движения воздуха и его влажности. Испарение воды - важный фактор физической терморегуляции. Помимо собственного эффектора потовой железы, оно осуществляется и выделением воды при дыхании и испарением ее с поверхности дыхательных путей. Таким образом, дыхательная система - один из важнейших эффекторов физической терморегуляции. Изменение частоты и глубины дыхательных движений - тепловая одышка, возникающая в условиях воздействия на организм высокой температуры, - важный механизм терморегуляции у человека. Один из самых важных эффекторов физической терморегуляции - сердечно-сосудистая система, которая решает задачи как теплоотдачи, так и теплосохранения, и поэтому вовлекается в процессы терморегуляции и в условиях, грозящих организму перегревом и охлаждением. Тепло отдается в окружающую среду с поверхности тела - кожи, подкожной жировой клетчатки и частично прилегающих мышц. Изменение диаметра сосудов этих органов приводит к перераспределению количества «нагретой» циркулирующей крови. В условиях, когда теплоотдачу необходимо уменьшить, происходит сужение сосудов, количество, крови поступающей к поверхности тела, уменьшается, и нагретая кровь, проходя через артериовенозные анастомозы, стекает в сосуды внутренних органов. Температура поверхности тела понижается, и уменьшается отдача тепла путем теплоизлучения и конвекции. В условиях, требующих повышения теплоотдачи, расширение сосудов приводит к увеличению притока «горячей» крови к поверхности тела, и теплоотдача увеличивается. Одновременно в этих условиях возрастает и потоотделение.



У теплокровных животных и человека (т.н. гомойотермных организмов), в отличие от холоднокровных (или пойкилотермных), постоянная температура тела является обязательным условием существования, одним из кардинальных параметров гомеостаза (или постоянства) внутренней среды организма.

Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его “ядра”), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика организма человека состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.

Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах - так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 - 400 % . Характерно, что по доле участия в терморегуляторном теплообразовании мышцы неравноценны.

При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.

Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.

Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм человека, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его “нормальной” (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.

Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня.обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.

Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции, на протяжении которой температура также остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.

Еще в 1902 г. Рубнер предложил различать два типа этих механизмов - терморегуляцию "химическую" и "физическую". Первая связана с изменением теплопродукции в тканях (напряжением химических реакций обмена), вторая - характеризуется теплоотдачей и перераспределением тепла. Наряду с кровообращением важная роль в физической терморегуляции принадлежит потоотделению, поэтому особая функция теплоотдачи принадлежит коже - здесь происходит остывание нагретой в мышцах или в "ядре" крови, здесь реализуются механизмы потообразования и потоотделения.

ь В "норме" теплопроведением можно пренебречь, т.к. теплопроводность воздуха низка. Теплопроводность воды в 20 раз выше, поэтому теплоотдача проведением играет значительную роль и становится существенным фактором переохлаждения в случае влажной одежды, сырых носков и т.д.

ь Более эффективна теплоотдача путем конвекции (т.е. перемещением частиц газа или жидкости, смешивание их нагретых слоев с охлажденными). В воздушной среде даже в условиях покоя на теплоотдачу конвекцией приходится до 30% потерь тепла. Роль конвекции на ветру или при движении человека еще более возрастает.

ь Передача тепла излучением от нагретого тела к холодному совершается согласно закону Стефана-Больцмана и пропорциональна разности четвертых степеней температуры кожи (одежды) и поверхности окружающих предметов. Этим путем в условиях "комфорта" раздетый человек отдает до 45% тепловой энергии, но для тепло одетого человека особой роли теплопотери излучением не играют.

ь Испарение влаги с кожи и поверхности легких также эффективный путь теплоотдачи (до 25%) в условиях "комфорта". В условиях высокой температуры окружающей среды и интенсивной мышечной деятельности теплоотдача испарением пота играет доминирующую роль - с 1 граммом пота уносится 0,6 ккал энергии. Нетрудно подсчитать общий объем теряемого с потом тепла, если учесть, что в условиях интенсивной мышечной деятельности человек за восьмичасовой рабочий день может отдать до 10 - 12 литров жидкости. На холоде теплопотери с потом у хорошо одетого человека невелики, но и здесь надо учитывать теплоотдачу за счет дыхания. При этом процессе совмещаются сразу два механизма теплоотдачи - конвекция и испарение. Потери тепла и жидкости с дыханием довольно значительны, особенно при интенсивной мышечной деятельности в условиях низкой влажности атмосферного воздуха.

Существенным фактором, влияющим на процессы терморегуляции, являются вазомоторные (сосудодвигательные) реакции кожи. При максимально выраженном сужении сосудистого русла теплопотери могут снизиться на 70%, при максимальном расширении - возрасти на 90%.

Видовые отличия химической терморегуляции выражаются в разнице уровня основного (в зоне термонейтральности) обмена, положения и ширины термонейтральной зоны, интенсивности химической терморегуляции (повышение обмена при снижении температуры среды на 1"С), а также в диапазоне эффективного действия терморегуляции. Все эти параметры отражают экологическую специфику отдельных видов и адаптивным образом меняются в зависимости от географического положения региона, сезона года, высоты над уровнем моря и ряда других экологических факторов.

Регуляторные реакции, направленные на сохранение постоянной температуры тела при перегреве, представлены различными механизмами усиления теплоотдачи во внешнюю среду. Среди них широко распространена и обладает высокой эффективностью теплоотдача путем интенсификации испарения влаги с поверхности тела или (и) верхних дыхательных путей. При испарении влаги расходуется тепло, что может способствовать сохранению теплового баланса. Реакция включается при признаках начинающегося перегрева организма.

Итак, адаптивные изменения теплообмена в организме человека могут быть направлены не только на поддержание высокого уровня обмена веществ, как у большинства людей, но и на установку низкого уровня в условиях, грозящих истощением энергетических резервов.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта