Главная » 3 Как собирать » Красное смещение в спектрах звезд. Расширение вселенной и красное смещение

Красное смещение в спектрах звезд. Расширение вселенной и красное смещение

Звезды находятся далеко и кажутся просто светящимися точками в небе. Для простого наблюдателя практически неразличимы ни форма, ни размеры звезд. Для подавляющего большинства звезд существует только одно характерное свойство, которое можно наблюдать - это цвет идущего от них света.

В XII в. Исаак Ньютон открыл, что, проходя через трехгранный кусок стекла, называемый призмой, солнечный свет разлагается, как в радуге, на цветовые компоненты (спектры).

Используя современную оптику можно аналогичным образом разложить в спектр свет, испускаемый звездой или галактикой. Разные звезды имеют разные спектры, но относительная яркость разных цветов всегда в точности такая же, как в свете, который излучает какой-нибудь раскаленный докрасна, не имеющий отношения к звездам предмет. Кроме того, некоторые очень специфические цвета вообще отсутствуют в спектрах звезд, причем отсутствующие цвета разные для разных звезд. Т.к. каждый химический элемент поглощает или излучает электромагнитные волны на строго определённых частотах и образует в спектре неповторимую картину из линий, возможно сравнить их с теми цветами, которых нет в спектре исследуемого объекта, и таким образом точно определить, какие элементы присутствуют в ее атмосфере.

Космологическое красное смешение - это смешение линий в сторону длинных волн в спектре, который получен от далёкого космического источника (например, галактики или квазара), по сравнению с длинами волн тех же линий, измеренными от неподвижного источника. Известны два механизма, приводящих к появлению красного смещения, соответственно космологического и гравитационного:

1. Космологическое красное смещение, обусловленное эффектом Доплера, возникает в том случае, когда движение источника света относительно наблюдателя приводит к увеличению расстояния между ними. В результате эффекта Доплера, частота излучения от удалённых объектов, например, звёзд, может изменяться (понижаться или повышаться), а линии соответственно могут смещаться в красную (длинноволновую) или синюю (коротковолновую) часть спектра, сохраняя, однако, своё неповторимое относительное расположение.

Рассмотрим подробнее эффект Доплера. Видимый свет - это колебания электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высока - от 400 до 700000000 млн. волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причём самые низкие частоты соответствуют красному концу спектра, самые высокие - фиолетовому. Очевидно, что частота приходящих волн от источника света, расположенного на фиксированном расстоянии будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно).

При движении источника в сторону наблюдателя, он окажется ближе к нам, а потому время, за которое гребень этой волны дойдет до наблюдателя, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых за одну секунду (т.е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой и называется эффектом Доплера.

В релятивистском случае (в случае использования теории относительности), когда скорость движения источника сравнима со скоростью света, красное смещение может возникнуть и в том случае, если расстояние между движущимся источником и приёмником не изменяется (т.н. поперечный эффект Доплера). Красное смещение, возникающее при этом, интерпретируется как результат релятивистского «замедления» времени на источнике по отношению к наблюдателю.

2. Гравитационное красное смещение возникает, когда приёмник света находится в области с меньшим (по модулю) гравитационным потенциалом, чем источник. В классической интерпретации этого эффекта фотоны теряют часть энергии на преодоление сил гравитации. В результате характеризующая фотон частота уменьшается, а длина волны излучения растёт. Примером гравитационного красного смещения может служить наблюдаемое смещение линий в спектрах плотных звёзд - белых карликов.

В дальнейшем мы будем говорить о космологическом красном смещении.

Математически красное смещение выражается отношением разницы принятой и испущенной длин волн к испущенной длине волны. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения её спектральных линий.

Зная красное смешение z, можно определить скорость удаления галактики v. Если эта скорость невелика по сравнению со скоростью света (с = 300000 км/с), она выражается простой формулой:

Если измеренное по спектральным линиям z > 1, то скорость связана с ним более сложным образом и зависит от принятой модели Вселенной (см. ниже модели Фридмана).

Большинство квазаров интенсивно излучают радиоволны . Когда астрономы точно определили положения этих радиоисточников на фотографиях, полученных в видимом свете, они обнаружили звездообразные объекты.

Чтобы установить природу странных небесных тел, сфотографировали их спектр. И увидели совсем неожиданное! Эти “звезды” имели спектр, резко отличающийся от всех других звезд. Спектры были совершенно незнакомыми. У большинства квазаров они не содержали не только хорошо известных и характерных для обычных звезд линий водорода, в них вообще с первого взгляда нельзя было обнаружить ни одной линии даже какого-либо другого химического элемента. Работавший в США молодой голландский астрофизик М.Шмидт выяснил, что линии в спектрах странных источников неузнаваемы лишь потому, что они сильно смещены в красную область спектра, а на самом деле это линии хорошо известных химических элементов (прежде всего водорода).

Причина смещения спектральных линий квазаров была предметом больших научных дискуссий, в итоге которых подавляющее большинство астрофизиков пришли к выводу, что красное смещение спектральных линий связано с общим расширением Метагалактики.

В спектре объектов 3С273 и 3С48 красное смещение достигает небывалой величины. Смещение линий к красному концу спектра может быть признаком удаления источника от наблюдателя. Чем быстрее удаляется источник света, тем больше красное смещение в его спектре.

Характерно, что в спектре практически всех галактик (а для далеких галактик это правило не имеет ни одного исключения) линии в спектре всегда смещены к его красному концу. Грубо говоря, красное смещение пропорционально расстоянию до галактики. Именно в этом выражается ЗАКОН КРАСНОГО СМЕЩЕНИЯ , объясняемый ныне как результат стремительного расширения всей наблюдаемой совокупности галактик.

Скорость удаления

У наиболее далеких из известных до сих галактик красное смещение весьма велико. Соответствующие ему скорости удаления измеряются десятками тысяч километров в секунду. Но у объекта 3С48 красное смещение превзошло все рекорды. Получилось, что он уносится от Земли со скоростью только примерно вдвое меньше скорости света! Если считать, что этот объект подчиняется общему закону красного смещения, легко вычислить, что расстояние от Земли до объекта 3С48 равно 3,78 млрд. световых лет! К примеру, за 8 1/3 минут луч света долетит до Солнца, за 4 года - до ближайшей звезды. А здесь почти 4 млрд.лет непрерывного сверхстремительного полета - время, сравнимое с продолжительностью жизни нашей планеты.

Для объекта 3С196 расстояние, также найденное по красному смещению, получилось равным 12 млрд. световых лет, т.е. мы уловили луч света, который был послан к нам еще тогда, когда ни Земли, ни Солнца не существовало! Объект 3С196 очень быстрый - его скорость удаления по лучу зрения достигает 200 тысяч километров в секунду.

Возраст квазаров

По современным оценкам, возрасты квазаров измеряются миллиардами лет. За это время каждый квазар излучает огромную энергию. Нам неизвестны процессы, которые могли бы служить причиной такого энерговыделения. Если предположить, что перед нами сверхзвезда, в которой “сгорает” водород, то ее масса должна в миллиард раз превышать массу Солнца. Между тем современная теоретическая астрофизика доказывает, что при массе более чем в 100 раз превышающей солнечную, звезда неизбежно теряет устойчивость и распадается на ряд фрагментов.

Из известных ныне квазаров, общее число которых более 10 000, самый близкий удален на 260 000 000 световых лет, самый далекий - на 15 млрд. световых лет. Квазары, пожалуй, наиболее старые из объектов, наблюдаемых нами, т.к. с расстояния в миллиарды световых лет обычные галактики не видны ни в один телескоп. Однако это “живое прошлое” пока что совершенно непонятно нам. Природа квазаров до сих пор полностью не выяснена.

красное смещение

увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником (наблюдателем) увеличивается (см. Доплера эффект) или когда источник находится в сильном гравитационном поле (гравитационное красное смещение). В астрономии наибольшее красное смещение наблюдается в спектрах далеких внегалактических объектов (галактик и квазаров) и рассматривается как следствие космологического расширения Вселенной.

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин «К. с.» используется для обозначения двух явлений ≈ космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик, квазаров) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912≈14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (n0≈ n)/n0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (n0 ≈ частота некоторой линии спектра источника, n ≈ частота той же линии, регистрируемая приёмником; n

В относительности теории доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет u (в случае метагалактич. К. с. u ≈ это лучевая скорость), то

═(c ≈ скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: . Из этого уравнения следует, что при z ╝ ¥ скорость v приближается к скорости света, оставаясь всегда меньше её (v < с). При скорости v, намного меньшей скорости света (u << с), формула упрощается: u » cz. Закон Хаббла в этом случае записывается в форме u = cz = Hr (r ≈ расстояние, Н ≈ постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии: с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ╠ 5 (км/сек)/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z » 0,2, соответствующие скорости u » 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10%, т. е. такая же, как погрешность определения Н). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z » 2 и больше. При смещениях z = 2 скорость u » 0,8×с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты ≈ нестационарность и кривизна пространства ≈ времени; в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний ≈ расстояние по К. с. ≈ составляет здесь, очевидно, r= ulH = 4,5 млрд. пс). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью u, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца u = 0,6 км/сек, для плотной звезды Сириус В u = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: u = 7,5×10-5см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, ╖ 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.

Википедия

Красное смещение

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектральных линий в фиолетовую сторону называется синим смещением. Впервые сдвиг спектральных линий в спектрах звёзд описал французский физик Ипполит Физо в 1848 году, и предложил для объяснения сдвига эффект Доплера, вызванный лучевой скоростью звезды.

КРАСНОЕ СМЕЩЕНИЕ

КРАСНОЕ СМЕЩЕНИЕ

Увеличение длин волн (l) линий в эл.-магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн-lисп)/lисп, где lисп и lприн - соответственно излучения, испущенного источником и принятого наблюдателем (приёмником излучения). Два механизма приводят к появлению К. с.

К. с., обусловленное эффектом Доплера, возникает в том случае, когда источника света относительно наблюдателя приводит к увеличению расстояния между ними (см. ДОПЛЕРА ЭФФЕКТ). В релятив. случае, когда движения источника v относительно приёмника сравнима со скоростью света (с), К. с. может возникнуть и в том случае, если расстояние между источником и приёмником не возрастает (т. н. поперечный эффект Доплера). К. с., возникающее при этом, можно интерпретировать как результат релятив. замедления времени на источнике по отношению к наблюдателю (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ). Космологич. К. с., наблюдаемое у далёких галактик и квазаров, интерпретируется на основе общей теории относительности (ОТО) как эффект расширения Метагалактики (взаимного удаления галактик друг от друга; (см. КОСМОЛОГИЯ)). Расширение Метагалактики приводит к увеличению длин волн реликтового излучения и снижению энергии его квантов (т. е. к охлаждению реликтового излучения).

Гравитац. К. с. возникает, когда приёмник света находится в области с меньшим гравитац. потенциалом (fi2), чем источник (fi1). В этом случае К. с.- следствие замедления темпа времени вблизи гравитирующей массы и уменьшения частоты испускаемых квантов света (эффект ОТО): n=(1+(fi2-fi1)/c2) , Примером гравитац. К. с. может служить смещение линии в спектрах плотных звёзд - белых карликов. Используя Мёссбауэра, эффект, в 1959 удалось измерить К. с. в гравитац. Земли.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КРАСНОЕ СМЕЩЕНИЕ

Увеличение длины монохроматич. компонента спектра источника излучения в системе отсчёта наблюдателя по сравнению с длиной волны этого компонента в собств. системе отсчёта . Термин "К. с." возник при изучении спектральных линий оптич. диапазона, смещённых в сторону длинноволнового (красного) конца спектра. Причиной К. с. может явиться движение источника относительно наблюдателя - Доплера эффект или (и) отличие напряжённости поля тяготения в точках испускания и регистрации излучения - гравитационное К. с. В обоих случаях параметр смещения не зависит от длины волны, так что плотность распределения энергии излучения f 0 () связана с аналогичной плотностью в собств. системе отсчёта f e (). соотношением

Доплеровское смещение длины волны в спектре источника, движущегося с лучевой скоростью и полной скоростью , равно

Для чисто радиального движения красному смещению (z D >>0) отвечает увеличение расстояния до источника (>0), однако при отличной от нуля тангенциальной составляющей скорости значения Z D >O могут наблюдаться и при <0.

Гравитац. К. с. было предсказано А. Эйнштейном (A. Einstein, 1911) при разработке общей теории относительности (ОТО). В линейном относительно ньютоновского потенциала приближении (см. Всемирного тяготения закон) , где соответственно значения гравитац. потенциала в точках испускания и регистрации излучения (z g >0 в том случае, когда в точке испускания по модулю больше). Для массивных компактных объектов с сильным полем тяготения (напр., нейтронных звёзд и чёрных дыр )следует пользоваться точными ф-лами. В частности, гравитац. К. с. в спектре сферич. тела массой М и радиусом (r g - гравитационный радиус, G - гравитационная постоянная )определяется выражением

Первоначально для эксперим. проверки эффекта Эйнштейна исследовались спектры Солнца и других астр. объектов. Для Солнца z g 2*10 -6 , что слишком мало для надёжного измерения эффекта, однако в спектрах белых карликов (r 10 3 -10 4 км, r g 1-3 км, z g 10 -4 - 10 -5) эффект был обнаружен. В 1960 Р. Паунд (R. Pound) и Г. Ребка (G. Rebka), используя Мёссбауэра эффект, измерили гравитац. К. с. при распространении гамма-излучения в земных условиях (z g 10 -15).

Представление о космологич. К. с. возникло в результате работ (1910-29) В. Слайфера (V. Slipher), К. Вирца (К. Wirtz), К. Лундмарка (К. Lundmark) и Э. Хаббла (Е. Hubble). Последний в 1929 установил т. н. Хаббла закон - приблизительно линейную зависимость z,. от расстояния D до далёких галактик и их скоплений: z c (H 0 /c)D, где H 0 - т. н. параметр Хаббла [совр. оценка Н 0 75 км/(с*Мпк) с неопределённостью до множителя 1,5].

Космологич. К. с. связано с общим расширением Вселенной и обусловлено совместным действием эффектов Доплера и Эйнштейна (для относительно близких галактик, при D <10 3 Мпк, осп. роль играет эффект Доплера). В спектрах галактик зарегистрировано макс. значение z c 3, в спектрах квазаров z c 4,5(1988). В 1965 А. Пензиас (A. Penzias) и Р. Вильсон (R. Wilson) обнаружили микроволновое фоновое с темп-рой 2,7 К, интерпретируемое как реликт ранней стадии расширения Вселенной. Для реликтового излучения z c 1500.

Эффект К. с. в спектрах далёких галактик (эффект "разбегания" галактик) получил объяснение в рамках нестационарной космологической модели, основанной на ОТО (А. А. Фридман, 1922). Для нестационарной изотропной и однородной Вселенной (см. Космология )величина z c связана с масштабным фактором R (t )в испускания t e и регистрации t 0 света соотношением

Расширению Вселенной отвечает здесь z c >0. Закон Хаббла рассматривается как линейное к последнему соотношению с . Конкретный вид ф-ции R (t )определяется ур-ниями гравитац. Поля Ото. В. Ю. Теребиж.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КРАСНОЕ СМЕЩЕНИЕ" в других словарях:

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Современная энциклопедия

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. красное смещение возникает, когда расстояние между источником излучения и его приемником… … Большой Энциклопедический словарь

    Красное смещение - КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и… … Иллюстрированный энциклопедический словарь

    - (обозначение z), увеличение длины волны видимого света или в другом диапазоне ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ, вызванное либо удалением источника (эффект ДОПЛЕРА), либо расширением Вселенной (см. РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ). Определяется как изменение… … Научно-технический энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приёмником… … Энциклопедический словарь

    Увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником… … Астрономический словарь

КРАСНОЕ СМЕЩЕНИЕ

Оптический спектр звезды или галактики представляет собой непрерывную полосу, пересеченную темными вертикальными линиями, соответствующими длинам волн, характерным для элементов во внешних слоях звезды. Линии спектра смещаются из - за движения звезды, если она приближается к нам или удаляется от нас. Это пример доплеровского эффекта, который заключается в изменении наблюдаемой длины волны, излучаемой источником, находящимся в движении по отношению к наблюдателю. Спектральные линии смещаются в область более длинных волн (то есть обнаруживают красное смещение), если источник света отдаляется, или в область коротких волн, если источник света приближается (так называемое голубое смещение).

Для света, испускаемого монохроматическим источником с частотой f, который движется со скоростью и, можно доказать, что смещение длины волны?? = ?/f = (?/с) ?, где с представляет собой скорость света, а? - длину волны. Таким образом, скорость отдаленной звезды или галактики можно измерить на основании смещения длины волны??, пользуясь уравнением? = c? ?/?.

В 1917 году, наблюдая спектры различных галактик с помощью шестидесятисантиметрового телескопа в обсерватории Лоуэлла, в Аризоне, Весто Слайфер обнаружил, что отдельные спиральные галактики отдаляются от нас со скоростью более 500 км/с - гораздо быстрее, чем любой объект в нашей Галактике. Термин "красное смещение" был введен в употребление как показатель отношения изменения длины волны к испускаемой длине волны. Так, красное смещение 0,1 означает, что источник отдаляется от нас со скоростью 0,1 скорости света. Эдвин Хаббл продолжил работу Слайфера, оценив расстояние до двух десятков галактик с известным красным смещением. Так был сформулирован закон Хаббла, который гласит, что скорость удаления галактики пропорциональна расстоянию до нее.

В 1963 году Мартин Шмидт обнаружил первый квазар в результате открытия, что спектральные линии звездо-подобного объекта 3С 273 смещены в красную сторону спектра примерно на 15 %. Он пришел к выводу, что этот объект отдаляется со скоростью 0,15 световой и должен находиться на расстоянии более 2 млрд. световых лет, а, следовательно, он гораздо более мощный, чем обычная звезда. С тех пор было открыто много других квазаров.

См. также статьи "Закон Хаббла", "Квазар", "Спектр оптический".

Из книги Твое тело говорит «Люби себя!» автора Бурбо Лиз

СМЕЩЕНИЕ ДИСКА Физическая блокировкаПозвоночник состоит из тридцати трех позвонков, между которыми находятся межпозвоночные диски. Диски имеют форму двояковыпуклой линзы и обеспечивают подвижность и гибкость позвоночника. Смещение одного из дисков снижает гибкость

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭЛ) автора БСЭ

Из книги Русский рок. Малая энциклопедия автора Бушуева Светлана

СМЕЩЕНИЕ В 1980 году Алик Грановский (бас) и Андрей Крустер (гитара) покинули группу «Млечный Путь» и стали готовить собственную программу. После многочисленных прослушиваний за барабаны был вновь приглашен Сергей Шелудченко, также бывший участник «Млечного Пути».

Из книги Тайны древних цивилизаций автора Торп Ник

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что такое красное смещение галактик? То, что спектральные линии удаленных галактик всегда кажутся смещенными к красному, обнаружили Мильтон Хьюмейсон и Эдвин Хаббл в первой половине 1920-х годов. Наблюдения, которые затем в 1928 году осуществил Хаббл, были использованы им

Из книги Биопатогенные зоны – угроза заболевания автора Мизун Юрий Гаврилович

Смещение и нейтрализация биопатогенных полос Вопрос о возможном перемещении биопатогенных полос возникал всегда. Американский учёный К.Берд утверждал, что биопатогенные зоны перемещаются большими массами железа. Соловьёв С.С. сообщает, что народные умельцы в Латвии

Из книги Настоящая леди. Правила хорошего тона и стиля автора Вос Елена

СМЕЩЕНИЕ (сдвиг) - в психоанализе Фрейда, процесс, механизм и способ функционирования психики, обеспечивающие перемещение информационных и энергетических акцентов с главного на второстепенное, незначительное или индифферентное. По Фрейду, С. проявляется и выражается в



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта